
Multilabel Classification with Group Testing and Codes

Shashanka Ubaru 1 Arya Mazumdar 2

Abstract
In recent years, the multiclass and mutlilabel
classification problems we encounter in many ap-
plications have very large (103 − 106) number
of classes. However, each instance belongs to
only one or few classes, i.e., the label vectors
are sparse. In this work, we propose a novel ap-
proach based on group testing to solve such large
multilabel classification problems with sparse la-
bel vectors. We describe various group testing
constructions, and advocate the use of concate-
nated Reed Solomon codes and unbalanced bi-
partite expander graphs for extreme classifica-
tion problems. The proposed approach has sev-
eral advantages theoretically and practically over
existing popular methods. Our method oper-
ates on the binary alphabet and can utilize the
well-established binary classifiers for learning.
The error correction capabilities of the codes are
leveraged for the first time in the learning prob-
lem to correct prediction errors. Even if a linearly
growing number of classifiers mis-classify, these
errors are fully corrected. We establish Hamming
loss error bounds for the approach. More impor-
tantly, our method utilizes a simple prediction al-
gorithm and does not require matrix inversion or
solving optimization problems making the algo-
rithm very inexpensive. Numerical experiments
with various datasets illustrate the superior per-
formance of our method.

1. Introduction
In the multilabel classification problem, we are given a set
of labeled training data {(xi, yi)}ni=1, where xi ∈ Rp are
the input features for each data instances and yi ∈ {0, 1}d

1Department of Computer Science and Engineering, Univer-
sity of Minnesota at Twin Cities, MN USA. 2College of In-
formation and Computer Sciences, University of Massachusetts
Amherst, Amherst, MA, USA.. Correspondence to: Shashanka
Ubaru <ubaru001@umn.edu>.

Proceedings of the 34 th International Conference on Machine
Learning, Sydney, Australia, 2017. JMLR: W&CP. Copyright
2017 by the author(s).

are vectors indicating the corresponding labels (classes) the
data instances belong to. The vector yi has a one in the jth
coordinate if the ith data point belongs to jth class. We
wish to learn a mapping (prediction rule) between the fea-
tures and the labels, such that, we can predict the class la-
bel vector y of a new data point x correctly. Such multi-
label classification problems occur in many domains such
as text mining, computer vision, music, and bioinformat-
ics (Barutcuoglu et al., 2006; Trohidis, 2008; Tai & Lin,
2012), and modern applications involve large number of
labels. Popular applications with many labels include im-
age and video annotation (Wang et al., 2009), web page
categorization (Agrawal et al., 2013), text and document
categorization (Tsoumakas et al., 2008), and others (Bhatia
et al., 2015). In most of these applications, the label vectors
yi are sparse (with average sparsity of k � d), i.e., each
data point belongs to a few (average k out of d) classes.
The multiclass classification is an instance of the multil-
abel classification, where all data points belong to only one
of the d classes (k = 1).

The simple binary classification problem, where d = 2 and
k = 1 is well-studied, and several efficient algorithms have
been proposed in the literature. A natural approach used
to solve the multiclass (d > 2, k = 1) classification prob-
lem is to reduce the problem into a set of binary classifi-
cation problem, and then employ the efficient binary clas-
sifiers to solve the individual problems. Popular methods
based on this approach are: one-vs-all, all-pairs, and the
error-correcting output code (ECOC) (Dietterich & Bakiri,
1995) methods. In ECOC method, m-dimensional binary
vectors (typically codewords from an error correcting code
with m ≤ d) are assigned to each class, and m binary clas-
sifiers are learned. For the jth classification, the jth coor-
dinate of the corresponding codeword is used as the binary
label for each class. In the modern applications, where d
is typically very large, this approach is found to be very
efficient due to the reduction of the class dimension.

The idea of ECOC approach has been extended to the mul-
tilabel classification (MLC) problem. In the multiclass
classification, using codewords for each class in ECOC is
equivalent to multiplying the code matrix to the label vec-
tors (since the label vectors are basis vectors). Hence, in
the multilabel setting, the reduction from d dimensional la-
bel vectors to m dimensional can be achieved by multiply-

Multilabel classification via group testing

ing a code matrix A ∈ Rm×d to the label vector y. This
reduction method was analyzed from the compressed sens-
ing point of view in (Hsu et al., 2009), with the assumption
of output sparsity, i.e., y is sparse (with average sparsity k).
Using compressed sensing (CS) theory, the results in (Hsu
et al., 2009) show that for a linear hypothesis class and un-
der the squared loss, a random embedding (random code
matrix) of the classes to m = O(k log d) dimensions does
not increase the L2 risk of the classifier. Similarly, (Kapoor
et al., 2012) discusses MLC using compressed sensing in
the Bayesian framework. However, the CS approach re-
quires solving an optimization problem to recover the label
vector. Constructions with faster recovery algorithms ex-
ist (see, e.g., (Jafarpour et al., 2009)) but we cannot obtain
L2 norm results with them.

Alternatively, embedding based approaches have been pro-
posed to reduce the effective number of labels. These meth-
ods reduce the label dimension by projecting label vectors
onto a low dimensional space, based on the assumption that
the label matrix Y = [y1, . . . , yn] is low-rank. The various
embedding methods proposed in the literature mainly dif-
fer in the way this reduction is achieved. The reduction is
achieved using SVD in (Tai & Lin, 2012), while column
subset selection is used in (Bi & Kwok, 2013). (Zhang &
Schneider, 2011) used canonical correlation analysis and
(Chen & Lin, 2012) used an SVD approach that leverages
the feature space information. (Yu et al., 2014) discussed
multilabel classification with missing entries and used an
embedding method with a regularized least squares objec-
tive. These embedding methods capture the label corre-
lation, and Euclidean distance error guarantees are estab-
lished. However, the low rank assumption breaks down in
many situations (Bhatia et al., 2015; Xu et al., 2016), e.g.,
data is power law distributed (Babbar & Schölkopf, 2017).

The state of the art embedding method called SLEEC
(Sparse Local Embedding for Extreme Classifica-
tion) (Bhatia et al., 2015) overcomes the limitations of
previous embedding methods by first clustering the data
into smaller regions, and then performs local embeddings
of label vectors by preserving distances to nearest label
vectors. However, this method also has many shortcom-
ings, see (Babbar & Schölkopf, 2017). Moreover, most
of these embedding based methods are very expensive.
They involve eigenvalue or singular value decompositions
and matrix inversions, and may require solving convex
optimization problems, all of which become impractical
for very large d. In all the embedding methods and the CS
method, the reduced label space is a real space (no longer
binary). Hence we need to use regressors for training and
cannot leverage the efficient binary classifiers for effective
training for the model. Prediction will also involve round-
ing/thresholding of real values. This is additional work,
and choosing a right threshold is sometimes problematic.

Proposed Approach. In this paper, we present a novel
reduction approach to solve the MLC problem. Our ap-
proach assumes output sparsity (sparse label vectors with
k � d) similar to the CS approach, but reduces a large bi-
nary label vector to a binary vector of smaller size. Since
the reduced label vectors are binary, we can use the effi-
cient binary classifiers for effective training for the model.
Our prediction algorithm is extremely simple and does not
involve any matrix inversion or solving optimization algo-
rithm. The prediction algorithm can also detect and correct
errors. Hence, even if a constant fraction of the binary clas-
sifiers mis-classify, our prediction error will be zero.

Our approach is based on the popular group testing prob-
lem (Dorfman, 1943; Du & Hwang, 2000). In the group
testing problem, we wish to efficiently identify a small
number k of defective elements in a population of large size
d. The idea is to test the items in groups with the premise
that most tests will return negative results, clearing the en-
tire group. Only fewm� d tests are needed to detect the k
defectives. The items can be grouped in either an adaptive
or nonadaptive fashion. In the nonadaptive group testing
scheme, the grouping for each test can be described using
an m× d binary (0/1 entries) matrix A.

We make the crucial observation that, the MLC problem
can be solved using the group testing (GT) premise. That
is, the problem of estimating the (few) classes of a data
instance from a large set of classes, is similar to identi-
fying a small set of items from a large set. We consider
a group testing binary matrix A and reduce the label vec-
tors yi’s to smaller binary vectors zi using the boolean OR
operation zi = A ∨ yi (described later). We can now
use binary classifiers on zi for training. The m classifiers
learn to test whether the data belongs to a group (of la-
bels) or not. During prediction, the label vector can be re-
covered from the predictions of the classifiers using a sim-
ple inexpensive algorithm (requiring no matrix inversion or
solving optimization algorithms). A low prediction cost is
extremely desirable in real time applications. Depending
on a certain property called (k, e)-disjunct property of the
group testing matrix A, the recovery algorithm can correct
up to be/2c errors in the prediction. We discuss various
constructions for the group testing matrix A which have
the desired (k, e)-disjunct property. We advocate the use
of concatenated Reed Solomon codes (Kautz & Singleton,
1964), and unbalanced bipartite expander graphs (Vadhan,
2012) as the group testing matrix A. The optimal number
of binary classifiers required for exact recovery (to form a
(k, e)-disjunct matrix) will be m = Θ(k2 logk d). How-
ever, we show how this can be reduced to m = O(k log d)
if we tolerate a small ε error in the labels recovery.

The idea of grouping the labels helps overcome the issues
most existing methods encounter; e.g., when the data has

Multilabel classification via group testing

power law distribution (Babbar & Schölkopf, 2017), that is
many labels have very few training instances (which is the
case in most popular datasets), and tail labels (Xu et al.,
2016). Since the classifiers in our approach learn to test for
groups of labels, we will have more training instances per
group yielding effective classifiers. It is well known that
the one-vs-rest is a highly effective method (expensive),
and recently a (doubly) parallelized version of this method
called DiSMEC (Babbar & Schölkopf, 2017) was shown to
be very effective. Our approach is similar to one-vs-rest,
but the classifiers test for a group of labels, and we require
very few classifiers (O(log d) instead of d). Our approach
also resembles the Bloom filter method (Cisse et al., 2013),
which is based on using hash functions to reduce the label
size. However, for Bloom filters the lower dimension m
can be larger than O(k log d) (no bounds are established)
and they may yield many false positives. For proper en-
coding this method requires clustering of the labels.

We establish Hamming loss error bounds for the proposed
approach. Due to the error correcting capabilities of the
algorithm, even if a fraction of classifiers mis-classify, we
can achieve zero prediction error. Numerical experiments
with various datasets illustrate the superior performance of
our group testing approach with different GT matrices. Our
method is extremely inexpensive compared to the CS ap-
proach and especially compared to the embedding based
methods, making it very desirable for real time applications
too. The results we obtain using the GT approach are more
accurate compared to the other popular methods (in terms
of Hamming distance). For many examples, the training er-
rors we obtained were almost zero and the test errors were
also quite low.

2. Preliminaries
Group testing. Formally, the group testing problem in-
volves identifying an unknown k-sparse binary vector y ∈
{0, 1}d, such that |supp(y)| ≤ k, where supp(y) := {i :
yi 6= 0} is called the support of the vector y, by performing
a small number of tests (measurements). In the MLC prob-
lem, we can view this vector as the sparse label vector y of
the data (indicating the k labels).

A nonadaptive group testing scheme with m tests is de-
scribed by an m × d binary matrix A, where each row
corresponds to a test, and Aij = 1 if and only if the ith
test includes the jth element. The measured vector z is the
boolean OR operation between the matrix A and the label
vector y. The boolean OR operation z = A ∨ y can sim-
ply be obtained by setting every nonzero entry of the usual
matrix-vector product Ay to 1 (and leaving the zero entries
as they are). It can also be thought of as coordinate-wise
Boolean OR of the columns of A that correspond to the
nonzero entries of y.

Definition 1 (Disjunctness). An m × d binary matrix A
is called k-disjunct if the support of any of its columns is
not contained in the union of the supports of any other k
columns.

A k-disjunct matrix gives a group testing scheme that iden-
tifies any defective set up to size k exactly.

Definition 2 (Error Correction). An m × d binary matrix
A is called (k, e)-disjunct, e ≥ 1, (k-disjunct and e-error
detecting) if for every set S of columns of A with |S| ≤ k,
and i /∈ S, we have |supp(A(i))\ ∪j∈S supp(A(j))| > e,
where A(i) denote the ith column of A.

A (k, e)-disjunct matrix can detect up to e errors in the
measurements and can correct up to be/2c errors.

Several random and deterministic construction of k-
disjunct matrices have been proposed in the litera-
ture (Kautz & Singleton, 1964; Du & Hwang, 2000). Ma-
trices from error correcting codes and expander graphs
have also been designed (Dyachkov et al., 2000; Ubaru
et al., 2016; Cheraghchi, 2010; Mazumdar, 2016).

3. MLC via Group testing
In this section, we present our main idea of adapting the
group testing scheme to the multilabel classification prob-
lem (MLGT).

Training. Suppose we are given n training instances
{(xi, yi)}ni=1, where xi ∈ Rp are the input features for
each instances and yi ∈ {0, 1}d are corresponding label
vectors. We begin by assuming that each data instance be-
longs to at most k classes (the label vector y is k sparse).
We consider a (k, e)-disjunct matrix A ∈ Rm×d. We then
compute the reduced measured (label) vectors zi for each
label vectors yi, i = 1, . . . , n using the boolean OR oper-
ation zi = A ∨ yi. We can now train m binary classifiers
{wj}mj=1 based on {xi, zi}ni=1 with jth entry of zi indicat-
ing which class (1/0) the ith instance belongs to for the jth
classifier. Algorithm 1 summarizes our training algorithm.

Algorithm 1 MLGT: Training Algorithm
Input: Training data {(xi, yi)}ni=1, group testing matrix
A ∈ Rm×d, a binary classifier algorithm C.
Output: m classifiers {wj}mj=1.
for i = 1, . . . , n. do
zi = A ∨ yi.

end for
for j = 1, . . . ,m. do
wj = C({(xi, zij)}ni=1).

end for

Prediction. In the prediction stage, given a test data x ∈
Rp, we use the m classifiers {wj}mj=1 to obtain a predicted

Multilabel classification via group testing

reduced label vector ẑ. We know that a k sparse label vector
can be recovered exactly, if the group testing matrix A is a
k-disjunct matrix. With a (k, e)-disjunct matrix, e ≥ 1, we
can recover the k sparse label vector exactly, even if be/2c
binary classifiers mis-classify, using the following decoder.

Decoder : Given a predicted reduced label vector ẑ, and
a group testing matrix A, set the coordinate position of
ŷ corresponding to l ∈ [1, . . . , d] to 1 if and only if
|supp(A(l))\supp(ẑ)| < e/2.

That is, we set the lth coordinate of ŷ to 1, if the number
of coordinates that are in the support of the corresponding
column A(l) but are not in the predicted reduced vector ẑ,
is less than e/2. The decoder returns the exact label vec-
tor even if up to e/2 binary classifiers make errors. Algo-
rithm 2 summarizes our prediction algorithm.

Algorithm 2 MLGT: Prediction Algorithm
Input: Test data x ∈ Rp, the GT matrix A ∈ Rm×d
which is (k, e)-disjunct (e ≥ 1), m classifiers {wj}mj=1.
Output: predicted label ŷ.
Compute ẑ = [w1(x), . . . , wm(x)].
Set ŷ ← 0.
for l = 1, . . . , d do

if |supp(A(l))\supp(ẑ)| < e/2 then
ŷl = 1.

end if
end for

Note that the prediction algorithm is very inexpensive (re-
quires no matrix inversion or solving optimization). It is
equivalent to an AND operation between a binary sparse
matrix and a binary (likely sparse) vector, which should
cost less than a sparse matrix vector productO(nnz(A)) ≈
O(kd), where nnz(A) is the number of nonzero entries of
A. It is an interesting future work to design an even faster
prediction algorithm.

4. Constructions
In order to recover a k sparse label vector exactly, we know
that the group testing matrixAmust be a k-disjunct matrix.
With a (k, e)-disjunct matrix, our algorithm can extract the
sparse label vector exactly even if e/2 binary classifiers
make errors (mis-classify). Here, we present the results
that will help us construct specific GT matrices with the
desired properties.

4.1. Random Constructions

Proposition 1 (Random Construction). An m× d random
binary {0, 1} matrix A where each entry is 1 with prob-
ability ρ = 1

k+1 , is (k, 3k log d)-disjunct with very high
probability, if m = O(k2 log d).

If we tolerate a small ε fraction of sparsity label misclassifi-
cations (i.e., εk errors in the recovered label vector), which
we call ε-tolerance group testing, then we can follow the
analysis of Theorem 8.1.1 in (Du & Hwang, 2000), to show
that it is sufficient to have m = O(k log d) number of clas-
sifiers. Further, we can derive the following result.

Theorem 1. Suppose we wish to recover a k sparse binary
vector y ∈ Rd. A random binary {0, 1} matrix A where
each entry is 1 with probability ρ = 1/k recovers 1 − ε
proportion of the support of y correctly with high probabil-
ity, for any ε > 0, with m = O(k log d). This matrix will
also detect e = Ω(m) errors.

The proofs of the proposition and the theorem can be found
in the supplementary.

4.2. Concatenated code based constructions

Kautz and Singleton (Kautz & Singleton, 1964) introduced
a two-level construction in which a q-ary (q > 2) Reed-
Solomon (RS) code is concatenated with a unit-weight bi-
nary code. The construction starts with a q-ary (q > 2) RS
code of length q − 1, and replaces the q-ary symbols in the
codewords by unit weight binary vectors of length q. That
is, the q-ary symbols are replaced as 0 → 100 . . . 0; 1 →
010 . . . 0; q − 1 → 0 . . . 01. This gives us a binary matrix
with m = q(q − 1) rows. This matrix belongs to a broad
class of error correcting codes called the constant weight
codes (each codeword/column has a constant number of
ones w). For this Kautz-Singleton construction, w = q−1.

Proposition 2 (Kautz-Singleton construction). A Kautz-
Singleton construction with (k logk d)-ary Reed-Solomon
(RS) code is a (k, (k − 1) logk d)-disjunct matrix with
m = Θ(k2 log2

k d).

Proof. A constant weight code matrix is k disjunct ma-
trix with k = b w−1

w−h/2c, where w is the weight and h is
the distance of the code, (see, Theorem 7.3.3 in (Du &
Hwang, 2000)). The distance of the q-ary RS code is h =
2(q − logq(d)). Hence, we get k = q−2

logq d−1
. So, for a k-

disjunct matrix, we choose q = k logk d. A code with dis-
tance h will have e = h/2 (by using Corollary 8.3.2 in (Du
& Hwang, 2000)). Thus, e = q − logq d ≈ (k − 1) logk d.
m = q(q − 1) = Θ(k2 log2

k d).

Other code based constructions are given in supplementary.

4.3. Expander graphs

Expander graphs have popularly been used in many ap-
plications, for example, in coding theory (Sipser & Spiel-
man, 1996), in compressed sensing (Jafarpour et al., 2009),
etc. In an expander graph, every small set of vertices “ex-
pands”: the are “sparse” yet very “well-connected” (see

Multilabel classification via group testing

formal definition below). With high probability a random
graph is a good expander. Construction of “lossless” ex-
panders have been notoriously difficult.

Definition 3 (Unbalanced Lossless Expander Graphs). A
(k, ε)-unbalanced bipartite expander graph is a bipartite
graph G(L,R,E), |L| = d, |R| = m, where L is the set of
left nodes and R is the set of right nodes, with regular left
degree ` such that for any S ⊂ L, if |S| ≤ k then the set of
neighbors N(S) of S has the size N(S) > ε`|S|.

The following proposition describe the expander property
of random graphs.

Proposition 3. A random construction of bipartite graphs
G(L,R,E) with |L| = d with overwhelming probability,
is (k, ε)-lossless `-regular expander where ` = O(log d/ε)
with |R| = m = O(k`/ε).

The trade-off of this proposition is close to the best we
can hope for. The proof can be shown by simple random
choice and can be found in (Vadhan, 2012) or in (Cher-
aghchi, 2010).

The next definition and the subsequent two claims are from
(Cheraghchi, 2010). First, let us now connect a lossless
expander with disjunct matrix.

Definition 4. A bipartite graph G(L,R,E) is called
(k, e)-disjunct if, for every left vertex i ∈ L and every
set S ⊆ L such that |S| ≤ k and i /∈ S, we have
|N(i)\N(S)| > e.

It can be seen that the bipartite adjacency matrix A of a
disjunct graph G is a disjunct matrix.

Proposition 4. Let G be a (k, e)-disjunct graph with adja-
cency matrix A. Then for every pair of y, y′ ∈ {0, 1}d of k
-sparse vectors, we have ∆(A∨y,A∨y′) > e, where ∆(·)
denotes the Hamming distance between vectors.

The following proposition relates expander graphs with
disjunct graphs.

Proposition 5. Let G be a `-regular (k, ε)-lossless ex-
pander. Then, for every α ∈ [0, 1),G is (k−1, α`)-disjunct
provided that ε < 1−α

` .

Combining these comments, we get the following:

Proposition 6 (Random Graphs). The adjacency ma-
trix of a randomly constructed bipartite graph is,
with overwhelming probability, k-disjunct with m =
O(k2 log(d/k)). More generally, for every α ∈ [0, 1), ran-
dom graphs are (k, e)-disjunct, with e = Ω(αk log d/(1−
α2)) with m = Ω(αk2 log(d/k)/(1− α2)).

There is an explicit construction of unbalanced (k, ε)-
lossless expanders for any setting of d and m and is, to
our knowledge, the best possible, in (Capalbo et al., 2002).

These constructions yield explicit k-disjunct graphs with
m = O(k2quasipoly(log d)). Other random constructions
are discussed in the supplementary.

With all the above constructions, we can correct a reason-
ably large number of e errors by the binary classifiers. The
number of classifiers required for MLGT will be m =
O(k2 log d) which is more than the CS approach where
m = O(k log d). However, our analysis is for the worst
case: as we saw in Theorem 1, if we tolerate a small ε frac-
tion of error in recovery, we can achieve m = O(k log d)
for MLGT as well. Moreover, MLGT yields zero predic-
tion error for a k sparse label vector even if up to e/2 clas-
sifiers mis-classify. With MLCS, we only get an ε error
guarantees and with respect to 2-norm (not Hamming dis-
tance which is more natural for classification).

5. Error Analysis
Here we summarize the theoretical error guarantees for
multilabel classification using group testing (MLGT).

Theorem 2. Consider MLGT with an m× d binary matrix
A, and a label vector y with sparsity at most k. Suppose
A is (k, e)-disjunct, and we use Algorithm 2 during predic-
tion. Let ŷ be the predicted label vector and ∆(·) denote the
Hamming distance between vectors. If t number of binary
classifiers that make errors in prediction, then we have

• If t ≤ be/2c, then the prediction error ∆(y, ŷ) = 0.
• If t > be/2c, ∆(y, ŷ) ≤ w(t−e/2) (Hamming error),

where w is the maximum weight of rows in A. In par-
ticular, the error rate (average error per class) will be
w
d (t− e/2).

If A is a k-disjunct with ε error tolerance, then the predic-
tion error will be at most (w(t− e/2) + εk).

Proof. When, t ≤ e/2, we know that the decoding algo-
rithm will still recover the exact label vector due to the er-
ror correcting property of the (k, e)-disjunct matrix. When,
t > e/2, e/2 of the errors are corrected. For every remain-
ing t − e/2 errors, if w is the maximum weight of rows in
A, a maximum of w errors can occur in the predicted label.
This is because, the support different |A(l)\ẑ| can change
for a maximum of w columns. Hence, the error can be at
most w(t − e/2), and the error rate will be w

d (t − e/2).
For the k-disjunct matrix with ε error tolerance, the de-
coding algorithm can make up to εk errors in addition to
w(t− e/2).

Let us see how the error-rate of various group testing con-
structions translate to MLGT. In the case of a random ma-
trix construction, we have w ≈ d/k. So, the error rate for
this matrix will be (t−e/2)/k. From proposition 1, we can
take m = k2 log d, and e = 3k log d. Hence, the error rate

Multilabel classification via group testing

for a random (k, e) disjunct matrix will be t/k− 3/2 log d,
for any t > 3/2k log d. For any t less than this the error
rate will be zero. Similarly, we can see that the random-
ized construction of Thm. 1 with m = O(k log d) rows,
gives the average error rate is (t/k−O(log d) + εk/d) for
t > k log d. The error rates of other constructions can be
calculated in the same way, see supplementary.

The above theorem also shows that a Hamming error re-
gret R (R ≡ |error in the method - least error possible|)
in the binary classifiers will transform linearly to the over-
all regret of at most w(R − e/2) for the MLGT. For the
CS approach, the results in (Hsu et al., 2009) show that
a L2 regret R2 (an L2-norm error regret) in the regressor
will translate as

√
R2 to the overall regret (which is worse).

This is because, a CS based analysis involves, L2-norm er-
rors and Restricted Isometric Property (RIP) of the com-
pression matrix with respect to L2 norm. However, L2 er-
ror metric is never used for evaluation in practice.

Hamming Loss: Since we operate in the binary field, we
derive error (regret) bounds, as well as present experimen-
tal results with respect to Hamming loss. In certain ap-
plications we may be interested in only predicting the top
k1 < k labels correctly, e.g., tagging and recommenda-
tion. In such situations, it has been argued that the Ham-
ming loss is not a perfect measure (Jain et al., 2016), and
alternate measures such as Precison@k (defined later) for
k = 1, 3, 5 have been used (Agrawal et al., 2013). How-
ever, these measures assume there is a ranking amongst the
labels, which can be obtained only when operating in the
real space. Also, these measures ignore the false labels.
Our approach considers labels as just binary vectors (can-
not rank) and attempts to predict all labels correctly (hence
Hamming loss). Almost all available mutlilabel datasets
have binary label vectors and do not come with the pri-
ority information of labels within the large output classes.
There are recent works which try to rank the labels first and
then classify, e.g. (Jain et al., 2016; Chzhen et al., 2017).
Hamming loss is nonetheless an interesting error metric for
applications where we need to predict all labels correctly
and require few/no false labels, hence is worth analyzing.
Most of the recent popular (embedding) methods tend to
give good results with respect to Precison@k, but give
poor Hamming errors due to large number of false labels.
Our approach gives very low Hamming loss both theoreti-
cally and practically.

6. Numerical Experiments
In this section, we illustrate the performance of the pro-
posed group testing approach in the multilabel classifica-
tion problems (MLGT) via several numerical experiments
on various datasets.

Datasets: We use some popular publicly available multi-
label datasets in our experiments. All datasets were ob-
tained from The Extreme Classification Repository (Bhatia
et al., 2015). Details about the datasets and the references
for their original sources can be found in the repository.
Table 1 in the supplementary gives data details.

Constructions: For MLGT, we consider three different
group testing constructions. The Kautz-Singleton construc-
tion with q-ary Reed-Solomon (RS) codes, where we use
RS codes (MacWilliams & Sloane, 1977) with q = 16 and
m = 240; and q = 8 and m = 56. To get desired number
of codewords (equal to number of labels), we use appro-
priate message length. For example, if d ≤ 4096, q = 16,
then we use message length of 3, and if d ≤ 65536, we use
message length of 5. We also use two random GT construc-
tions, namely, the random expander graphs and the sparse
random constructions discussed in sec. 4. For MLCS (com-
pressed sensing approach), we again consider three differ-
ent types compression matrices, namely, random Gaussian
matrices, compressed Hadamard matrices and random ex-
pander graphs (expander graphs have been used for CS
too (Jafarpour et al., 2009)).

Evaluation metrics: Two evaluation metrics are used to
analyze the performances of the different methods. First
is the Hamming loss error, the Hamming distance between
the predicted vector ŷ and the actual label vector y, ∆(y, ŷ).
This metric tells us how close is the recovered vector ŷ is
from the exact label vector y, and is more suitable for bi-
nary vectors. Hamming loss captures the information of
both correct predictions and false labels. All prediction er-
rors reported (training and test) are Hamming loss errors.
The second metric used is Precison@k (P@k), which is
a popular metric used in MLC literature (Agrawal et al.,
2013). This measures the precision of predicting the first
k coordinates |supp(ŷ1:k) ∩ supp(y)|/k. Since we cannot
score the labels, we use k = nnz(y) the output sparsity of
the true label for this measure. This is equivalent to check-
ing whether the method predicted all the labels the data be-
longs to correctly or not (ignoring misclassification). When
Precision@k for k = 1, 3, 5 are used, one is checking
whether the top 1, 3 or 5 labels are predicted correctly (ig-
noring other and false labels).

MLGT vs MLCS: In the first set of experiments, we
compare the performances of the group testing approach
(MLGT) and the compressed sensing approach (MLCS)
using different group testing constructions and different
compression matrices. A least squares binary classifier was
used {wj}mj=1 for MLGT. Least squares regression with `2
regularization (ridge regression) is used as the regressors
for MLCS and other embedding based methods. Orthogo-

https://manikvarma.github.io/downloads/
XC/XMLRepository.html

https://manikvarma.github.io/downloads/XC/XMLRepository.html
https://manikvarma.github.io/downloads/XC/XMLRepository.html

Multilabel classification via group testing

Table 1. Comparison between MLGT and MLCS: Average training and test errors and Precison@k.
Data Method Size m Training error Train P@k Test Error Test P@k
RCV1-2K,
d = 2456, kmax =
10, n = 2000, nt =
501, p = 6000.

GT: RS code q=16 240 0.0280 0.9972 2.106 0.59
GT: expander 240 0.0375 0.9962 2.075 0.624

GT: sparse rand 240 0.0385 0.9961 2.059 0.616
CS: Gaussian 240 1.9970 0.8003 2.84 0.1875
CS: Hadamard 240 1.9640 0.8036 2.60 0.1858
CS: Expander 240 0.762 0.9238 3.52 0.1738

EURLex-4K,
d = 3993, k̄ =
5.03, n = 2500, nt =
500, p = 5000.

GT: RS code q=16 240 0.0320 0.9949 5.420 0.4573
GT: expander 240 0.0284 0.9959 5.526 0.4313

GT: sparse rand 240 0.0308 0.9955 5.584 0.4241
CS: Gaussian 240 0.7136 0.9238 6.206 0.2522
CS: Hadamard 240 0.7136 0.9238 8.140 0.264
CS: Expander 240 0.7136 0.9238 6.790 0.2666

Delicious,
d = 983, kmax =
12, n = 1580, nt =
393, p = 500.

GT: expander 200 6.3670 0.3438 8.666 0.4144
GT: sparse rand 200 6.2960 0.3494 8.503 0.4199
CS: Gaussian 200 13.590 0.6360 17.190 0.3014
CS: Hadamard 200 13.408 0.6572 17.842 0.3297
CS: Expander 200 13.417 0.6036 18.318 0.2827

AmazonCat-13K,
d = 13330, k̄ =
4.3, n = 3000, nt =
1200, p = 10000.

GT: RS code q=16 240 0.0385 0.9986 4.260 0.414
GT: expander 240 0.0160 0.9995 4.234 0.4263

GT: sparse rand 200 0.0165 0.9994 4.238 0.4127
CS: Gaussian 200 5.7135 1.0 11.962 0.1349
CS: Hadamard 200 5.7115 1.0 12.318 0.1539
CS: Expander 200 5.7115 1.0 12.698 0.1605

Wiki10-31K,d = 30938,k̄ = 5.6,
n = 3500,nt = 1500, p = 10000.

GT: expander 300 0.018 0.98 4.94 0.32
CS: Gaussian 300 4.313 0.89 11.22 0.09

Table 2. MLGT v/s OvsA
MLGT OvsA

Dataset d Err P@k time Err P@k time
Medmill 101 0.68 0.24 5.9s 2.07 0.17 13.1s
Bibtex 159 1.17 0.11 14.1s 2.55 0.16 36.6s

nal Matching Pursuit (OMP) (Tropp & Gilbert, 2007) was
used for sparse recovery in MLCS. Additional details are
given in supplementary.

Table 1 compares the performances of MLCS and MLGT
for different CS and GT matrices on different datasets. The
average training and the test errors (Hamming losses) are
reported along with the average Precison@k obtained for
training and test data. The methods and the number of
classifiers/regressors m used are also listed. For example,
GT:RS code q=16, implies MLGT was the method with the
RS code construction with q=16. The number of training
points n, test points nt and the number of features p used
in the experiments are reported next to the datasets. kmax

means the maximum sparsity in the data (only those data
points below this sparsity were used), anf bark is the aver-
age sparsity. For the latter three datasets, the feature space
was reduced to select only dominant features (data are very
sparse and only few features are prominent).

We observe that, the MLGT method with all the three GT
constructions outperforms the MLCS method. In most
cases, the training errors (almost zero) and Precison@k
(almost one) for MLGT methods are extremely good. This
is because, the binary classifiers are optimally trained on
the reduced binary vectors and since the matrices used

were k-disjunct, we had zero recovery error in most cases.
Hence, the predicted labels for training data were extremely
accurate. The results on test data are also better for MLGT
in almost all cases. The results we obtained for the dataset
Delicious were consistently poor, see supplementary. We
also observed that MLGT is significantly faster than MLCS
(as expected) because, MLCS uses an optimization algo-
rithm (OMP) for recovery of labels, see Table 3 for run-
times.

In the prediction algorithm of MLGT, we have a parameter
e, the number of errors the algorithm should try to correct.
The ideal value for e will depend on the GT matrix used,
the values ofm, k and d. However, note that we can test for
different values of e at no additional cost. That is, once we
compute the Boolean AND between the predicted reduced
vector and the GT matrix (the dominant operation), we can
get different prediction vectors for a range of e and choose
an e that gives the highest training P@k.

Figure 1 plots the average training and test errors and aver-
age Precison@k against the sparsity k of the label vectors
(data with label sparsity k used) obtained for MLGT and
MLCS methods with the three different matrices respec-
tively, seen in Table 1. The dataset used was RCV1-2K.
This dataset has at least 2000 training points and 500 test-
ing points for each label sparsity ranging from 1 to 10. We
observe that the training error for MLGT methods are al-
most zero and training Precison@k almost one. (This be-
havior was seen in Table 1 as well). Results with test data

Multilabel classification via group testing

1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

sparsity k

Pr
ed
ic
tio
n
er
ro
r

Average training errors for RCV1−2K
GT:RS−code
GT:expander
GT:sprand
CS:Gaussian
CS:Hadamard
CS:expander

1 2 3 4 5 6 7 8 9 10
0.7

0.75

0.8

0.85

0.9

0.95

1

sparsity k

Pr
ec
is
io
n@

k

Average training Precision@k for RCV1−2K

GT:RS−code
GT:expander
GT:sprand
CS:Gaussian
CS:Hadamard
CS:expander

1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

3

3.5

4

sparsity k

Pr
ed
ict
io
n
er
ro
r

Average test errors for RCV1−2K

GT:RS−code
GT:expander
GT:sprand
CS:Gaussian
CS:Hadamard
CS:expander

1 2 3 4 5 6 7 8 9 10
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

sparsity k

Pr
ec
is
io
n@

k

Average test Precision@kfor RCV1−2K

GT:RS−code
GT:expander
GT:sprand
CS:Gaussian
CS:Hadamard
CS:expander

Figure 1. Average training and test errors and Precison@k versus sparsity k for RCV1-2K for different MLGT and MLCS methods.

Table 3. Comparisons with embedding methods. Average Test errors.

MLGT MLCS ML-CSSP PLST SLEEC
Dataset m Err time Err time Err time Err time Err time
Mediamill(d = 101, k̄ = 4.3) 40 2.267 2.35s 4.096 4.04s 4.44 13.4s 10.10 2.13s 4.374 4.55s
Bibtex (d = 159, k̄ = 2.4) 50 1.571 7.81s 2.926 14.7s 5.63 23.9s 7.39 12.1s 4.851 38.3s
Delicious (d = 983, k̄ = 12) 150 4.995 18.1s 9.432 29.9s 5.66 47.7s 15.66 17.3s 4.790 18.7s
RCV2K(d = 2456, k̄ = 5) 200 1.141 154.3s 4.370 387.8s 24.60 339.5s 20.98 290.9s 4.944 210.0s
EurLex(d = 3993, k̄ = 5.3) 200 3.033 160.6s 8.554 367.1s 9.30 337.3s 15.40 297.2s 4.838 455.1s
AmznC(d = 13330, k̄ = 4.3) 250 4.496 12min 11.07 22min 13.66 19min 7.502 18min 6.923 1.2hrs
Wiki10(d = 30938, k̄ = 5.6) 300 5.586 283s 14.224 18min 8.30 17min 15.15 17min 6.621 54min

for MLGT are also impressive, achieving Precison@k of
almost 0.8 for small k.

One vs all: We next compare MLGT against the one versus
all (OvsA) method on two small datasets. Note that OvsA
required d classifiers to be trained, hence is impractical for
larger datasets, and we will need a distributed implemen-
tation such as DiSMEC (Babbar & Schölkopf, 2017). Ta-
ble 2 gives the results for MLGT and OvsA methods for
two small datasets. n = 5000,nt = 1000, and for MLGT
m = 50. The table lists the Hamming test errors and P@k
for the two methods. The table also gives the overall run-
times for the two methods. We note that wrt. to both met-
rics, MLGT performs better than OvsA. This is due to two
reasons. First, MLGT groups the labels hence has more
training samples per group, yielding better classifiers. Sec-
ond, the error correction by the prediction algorithm cor-
rects few classification errors. Clearly, MLGT is faster than
OvsA. However, OvsA gives better training errors.

Embedding methods: In the next set of experiments, we
compare the performance of MLGT against the popular
embedding based methods. We compare with the follow-
ing methods. ML-CSSP, is an embedding method based
on column subset selection (Bi & Kwok, 2013). PLST, is
Principal Label Space Transformation (Tai & Lin, 2012),
an embedding method based on SVD (code is made avail-
able online by the authors). SLEEC, Sparse Local Embed-
dings for Extreme Classification (Bhatia et al., 2015), is
the state of the art embedding method based on clustering
using nearest neighbors and then embedding in the cluster
space (code is made available online by the authors). For
MLGT, we use the random expander graph constructions.
For MLCS, we use random Gaussian matrices. Same least
squares regressor was used in all the latter four methods.

Table 3 lists the test (Hamming) errors obtained for the dif-
ferent methods on various datasets. We use smaller datasets
since the embedding based methods do not scale well for
large datasets. We also used only 2000 training points and
500 test points in each cases. We observe that MLGT out-
performs the other methods in most cases. The datasets
have very sparse label (avg. sparsity of around k̄ ≈ 4),
but the outputs of MLCSSP and PLST are not very sparse.
Hence, we see high Hamming error for these two meth-
ods, since they yield a lot of false labels. Moreover, these
embedding methods are significantly more expensive than
MLGT for larger datasets. The runtimes for each method
are also listed in the table.

The runtimes reported (using cputime in Matlab) includes
generation of compression matrices, multiplying the ma-
trix to the label vectors (boolean OR/SVD computation),
training the m classifiers, and prediction of n training and
nt test points. SLEEC performs reasonably well on all
datasets (the ideal parameters to be set in this algorithm for
each of these datasets were provided by the authors online),
and gives better P@k than MLGT for some datasets. For
Delicious dataset, the value of k is high and SLEEC beats
MLGT. However, SLEEC algorithm has many parameters
to set, and for larger datasets, the algorithm is very expen-
sive compared to all other methods.

These experiments illustrate that MLGT performs excep-
tionally well in practice. The concatenated RS codes and
the bipartite expander graphs constructions proposed are
simple to generate and they exist for large sizes. Hence,
these constructions can be easy applied to extreme classifi-
cation problems.

Multilabel classification via group testing

Acknowledgements
Authors would like to thank Dr. Manik Varma and his team
for making many MLC datasets and codes available online.
This work was supported by NSF under grant NSF/CCF-
1318597, NSF/CCF-1318093, NSF/CCF 1642550.

References
Agrawal, Rahul, Gupta, Archit, Prabhu, Yashoteja, and

Varma, Manik. Multi-label learning with millions of
labels: Recommending advertiser bid phrases for web
pages. In Proceedings of the 22nd international confer-
ence on World Wide Web, pp. 13–24. ACM, 2013.

Babbar, Rohit and Schölkopf, Bernhard. Dismec: Dis-
tributed sparse machines for extreme multi-label classi-
fication. In Proceedings of the Tenth ACM International
Conference on Web Search and Data Mining, pp. 721–
729. ACM, 2017.

Barutcuoglu, Zafer, Schapire, Robert E, and Troyanskaya,
Olga G. Hierarchical multi-label prediction of gene
function. Bioinformatics, 22(7):830–836, 2006.

Bhatia, Kush, Jain, Himanshu, Kar, Purushottam, Varma,
Manik, and Jain, Prateek. Sparse local embeddings for
extreme multi-label classification. In Advances in Neural
Information Processing Systems, pp. 730–738, 2015.

Bi, Wei and Kwok, James Tin Yau. Efficient multi-label
classification with many labels. In 30th International
Conference on Machine Learning, ICML 2013, pp. 405–
413, 2013.

Capalbo, Michael, Reingold, Omer, Vadhan, Salil, and
Wigderson, Avi. Randomness conductors and constant-
degree lossless expanders. In Proceedings of the thiry-
fourth annual ACM symposium on Theory of computing,
pp. 659–668. ACM, 2002.

Chen, Yao-Nan and Lin, Hsuan-Tien. Feature-aware label
space dimension reduction for multi-label classification.
In Advances in Neural Information Processing Systems,
pp. 1529–1537, 2012.

Cheraghchi, Mahdi. Derandomization and group testing.
In Communication, Control, and Computing (Allerton),
2010 48th Annual Allerton Conference on, pp. 991–997.
IEEE, 2010.

Chzhen, Evgenii, Denis, Christophe, Hebiri, Mohamed,
and Salmon, Joseph. On the benefits of output
sparsity for multi-label classification. arXiv preprint
arXiv:1703.04697, 2017.

Cisse, Moustapha M, Usunier, Nicolas, Artieres, Thierry,
and Gallinari, Patrick. Robust bloom filters for large

multilabel classification tasks. In Advances in Neural
Information Processing Systems, pp. 1851–1859, 2013.

Dietterich, Thomas G. and Bakiri, Ghulum. Solving
multiclass learning problems via error-correcting output
codes. Journal of artificial intelligence research, 2:263–
286, 1995.

Dorfman, Robert. The detection of defective members of
large populations. The Annals of Mathematical Statis-
tics, 14(4):436–440, 1943.

Du, D. Z. and Hwang, F.K. Combinatorial group testing
and its applications. World Scientific, 2nd edition, 2000.

Dyachkov, Arkadii G, Macula, Anthony J, and Rykov,
Vyacheslav V. New applications and results of super-
imposed code theory arising from the potentialities of
molecular biology. In Numbers, Information and Com-
plexity, pp. 265–282. Springer, 2000.

Hsu, Daniel, Kakade, Sham M, Langford, John, and Zhang,
Tong. Multi-label prediction via compressed sensing.
NIPS, 22:772–780, 2009.

Jafarpour, Sina, Xu, Weiyu, Hassibi, Babak, and Calder-
bank, Robert. Efficient and robust compressed sensing
using optimized expander graphs. IEEE Transactions on
Information Theory, 55(9):4299–4308, 2009.

Jain, Himanshu, Prabhu, Yashoteja, and Varma, Manik.
Extreme multi-label loss functions for recommendation,
tagging, ranking & other missing label applications. In
Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining,
pp. 935–944. ACM, 2016.

Kapoor, Ashish, Viswanathan, Raajay, and Jain, Pra-
teek. Multilabel classification using bayesian com-
pressed sensing. In Advances in Neural Information Pro-
cessing Systems, pp. 2645–2653, 2012.

Kautz, W and Singleton, Roy. Nonrandom binary superim-
posed codes. IEEE Transactions on Information Theory,
10(4):363–377, 1964.

MacWilliams, Florence Jessie and Sloane, Neil
James Alexander. The theory of error-correcting
codes. Elsevier, 1977.

Mazumdar, Arya. Nonadaptive group testing with random
set of defectives. IEEE Transactions on Information
Theory, 62(12):7522–7531, Dec 2016.

Mazumdar, Arya and Mohajer, Soheil. Group testing with
unreliable elements. In Communication, Control, and
Computing (Allerton), 2014 52nd Annual Allerton Con-
ference on, pp. 1–3. IEEE, 2014.

Multilabel classification via group testing

Sipser, Michael and Spielman, Daniel A. Expander codes.
IEEE Transactions on Information Theory, 42(6):1710–
1722, 1996.

Tai, Farbound and Lin, Hsuan-Tien. Multilabel classifica-
tion with principal label space transformation. Neural
Computation, 24(9):2508–2542, 2012.

Trohidis, Konstantinos. Multi-label classification of mu-
sic into emotions. In 9th International Con- ference on
Music Information Retrieval, pp. 325– 330, 2008.

Tropp, Joel A and Gilbert, Anna C. Signal recovery from
random measurements via orthogonal matching pursuit.
IEEE Transactions on information theory, 53(12):4655–
4666, 2007.

Tsfasman, Michael A, Vlădu, Serge G, and Nogin, Dmitry.
Algebraic geometric codes: basic notions. Number 139.
American Mathematical Soc., 2007.

Tsoumakas, Grigorios, Katakis, Ioannis, and Vlahavas,
Ioannis. Effective and efficient multilabel classifi-
cation in domains with large number of labels. In
ECML/PKDD 2008 Workshop on Mining Multidimen-
sional Data (MMD08), 2008.

Ubaru, Shashanka, Mazumdar, Arya, and Barg, Alexan-
der. Group testing schemes from low-weight code-
words of BCH codes. In Information Theory (ISIT),
2016 IEEE International Symposium on, pp. 2863–2867.
IEEE, 2016.

Vadhan, Salil P. Pseudorandomness. Foundations and
Trends in Theoretical Computer Science, 7(1–3):1–336,
2012.

Wang, Changhu, Yan, Shuicheng, Zhang, Lei, and Zhang,
Hong-Jiang. Multi-label sparse coding for automatic im-
age annotation. In Computer Vision and Pattern Recog-
nition, 2009. CVPR 2009. IEEE Conference on, pp.
1643–1650. IEEE, 2009.

Xu, Chang, Tao, Dacheng, and Xu, Chao. Robust extreme
multi-label learning. In Proceedings of the 22nd ACM
SIGKDD International Conference on Knowledge Dis-
covery and Data Mining, pp. 1275–1284. ACM, 2016.

Yu, Hsiang-fu, Jain, Prateek, Kar, Purushottam, and
Dhillon, Inderjit. Large-scale multi-label learning with
missing labels. In Proceedings of the 31st International
Conference on Machine Learning (ICML-14), pp. 593–
601, 2014.

Zhang, Yi and Schneider, Jeff G. Multi-label output codes
using canonical correlation analysis. In AISTATS, pp.
873–882, 2011.

Supplementary material: Multilabel Classification with Group Testing and Codes

A. Constructions
We present some additional group testing constructions in
this section.

A.1. Random Constructions-Proofs

Proposition. (Random Construction Prop. 1.) An m × d
random binary {0, 1} matrix A where each entry is 1 with
probability ρ = 1

k+1 , is (k, 3k log d)-disjunct with very
high probability, if m = O(k2 log d).

Proof. For the case of e = 1, the proof follows from The-
orem 8.1.3, Corollary 8.1.4 and 8.1.5 in (Du & Hwang,
2000). The bound on the number of classifiers is m ≤
3(k + 1)2 log d and the probability is (k + 1)

(
d
k+1

)
[1 −

1
k+1 (1− 1

k+1)k]m.

To show that the matrix is also (k, e)-disjunct with high
probability, we have to just show that |supp(A(i)) \
supp(A(j))| > e for any two distinct columns A(i) and
A(j) (Corollary 8.3.2 in (Du & Hwang, 2000)). For any
two fixed columns, |supp(A(i)) \ supp(A(j))| is a bi-
nomial random variable Bin(m, k

(k+1)2). If we choose,
m = (3 + ε)(k + 1)2 log d, ε > 0, we find the expectation
of this variable to be 3k log d. Therefore we can choose
e = 3k log d, and the matrix is going to be (k, e)-disjunct
with high probability.

Theorem. (Restating Theorem 1.) Suppose we wish to re-
cover a k sparse binary vector y ∈ Rd. A random bi-
nary {0, 1} matrixA where each entry is 1 with probability
ρ = 1/k recovers 1− ε proportion of the support of y cor-
rectly with high probability, for ε > 0, form = O(k log d).
This matrix will also detect e = Ω(m) errors.

Proof. This is a modification of Theorem 1 in (Mazumdar
& Mohajer, 2014). Suppose, T ⊂ [d] is the set of defec-
tives. The recovery will be successful as long as we return
a set T ′ such that r ≡ |T ∩ T ′| ≥ (1− ε)|T |.

Our object of interest is the probability of error Pe, the
probability of existence of a pair T and T ′, |T |, |T ′| ≤ k
such that less than e tests fails to distinguish this pair, where
r < (1− ε)|T |.

We assume the testing matrix A is chosen randomly from
the ensemble of all m × d matrix in the following way.
Each entry of A is 1 with probability ρ ≡ 1

k , and it is zero
with the remaining probability. In other words, in each test

we include an item with probability ρ. We will show that
the probability of error Pe in this case is o(1) which will
implies existence of a matrix A that achieves Pe of o(1).

The probability that any one test will be successful to dis-
tinguish between T and T ′ is therefore (here we are taking
the sizes of T and T ′ exactly equal to k and not less than
equal to, which is permissible without much loss of gener-
ality),

2(1− ρ)k(1− (1− ρ)k−r) = 2
(

1− 1

k

)k(
1−

(
1− 1

k

)k−r)
≥ 2 · 3−1

(
1− exp

(
− k − r

k

))
≥ 2

3

(
1− exp(−ε)

)
,

where in the second line we have used inequalities 1−x ≤
exp(−x) for all x and 1 − x ≥ 3−x for any x ≤ 0.17
(which is true for any k ≥ 6). We have also used the fact
that r < (1− ε)|T | ≤ (1− ε)k.

Hence the probability that A successfully distinguish be-
tween T and T ′ in less than e tests is,∑
i≤e

(
m

i

)(
1−2

3

(
1−exp(−ε)

))m−i(2

3

(
1−exp(−ε)

))i
.

This probability is going to be upper bounded by
exp(−δm) whenever e < 2

3 (1 − exp(−ε))m for some
δ > 0. Therefore, for this ensemble,

Pe ≤
(k∑
i=0

(
d

i

))2
exp(−δm)→ 0,

for an m such that m = O(k log d). Therefore e =
O(k log d).

A.2. Concatenated code based constructions

Many code based constructions have been proposed with
the optimal length of m = Θ(k2 logk d) (Mazumdar,
2016). One such code based construction of interest is the
Algebraic-Geometric codes.

Considering q = r2, where r is an integer, using the re-
sults in (Tsfasman et al., 2007), we can generate a family
of Algebraic-Geometric (AG) codes of length mq , satisfy-
ing mq ≥ ra+1− ra + 1, where a is an even integer. Using
the Kautz-Singleton mechanism, we can convert this AG
code to a binary code that has constant weight w = mq .
The length of the binary code will be m = qmq .

Multilabel classification via group testing

Proposition 7. We can construct an Algebraic-Geometric
code matrix that recovers 1 − ε proportion of nonze-
ros in y with high probability, for ε > 0, with m ≥
16k log2k d log(d/ε). This matrix will also detect e =(

8 log(d/ε)− 8 log(d/ε)√
2k−1 − 1

)
log2k d errors.

Proof. The proof follows from the results developed
in (Mazumdar, 2016). For a q-ary Algebraic-Geometric
Code with q ≥ 2k, that is converted to a binary code us-
ing Kautz-Singleton mechanism, we have the 1 − ε recov-
ery guarantees for m ≥ 16k log d

log 2k log(d/ε). We know if the
code has a distance h, then e = h/2. The q-ary AG code
satisfies

h ≥ 2m/q − 2 logq d−
2m

q(
√
q − 1)

.

We get the value for e upon substitution.

For MLGT, we have the following results for different con-
structions:

• If A is constructed via randomized construction of
Prop. 1 with m = O(k2 log d) rows, then the average
error rate is t/k − 3

2 log d for t > 3/2 log d.
• If A is constructed via randomized construction of

Thm. 1 with m = O(k log d) rows, then the average
error rate is (t/k −O(log d) + εk/d) for t > k log d.

• If A is constructed deterministically via Kautz-
Singleton Reed-Solomon codes construction of
Prop. 2 withm = O(k2 logk d) rows, then the average
error rate is t

k logk d
−O(1) for t > k logk d.

• If A is constructed via expander graph-based con-
struction of Prop. 6 with m = O(k2 log(d/k)) rows,
then the average error rate is t/k − log(d/k) for t >
k/2 log(d/k).

The error rate is zero for smaller number of mis-
classifications t.

B. Experiments
Datasets: We use some popular publicly available multi-
label datasets in our experiments. All datasets were ob-
tained from The Extreme Classification Repository (Bha-
tia et al., 2015). Details about the datasets and the refer-
ences for their original sources can be found in the repos-
itory. Table 4 gives the statistics of these datasets. In
the table, d = #labels, k̄ =average sparsity per instance,
n = #instances and p = #features.

Details of the experiments:

https://manikvarma.github.io/downloads/
XC/XMLRepository.html

Table 4. Dataset statistics
Dataset d k̄ n p
Mediamill 101 4.38 30993 120
Bibtex 159 2.40 4880 1839
Delicious 983 19.03 12920 500
RCV1-2K 2456 4.79 623847 47236
EurLex-4K 3993 5.31 15539 5000
AmazonCat-13K 13330 5.04 1186239 203882
Wiki10-31K 30938 18.64 14146 101938

• We use simple least squares binary classifiers for
training and prediction in MLGT. This is because, this
classifier is extremely simple and fast. Also, we use
least squares regressors for other compared methods
(hence, it is a fair comparison). We note that MLGT
performs well with this simple classifier. We can im-
prove the performance of MLGT further by using a
more advanced classifier.

• In the prediction algorithm of MLGT, we have a pa-
rameter e, the number of errors the algorithm should
try to correct. The ideal value for e will depend on the
GT matrix used, the values of m, k and d. However,
note that we can test for different values of e at no ad-
ditional cost. That is, once we compute the Boolean
AND between the predicted reduced vector and the
GT matrix (the dominant operation), we can get dif-
ferent prediction vectors for a range of e and choose
an e that gives the highest training P@k.

• The Orthogonal Matching Pursuit (OMP) algorithm
used for MLCS is as implemented by the SPAMS
library http://spams-devel.gforge.
inria.fr/.

• Many of the datasets have very sparse feature matri-
ces. In such cases, we reduced the feature dimension
by choosing only the prominent features. That is the
features that have nonzero values for at least half of
the considered training points.

• The results we obtained for the dataset Delicious were
consistently poor. This is because, the average spar-
sity for this dataset is k̄ = 19.03. We selected data
instances with sparsity at most kmax = 12. Still, the
GT matrices used were not k-disjunct for this case.
Also, the feature dimension is small (p = 500). Re-
sults with CS for this data were poor as well in terms
of Hamming loss. However, the precision was better.

• For AmazonCat-13K, the training precision for CS
method is perfect. However, the Hamming error is
poor because they returned many false classes.

• The runtimes reported in the main paper (using
cputime in Matlab) includes generation of compres-
sion matrices, multiplying the matrix to the label vec-
tors (boolean OR/SVD computation), training the m

https://manikvarma.github.io/downloads/XC/XMLRepository.html
https://manikvarma.github.io/downloads/XC/XMLRepository.html
http://spams-devel.gforge.inria.fr/
http://spams-devel.gforge.inria.fr/

Multilabel classification via group testing

classifiers, and prediction of n training and nt test
points. All runtime experiments were conducted on
an Intel Core i7-5557U CPU @ 3.10GHz machine.

• The runtimes were averaged over 3 trials for smaller
datasets (first 4). So were the errors. But for larger
datasets (last 2), results for just one trial is reported.
For larger datasets, our MLGT runtime is almost half
of the next best timing and yields the lowest error.

• For SLEEC, there are seven parameters to be tuned.
We set these parameters to the values provided by the
authors online. The ideal parameters to be set in this
algorithm for each of the datasets we used (expect
RCV1-2k) were provided by the authors online. In
general, we found SLEEC to be very expensive for
large datsets. Also, there is no procedure to select
these seven parameters and are seem to be selected
in a trial and error fashion.

