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Abstract
Low-rank matrix approximation is an integral
component of tools such as principal component
analysis (PCA), as well as is an important instru-
ment used in applications like web search, text
mining and computer vision, e.g., face recogni-
tion. Recently, randomized algorithms were pro-
posed to effectively construct low rank approxi-
mations of large matrices. In this paper, we show
how matrices from error correcting codes can be
used to find such low rank approximations.

The benefits of using these code matrices are
the following: (i) They are easy to generate and
they reduce randomness significantly. (ii) Code
matrices have low coherence and have a better
chance of preserving the geometry of an entire
subspace of vectors; (iii) Unlike Fourier trans-
forms or Hadamard matrices, which require sam-
pling O(k log k) columns for a rank-k approxi-
mation, the log factor is not necessary in the case
of code matrices. (iv) Under certain conditions,
the approximation errors can be better and the
singular values obtained can be more accurate,
than those obtained using Gaussian random ma-
trices and other structured random matrices.

1. Introduction
Many scientific computations, data analysis and machine
learning applications (Halko et al., 2011; Drineas et al.,
2006) lead to large dimensional matrices which can be well
approximated by a low dimensional basis. It is more effi-
cient to solve such computational problems by first trans-
forming these large matrices into a low dimensional space,
while preserving the invariant subspace that captures the
essential information of the matrix. Several algorithms
have been proposed in the literature for finding such low
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rank approximations of a matrix (Ye, 2005; Haeffele et al.,
2014; Papailiopoulos et al., 2013). Recently, research fo-
cussed on developing techniques which use randomization
for computing low rank approximations and matrix decom-
positions of such matrices. It is found that randomness pro-
vides an effective way to construct low dimensional bases
with high reliability and computational efficiency.

The randomization techniques for matrix approximations
(Halko et al., 2011; Martinsson et al., 2006; Liberty et al.,
2007) aim to compute a basis that approximately spans the
input matrixA, by sampling the matrix using Gaussian ran-
dom matrices. This task is accomplished by first forming
the matrix-matrix product Y = AΩ, where Ω is a random
matrix of smaller dimension, and then computing the or-
thonormal basis of Y = QR that identifies the range of the
reduced matrix Y . It can be shown that A ≈ QQ∗A with
high probability. Recently, it has been observed that struc-
tured random matrices, like subsampled random Fourier
transform (SRFT) and Hadamard transform (SRHT) matri-
ces can also be used in place of Gaussian random matrices
(Liberty, 2009; Woolfe et al., 2008; Tropp, 2011). This pa-
per demonstrates how error correcting coding matrices can
be a good choice for computing low rank approximations.

The input matrices whose low rank approximation is to be
computed, usually have very large dimensions (e.g., in the
order of 106 − 108). In order to form a Gaussian random
matrix which samples the input matrix in randomized algo-
rithms, we need to generate a large number of random num-
bers. This could be a serious practical issue, (in terms of
time complexity and storage). This issue can be addressed
by using the structured random matrices, like SRFT and
SRHT matrices. However, mixing of columns might not be
as uniform, and there is potential loss in the accuracy. Other
practical issues arise such as: the Fourier Transform matri-
ces require handling complex numbers and the Hadamard
matrices exist only for the sizes which are in powers of 2.
These drawbacks can be overcome if the code matrices pre-
sented in this paper are used for sampling input matrices.

In digital communication, information is encoded by
adding redundancy into (predominantly binary) vectors or
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codewords, that are then transmitted over a noisy chan-
nel (Cover & Thomas, 2012). These codewords are re-
quired to be far apart in terms of some distance metric for
noise-resilience. Coding schemes usually generate code-
words that maintain a fixed minimum Hamming distance
between each other, hence they are widespread and act like
random numbers. We can define probability measures for
matrices formed by stacking up these codewords, (see sec-
tion 2.2 for details). The idea is to use subsampled ver-
sions of these code matrices as sampling matrices in the
randomized algorithms for matrix approximations. Section
5.2 shows that subsampled code matrices have low coher-
ence and have a better chance of preserving the geometry
of an entire subspace of vectors. In some cases, it is possi-
ble to compute the matrix-matrix product faster with code
matrices because of their structure. Importantly, contrary
to SRFT/SRHT matrices, certain subsampled code matri-
ces do not require the log factor, thus achieving the order
optimal O(k) in the number of samples with deterministic
matrices, see sec. 5.4 for an explanation.

2. Preliminaries
First, we present some of the notation used and give a brief
description of error correcting coding techniques that are
used in communication systems and information theory.

2.1. Notation and Problem Formulation

Throughout the paper, ‖ · ‖ refers to the `2 norm. We use
‖ · ‖F for the Frobenius norm. The singular value decom-
position (SVD) of a matrix A is denoted by A = UΣV ∗

and the singular values by σj(A). We use ej for the jth
standard basis vector. Given a random subset T of indices
in {1, . . . , 2r} with size n and r ≥ dlog2 ne, we define a
restriction (sampling) operator ST : R2r → RT given by

(STx)(j) = xj , j ∈ T.

A Rademacher random variable takes values±1 with equal
probability. We write ε for a Rademacher variable.

In low rank approximation methods, we compute an or-
thonormal basis that approximately spans the range of an
m×n input matrixA. That is, a matrixQ having orthonor-
mal columns such that A ≈ QQ>A. The basis matrix Q
must contain as few columns as possible, but it needs to be
an accurate approximation of the input matrix. I.e., we seek
a matrix Q with k orthonormal columns such that,

‖A−QQ>A‖ξ ≤ ε, (1)

for a positive error tolerance ε and an integer ξ ≥ 2. The
best rank-k approximation ofA with respect to both Frobe-
nius and spectral norm is given by the Eckart-Young theo-
rem (Eckart & Young, 1936), and it is Âk = UkΣkV

>
k ,

where Uk and Vk are the k-dominant left and right singular
vectors of A, respectively and diagonal Σk contains the top
k singular values of A. So, the optimal Q in (1) will be Uk
for ξ ∈ {2, F}.

2.2. Error Correcting Codes

In communication systems, data are transmitted from a
source (transmitter) to a destination (receiver) through
physical channels. These channels are usually noisy, caus-
ing errors in the data received. In order to facilitate the
ability to detect and correct these errors in the receiver,
error-correcting codes are used (MacWilliams & Sloane,
1977). A block of information (data) symbols are encoded
in to a binary vector1, also called a codeword, by the encod-
ing error-correcting code. Error-correcting coding methods
check the correctness of the codeword received. The set of
codewords corresponding to a set of data-vectors (or sym-
bols) that can possibly be transmitted, is called the code.
Hence, a code C is a subset of F`2, ` being an integer.

A code is said to be linear when adding two codewords of
the code coordinate-wise using modulo-2 arithmetic results
in a third codeword of the code. Usually a linear code C is
represented by the tuple [`, r], where ` represents the code-
word length and r = log2 |C| is the number of information
bits that can be encoded by the code. There are ` − r re-
dundant bits in the codeword, which are sometimes called
parity check bits, generated from messages using an appro-
priate rule. It is not necessary for a codeword to have the
information bits as r of its coordinates, but the information
must be uniquely recoverable from the codeword.

It is perhaps obvious that a linear code C is a linear sub-
space of dimension r in the vector space F`2. The basis of
C can be written as the rows of a matrix, which is known as
the generator matrix of the code. The size of the generator
matrix G is r × `, and for any information vector m ∈ Fr2,
the corresponding codeword is found by the linear map:

c = mG.

Note that all the arithmetic operations above are over the
binary field F2. To encode r bits, we must have 2r unique
codewords. Then, we may form a matrix of size 2r × ` by
stacking up all codewords that are formed by the generator
matrix of a given linear coding scheme,

C︸︷︷︸
2r×`

= M︸︷︷︸
2r×r

G︸︷︷︸
r×`

. (2)

For a given tuple [`, r], different error correcting coding
schemes have different generator matrices and the result-
ing codes have different properties. For example, for any

1Here, and in the rest of the text, we are considering only bi-
nary codes. Codes over larger alphabets are also quite common.
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two integers t and q, a BCH code (Bose & Ray-Chaudhuri,
1960) has length ` = 2q−1 and dimension r = 2q−1−tq.
Any two codewords in this BCH code maintain a mini-
mum (Hamming) distance of at least 2t+ 1 between them.
The pairwise minimum distance is an important parame-
ter of a code and is called just the minimum distance of
the code. As a linear code C is a subspace of a vec-
tor space, the null-space C⊥ of the code is another well-
defined subspace. This is called the dual of the code. The
dual of the [2q − 1, 2q − 1 − tq]-BCH code is a code with
length 2q − 1, dimension tq and minimum distance at least
2q−1−(t−1)2q/2. The minimum distance of the dual code
is called the dual distance of the code.

Depending on the coding schemes used, the codeword ma-
trix C will have a variety of favorable properties, e.g., low
coherence which is useful in compressed sensing (Barg
et al., 2015). Since the codewords need to be far apart,
they show some properties of random vectors. We can
define probability measures for codes generated from a
given coding scheme. If C ⊂ {0, 1}` is an F2-linear code
whose dual C⊥ has a minimum distance above k (dual dis-
tance > k), then the code matrix is an orthogonal array of
strength k (Delsarte & Levenshtein, 1998). This means, in
such a code C, for any k entries of each codeword c say
c′ = {ci1 , ci2 , . . . , cik} and for any k bit binary string α,
we have

Pr[c′ = α] = 2−k.

This is called the k-wise independence property of codes.
We will use this property of codes in our theoretical analy-
sis (see section 5 for details).

TThe codeword matrix C has 2r codewords each of length
` (a 2r× `matrix), i.e., a set of 2r vectors in {0, 1}`. Given
a codeword c ∈ C, let us map it to a vector φ ∈ R` by
setting 1 −→ −1√

2r
and 0 −→ 1√

2r
. In this way, a binary

code C gives rise to a code matrix Φ = (φ1, . . . , φ2r )>.
Such a mapping is called binary phase-shift keying (BPSK)
and appeared in the context of sparse recovery (e.g., p. 66
(Mazumdar, 2011)). For codes with dual distance ≥ 3, this
code matrix Φ will have orthonormal columns. In section
5.2, we will show that these code matrices with certain mild
properties can preserve the geometry of vector subspaces
with high probability. Hence, in the randomized techniques
for matrix approximations, we can use a subsampled and
scaled version of this matrix Φ to sample a given input ma-
trix and find the active subspaces of the matrix.

3. Construction of Subsampled Code Matrix
For an input matrix A of size m × n, and a target rank
k, we choose r ≥ dlog2 ne as the dimension of the code
(length of the message vector) and ` > k, as the length of
the code. The value of ` will depend on the coding scheme

used, particularly on the dual distance of of the code, (de-
tails in section 5.2). We consider an [`, r]-linear coding
scheme and form the sampling matrix as follows: We draw
the sampling test matrix say Ω as

Ω =

√
2r

`
DSΦ, (3)

where

• D is a random n × n diagonal matrix whose entries
are independent random signs, i.e., random variables
uniformly distributed on {±1}.

• S is the uniformly random downsampler, an n ×
2rmatrix whose n rows are randomly selected from
a 2r × 2r identity matrix.

• Φ is the 2r × ` code matrix, generated using an [`, r]-
linear coding scheme, with BPSK mapping and scaled
by 2−r/2 such that all columns have unit norm.

Intuition The design of a subsampled code matrix is sim-
ilar to the design of SRFT and SRHT matrices. The intu-
ition for using such a design is well established in (Tropp,
2011; Halko et al., 2011). The matrix Φ has entries with
magnitude ±2−r/2 and has orthonormal columns when a
coding scheme with dual distance of the codes is ≥ 3 is

used. The scaling
√

2r

` is used to make the energy of the
sampling matrix equal to unity, i.e., to make the rows of Ω
unit vectors. The purpose of multiplying by D is to flat-
ten out input vectors. We refer to (Tropp, 2011) for further
details. For a fixed unit vector x, the first component of
x∗DSΦ is given by (x>DSΦ)1 =

∑n
j=1 xjεjφj′1, where

φij are components of the code matrix Φ, the index j′ de-
pends on the downsampler S and εj is the Rademacher
variable from D. This sum clearly has zero mean and since
entries of Φ have magnitude 2−r/2, the variance of the sum
is 2−r. The Hoeffding inequality (Hoeffding, 1963) shows
that

P{|(x∗DSΦ)1| ≥ t̃} ≤ 2e−2
r t̃2/2.

That is, the magnitude of the first component of x∗DSΦ is
about 2−r/2. Similarly, the argument holds for the remain-
ing entries. Therefore, it is unlikely that any one of the `
components of x∗DSΦ is larger than

√
2 log(2`)/2r, (the

failure probability is `−1).

4. Algorithm
We use the same prototype algorithm as discussed in
(Halko et al., 2011) for the low rank approximation and de-
composition of input matrix A. The subsampled code ma-
trices given in (3), generated from a chosen coding scheme
is used as the sampling test matrix. The algorithm is as
follows:
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Algorithm 1 Prototype Algorithm
Input: An m× n matrix A, a target rank k.
Output: Rank-k factors U,Σ, and V in an approximate
SVD A ≈ UΣV ∗.
1. Form an n × ` subsampled code matrix Ω, as de-
scribed in Section 3 and (3), using an [`, r]−linear cod-
ing scheme, where ` > k and r ≥ dlog2 ne.
2. Form the m× ` sample matrix Y = AΩ.
3. Form an m× ` orthonormal matrix Q such that
Y = QR.
4. Form the `× n matrix B = Q∗A.
5. Compute the SVD of the small matrix B = ÛΣV ∗.
6. Form the matrix U = QÛ .

5. Analysis
This section discusses the performance analysis of the sub-
sampled code matrices as sampling matrices in algorithm
1. First, we give the deterministic error bound for the al-
gorithm for a given sampling matrix Ω. Then, we show
how code matrices preserve the geometry of an entire sub-
space of vectors by establishing connection to Johnson Lin-
denstrauss Transforms (JLT) and sign matrices, via the k-
wise independence property of codes. Finally, we give the
bounds for the approximation error and the singular values
obtained from the algorithm.

Setup Let A be an m × n input matrix with a singular
value decomposition given by A = UΣV ∗, and partition
its SVD as follows

A = U

k n−k[ ]
Σ1

Σ2

n[ ]
V ∗1 k

V ∗2 n−k
. (4)

Let Ω be the n × ` test (sampling) matrix, where ` is the
number of samples. Consider the matrices

Ω1 = V ∗1 Ω and Ω2 = V ∗2 Ω. (5)

The objective of any low rank approximation algorithm is
to try and approximate the subspace which spans the top
k left singular vectors of A. The test matrix Ω is said to
preserve the geometry of an entire subspace of vectors, if
for any orthonormal matrix V , a matrix of the form V ∗Ω is
well conditioned (Halko et al., 2011).

5.1. Deterministic Error bounds

Algorithm 1 constructs an orthonormal basis Q for the
range of Y , and the goal is to quantify how well this ba-
sis captures the action of the input matrix A. Let QQ∗ =
PY where PY is the unique orthogonal projector with
range(PY )=range(Y ). If Y is full rank, we can express

the projector as : PY = Y (Y ∗Y )−1Y ∗. We seek to find
an upper bound for the approximation error given by, for
ξ ∈ {2, F}

‖A−QQ∗A‖ξ = ‖(I − PY )A‖ξ.

The deterministic upper bound for the approximation error
for Algorithm 1 is given in (Halko et al., 2011). We restate
theorem 9.1 in (Halko et al., 2011) below:

Theorem 1 (Deterministic error bound) Let A be m×n
matrix with singular value decomposition given by A =
UΣV ∗, and fix k ≥ 0. Choose a test matrix Ω and con-
struct the sample matrix Y = AΩ. Partition Σ as in (4),
and define Ω1 and Ω2 via (5). Assuming that Ω1 is full row
rank, the approximation error satisfies for ξ ∈ {2, F}

‖(I − PY )A‖2ξ ≤ ‖Σ2‖2ξ + ‖Σ2Ω2Ω†1‖2ξ . (6)

An elaborate proof for the above theorem can be found in
(Halko et al., 2011). Using the submultiplicative property
of the spectral and Frobenius norms, and the Eckart-Young
theorem, equation (6) can be simplified to

‖A−QQ∗A‖ξ ≤ ‖A− Âk‖ξ
√

1 + ‖Ω2‖2‖Ω†1‖2. (7)

Recently Ming Gu (Gu, 2015), developed deterministic
lower bounds for the singular values obtained from ran-
domization algorithms, particularly for the power method
(Halko et al., 2011), which is one of the alternatives of ran-
domized algorithms. Given below is the modified version
of Theorem 4.3 in (Gu, 2015) for algorithm 1.

Theorem 2 (Deterministic singular value bounds) Let
A = UΣV ∗ be the SVD of A, for a fix k, and let V ∗Ω be
partitioned as in (5). Assuming that Ω1 is full row rank,
then Algorithm 1 must satisfy for j = 1, . . . , k:

σj ≥ σj(Ak) ≥ σj√
1 + ‖Ω2‖2‖Ω†1‖2

(
σk+1

σj

)2 (8)

where σj are the jth singular value of A and Ak is the
rank-k approximation obtained by our algorithm.

The proof for the above theorem can be seen in (Gu, 2015).
For a given sampling matrix Ω, the major challenge is to
show that Ω1 is indeed full rank. That is, we need to show
that for any orthonormal matrix V , with high probability,
V ∗Ω is well conditioned.

5.2. Subsampled Code Matrices Preserve Geometry

Recall from section 3 the construction of the ‘tall and thin’
n × ` subsampled error correcting code matrices Ω. One
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of the critical facts to show is that these matrices approxi-
mately preserve the geometry of an entire subspace of vec-
tors. This will imply that Ω1 will be full rank and we can
use the deterministic bounds for analysis. To prove this,
we establish connections between the properties of code
matrices and two important results existing in the litera-
ture. The first connection is to the well known the Johnson-
Lindenstrauss Transform (JLT) (Johnson & Lindenstrauss,
1984) and the second is with the random sign matrices.
Both these connections depend on the k-wise independence
property of the code matrices.

5.2.1. CONNECTION TO JOHNSON-LINDENSTRAUSS
TRANSFORM

One of the primary results developed in the randomized
matrix algorithms literature was establishing the relation
between the Johnson-Lindenstrauss Transform (JLT) and
preserving the geometry of subspaces (Sarlos, 2006). We
first give the definition of JLT and then state this important
result. We will then show that code matrices under certain
mild conditions satisfy JLT.

Definition 1 A matrix Ω ∈ Rn×` is Johnson-
Lindenstrauss Transform with parameters ε, δ or JLT(ε, δ)
for any 0 < ε, δ < 1, if for any vector v ∈ Rn, it holds

(1− ε)‖v‖2 ≤ ‖v∗Ω‖2 ≤ (1 + ε)‖v‖2

with probability 1−δ, under certain conditions on `, which
will depend on ε, δ and the reduced dimension desired.

So, if the sampling matrix Ω is JLT, it preserves the distance
of any vector v whose dimensionality reduction we seek.
Sarlos (Sarlos, 2006) gave the important relation between
JLT and random matrix sampling (also known as subspace
embedding). The following lemma, which is corollary 11
in (Sarlos, 2006) gives this relation.

Lemma 3 Let 0 < ε, δ < 1 and f be some function. If
Ω is a JLT from Rn to O(k log(k/ε)/ε2.f(δ)), then for an
orthonormal matrix V ∈ Rn×k, n ≥ k we have

Pr(∀ ∈ [1..k] : |1− σi(V ∗Ω)| ≤ ε) ≥ 1− δ

The above lemma shows that, if the sampling matrix Ω is
JLT and ` = O(k log(k/ε)), (choosing f(δ) close to ε2,)
then the singular values of V ∗Ω are bounded, i.e., V ∗Ω is
well conditioned with high probability. So, if our subsam-
pled code matrix is a JLT then, it will preserve the geometry
of V with high probability.

Next, we give two results that show that code matrices with
certain mild properties satisfy JLT property. The first result
is by Ailon and Liberty (Ailon & Liberty, 2009), where
they show a matrix Ω which is 4-wise independent will

satisfy JLT. Interestingly, they give 2 error correcting dual
BCH codes as examples and show how fast multiplication
can be achieved with code matrices. A small drawback here
is that the maximum entries of A need to be restricted.

The second result is by Clarkson and Woodruff (Clarkson
& Woodruff, 2009) (see Theorem 2.2), where they show if
Ω is a 4dlog(

√
(2)/δ)e-wise independent matrix, then Ω

will satisfy JLT property. We know that a code matrix with
dual distance > k is k-wise independent. Thus, any error
correcting code matrix with a dual distance > 4 (more than
2 error correcting ability) will preserve the geometry of and
entire subspace of vectors (i.e., Ω1 is full rank) with high
probability.

5.2.2. CODE MATRICES AS RANDOM SIGN MATRICES

Any code matrix with a dual distance > 4 will preserve the
geometry of V . However, we need the number of samples
to be ` = O(k log(k/ε)), which is similar to a subsampled
Fourier or Hadamard matrix. Next, we show that O(k) can
be achieved in the number of samples required for code
matrices, if the codes satisfy certain conditions.

We know that code matrices act as random matrices as the
distance of the code increases. We can treat code matrices
as random sign matrices having certain probabilistic distri-
butions. Indeed a code with dual distance above k supports
k-wise independent probability measure. This property of
code matrices helps us to use the following lemma given in
(Clarkson & Woodruff, 2009) (Lemma 3.4) which states,

Lemma 4 Given an integer k and ε, δ > 0. If Ω is ρ(k +
log(1/δ)-wise independent with an absolute constant ρ >
1, then for an orthonormal matrix V ∈ Rn×k and ` =
O(k log(1/δ)/ε), with probability at least 1− δ we have

‖V ∗ΩΩ∗V − I‖ ≤ ε.

Thus, a sampling matrix Ω which is dk + log(1/δ)e-wise
independent preserves the geometry of V with number of
samples (length) ` = O(k/ε). Hence, a code matrix with
dual distance > dk+ log(1/δ)e will preserve the geometry
of V with ` = O(k).

Therefore, any code matrix with dual distance > 4 will
preserve the geometry of V with ` = O(k log(k/ε)) and if
the dual distance is > k, then the code matrix can preserve
the geometry of V with ` = O(k/ε).

5.3. Error Bounds

The following theorem gives the approximation error
bounds when the subsampled code matrix is used as test
matrix Ω in Theorem 1. The upper and lower bounds for
the singular values obtained are also given.
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Theorem 5 (Error bounds for code matrix) Let A be
m × n matrix with singular values σ1 ≥ σ2 ≥ σ3 ≥ . . ..
Generate a subsampled code matrix Ω from a desired cod-
ing scheme as in (3) with r ≥ dlog2(n)e as the length of the
message vector. For any code matrix Ω with dual distance
> 4 and length ` = O(k log(k/ε)/ε2.f(δ)), the approxi-
mation error for algorithm 1 satisfies, for ξ ∈ {2, F}

‖A−QQ∗A‖ξ ≤ ‖A−Ak‖ξ

√
1 +

(1 + η)n

(1− ε)2`
(9)

for a small constant η > 0 with failure probability δ and
for any code matrix Ω with dual distance≥ (k+log(1/δ))
and length ` = O(k log(1/δ)/ε), the approximation error
satisfies

‖A−QQ∗A‖F ≤ ‖A−Ak‖F (1 + ε) (10)

with failure probability δ. The bounds for the singular val-
ues obtained are:

σj ≥ σj(Ak) ≥ σj√
1 +

(
(1+η)n
(1−ε)2`

)(
σk+1

σj

)2 (11)

The proof of the theorem follows from the deterministic
bounds given earlier. Equation (9) and (13) are derived with
the help of two lemmas (given in appendix) which show
subsampling a code matrix with dual distance ≥ 3 is well
conditioned. Equation (10) is straight forward from Teorem
4.2 in (Clarkson & Woodruff, 2009). The detailed proof of
the theorem in given in the appendix.

Differences in the construction An important differ-
ence between the construction of subsampled code matri-
ces given in (3) and the construction of SRHT or SRFT
given in (Halko et al., 2011; Tropp, 2011) is in the way
these matrices are subsampled. In the case of SRHT, a
Hadamard matrix of size n × n is applied to input ma-
trix A and ` out of n columns are sampled at random (n
must be a power of 2). In contrast, in the case of subsam-
pled code matrices, a 2r× ` code matrix generated from an
[`, r]-linear coding scheme is considered, and n out of 2r

codewords are chosen. The subsampling will not affect the
k-wise independent property of the code matrix (or the dis-
tinctness of rows) when uniformly subsampled. This need
not be true in the case of SRHT. The importance of the dis-
tinctness of rows is discussed next.

5.4. Logarithmic factor

A crucial advantage of the code matrices is that they have
very low coherence. Coherence is defined as the maximum
inner product between any two rows. This is in particu-
lar true when the minimum distance of the code is close to

half the length. If the minimum distance of the code is d
then the code matrix generated from an [`, r]-code has co-
herence equal to `−2d

2r . For example, if we consider dual

BCH code (see sec. 2.2) the coherence is 2(t−1)
√
`+1−1

2r .
Low coherence ensures near orthogonality of rows. This
is a desirable property in many applications such as com-
pressed sensing and sparse recovery.

For a rank-k approximation using subsampled Fourier
or Hadamard matrices, we need to sample O(k log k)
columns. This logarithmic factor emerges as a necessary
condition in the theoretical proof (given in (Tropp, 2011))
that shows that these matrices approximately preserve the
geometry of an entire subspace of input vectors. The log
factor is also necessary to tackle the worst case input ma-
trices. The discussions in sec. 11 of (Halko et al., 2011)
and sec. 3.3 of (Tropp, 2011) give more details. In the case
of subsampled code matrices, the log factor does not seem
necessary to tackle the worst case input matrices. To see
why this is true, let us consider the worst case example for
orthonormal matrix V described in Remark 11.2 of (Halko
et al., 2011).

An infinite family of worst case examples of the matrix V
is as follows. For a fixed integer k, let n = k2. Form an
n × k orthonormal matrix V by regular decimation of the
n×n identity matrix. That is, V is a matrix whose jth row
has a unit entry in column (j − 1)/k when j ≡ 1 (mod k)
and is zero otherwise. This type of matrix is troublesome
when DFT or Hadamard matrices are used for sampling.

Suppose that we apply Ω = DFR∗ to the matrix V ∗,
whereD is same as in (3), F is an n×n DFT or Hadamard
matrix andR is `×nmatrix that samples ` coordinates from
n uniformly at random. We obtain a matrix X = V ∗Ω =
WR∗, which consists of ` random columns sampled from
W = V ∗DF . Up to scaling and modulation of columns,
W consists of k copies of a k×k DFT or Hadamard matrix
concatenated horizontally. To ensure that X is well con-
ditioned (preserve geometry), we need σk(X) > 0. That
is, we must pick at least one copy of each of the k dis-
tinct columns ofW . This is the coupon collector’s problem
(Motwani & Raghavan, 1995) in disguise and to obtain a
complete set of k columns with non-negligible probability,
we must draw at least k log(k) columns.

In the case of code matrices, we apply a subsampled code
matrix Ω = DSΦ to the matrix V ∗. We obtain X =
V ∗Ω = V ∗DSΦ, which consists of k randomly selected
rows of the code matrix Φ. That is, X consists of k distinct
codewords of length `. The code matrix has low coherence
and all rows are distinct. If we use a code matrix with dual
distance > k, then X contains k rows which are k-wise
independent (near orthonormal) and σk(X) > 0; as a re-
sult the geometry of V is preserved and the log factor is
not necessary. Thus, for the worst case scenarios we have
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an O(log k) factor improvement over other structured ma-
trices. More importantly, this shows that the order optimal
can be achieved with the immediate lower bound of O(k)
in the number of samples required with deterministic ma-
trices.

5.5. Choice of error-correcting code

The requirement of k-wise independence of codewords
translates to the dual distance of the code being greater than
k. Since a smaller code (less number of codewords, i.e.,
smaller r) leads to less randomness in sampling, we would
like to use the smallest code with dual distance ≥ k.

One of the choices of the code can be the family of dual
BCH codes. As mentioned earlier, this family has length
`, dimension t log(`+ 1) and dual distance at least 2t+ 1.
Hence, to guarantee dual distance at least k, the size of
the code must be 2

k log(`+1)
2 = (` + 1)k/2. We can choose

n vectors of length k log(`+1)
2 and form the codewords by

simply multiplying these with the generator matrix (over
F2) to form the subsampled code matrix. Therefore, form-
ing these code matrices will be much faster than generating
n × ` i.i.d Gaussian random matrices or random sign ma-
trices which have k-wise independent rows.

If the log factor is not an issue (for smaller k), then we
can choose any code matrix with dual distance > 4 and
r = dlog2 ne. These code matrices are almost determin-
istic and unlike SRFT/SRHT, subsampling of columns is
not required. In fact, Hadamard matrices are also a class
of linear codes. In practice, code matrices generated by
any linear coding scheme can be used in place of Gaussian
random matrices. As there are many available classes of
algebraic and combinatorial codes, we have a large pool of
candidate matrices. In this paper we chose dual BCH codes
for our numerical experiments as they particularly have low
coherence, and turn out to perform quite well in practice.

6. Numerical Experiments
The following experiments will illustrate the performance
of subsampled code matrices as sampling matrices in Algo-
rithm 1. Our first experiment is with a 4770× 4770 matrix
named Kohonen from the Pajek network (a directed graph’s
matrix representation), available from the UFL Sparse Ma-
trix Collection (Davis & Hu, 2011). Such graph Laplacian
matrices are commonly encountered in machine learning
and image processing applications. The performance of
the dual BCH code matrix, Gaussian matrix, subsampled
Fourier transform (SRFT) and Hadamard (SRHT) matrices
are compared as sampling matrices Ω in Algorithm 1. For
SRHT, we had to subsample the rows as well (similar to
code matrices), since the input size is not a power of 2. All
experiments were implemented in matlab v8.1.

Table 1. Comparison of errors

MATRIX DUAL BCH GAUSSIAN SRFT σ`+1

LPICERIA3D
` = 63

15.4865 18.3882 16.3619 6.4625

DETER3
` = 127

9.2602 9.2658 9.2984 5.7499

S80PI
` = 63

3.8148 3.8492 3.7975 1.9996

DELAUNAY
` = 63

6.3864 6.3988 6.3829 5.8469

EPA
` = 255

5.5518 5.5872 5.4096 2.5655

EPA
` = 511

3.2171 3.2003 3.1752 1.3697

KOHONEN
` = 511

4.2977 4.2934 4.2610 2.0239

KOHONEN
` =1023

2.4581 2.4199 2.4718 1.0236

Figure 1(A) gives the actual error e` = ‖A −
Q(`)(Q(`))>A‖ for each ` number of samples when a sub-
sampled dual BCH code matrix, a Gaussian matrix, SRFT
and SRHT matrices are used as sampling matrices in algo-
rithm 1, respectively. The best rank-` approximation error
σ`+1 is also given. Figure 1(B) plots the singular values
obtained from algorithm 1, for ` = 255 and different sam-
pling matrices Ω used. The top 255 exact singular values of
the matrix (available in the UFL database) are also plotted.
We observe that, in practice, the performance of all four
sampling matrices are similar.

Table 1 compares the errors e` for ` number of samples,
obtained for a variety of input matrices from different ap-
plications when subsampled dual BCH code, Gaussian and
SRFT matrices were used. It also provides the theoretical
minimum σ`+1 value for each input matrices. All matrices
were obtained from the UFL database. Matrices lpi ceria3d
(4400 × 3576) and deter3 (21777 × 7647) are from lin-
ear programming problems. S80PI n1 (4028 × 4028) is
from an eigenvalue/model reduction problem. Delaunay
(4096×4096), EPA (4772×4772) and Kohonen are graph
Laplacian matrices. We see in the first four examples, for
small `, the error performance of the code matrices is better
than that of the Gaussian matrices. For higher `, the error
remains similar to the error for Gaussian matrices. There-
fore, in practice, we can use code matrices in place of other
sampling matrices due to their advantages.

Eigenfaces: Eigenfaces is a popular method for face
recognition that is based on Principal Component Analysis
(PCA) (Turk & Pentland, 1991; Sirovich & Meytlis, 2009).
In this experiment (chosen as a verifiable comparison with
results in (Gu, 2015)), we demonstrate the performance of
randomized algorithm with different sampling matrices on
face recognition. The face dataset is obtained from the
AT&T Labs Cambridge database of faces (Samaria & Har-
ter, 1994). There are ten different images of each of 40
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Figure 1. (A) The theoretical minimum σ`+1 and approximate error as a function of the number of random samples ` using dual BCH
code, Gaussian, SRFT and SRHT matrices as sampling matrix in algorithm 1 for input matrix Kohonen. (B) Estimates for top 255
singular values computed by algorithm 1 and the exact singular values by svds function.

Table 2. Comparison of the Number of Incorrect Matches

RANK DUAL BCH
p

GAUSSIAN
p

SRFT
p

T-SVD

k 10 20 10 20 10 20

10 18 13 19 15 21 18 26
20 14 11 14 12 16 12 13
30 10 08 13 08 12 09 10
40 09 08 08 07 08 10 06

distinct subjects. The size of each image is 92 × 112 pix-
els, with 256 gray levels per pixel. 200 of these faces, 5
from each individual are used as training images and the
remaining 200 as test images to classify.

In the first step, we compute the principal components
(dimensionality reduction) of mean shifted training image
dataset using Algorithm 1, with different sampling matrix
Ω and different p values. Next, we project the mean-shifted
images into the singular vector space using the singular
vectors obtained from the first step. The projections are
called feature vectors and are used to train the classifier. To
classify a new face, we mean-shift the image and project
it onto the singular vector space obtained in the first step,
obtaining a new feature vector. The new feature vector
is classified using a classifier which is trained on the fea-
ture vectors from the training images. We used the in-built
MATLAB function classify for feature training and clas-
sification. We compare the performance of the dual BCH
code matrix, Gaussian matrix and SRFT matrix against ex-
act truncated SVD (T-SVD). The results are summarized in
Table 2. For p = 10 dual BCH code matrices give results
that are similar to those of truncated SVD, and for rank
k < 40, p = 20 our results are superior.

7. Conclusion
This paper advocated the use of matrices generated by error
correcting codes as an alternative to random Gaussian or

subsampled Fourier/Hadamard matrices for computing low
rank matrix approximations. Among the attractive proper-
ties of the proposed approach are the numerous choices of
parameters available, the orthogonality of columns and the
near-orthogonality of rows. We showed that any code ma-
trix with dual distance > 4 preserves the geometry of an
entire subspace of vectors. Indeed if the dual distance of the
code matrix is > k, then the length of the code (sampling
complexity) required is in O(k), thus leading to an order
optimal in the worst-case guaranteed sampling complexity,
an improvement by a factor of O(log k) over other known
structured matrices. This is significant when the expected
rank k is large and/or when the input matrix is sparse.

It is known that Gaussian matrices perform much better in
practice compared to their theoretical analysis (Halko et al.,
2011). Our code matrices (a) are almost deterministic, and
(b) have ±1 entries. Still, they perform equally well (as
illustrated by experiments) compared to random real Gaus-
sian matrices and complex Fourier matrices. Because of
the availability of different families of classical codes in
the rich literature of coding theory, many possible choices
of code matrices are at hand. One of the contributions of
this paper is to open up these options for use as structured
sampling operators in low-rank approximations. Decoding
of many, if not most, structured codes can be performed by
the Fast Fourier Transform (Blahut, 1979). Hence, we can
compute matrix-matrix products with code matrices sub-
stantially faster due to the availability of these fast trans-
form techniques using the method described in (Ailon &
Liberty, 2009). Interesting future work includes extending
the framework of code matrices to other random sampling
applications.
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A. Proof of Theorem 5
The proof for the theorem is as follows. For the approxi-
mate error bounds given in (9), we start from equation (7) in
Theorem 1. The terms that depend on the choice of test ma-
trix Ω are ‖Ω2‖2 and ‖Ω†1‖2. We saw that the code matrix
Ω preserves the geometry of the entire subspace of vectors
and this also ensures that the spectral norm of Ω†1 is under
control. From Lemma 3 and Lemma 3.6 in (Liberty et al.,
2007), we have

‖Ω†1‖2 =
1

σ2
k(Ω1)

≤ 1

(1− ε)2
.

We bound the spectral norm of Ω2 as follows ‖Ω2‖2 =
‖V ∗2 Ω‖2 ≤ ‖V2‖2‖Ω‖2 = ‖Ω‖2 = σ2

1(Ω), since V2 is an
orthonormal matrix. The following two lemmas give the
upper bound for the singular values of Ω. The first lemma
shows that if a code has dual distance ≥ 3, the resulting
code matrix Φ has orthonormal columns.

Lemma 6 (Code matrix with orthonormal columns) A
code matrix Φ, generated by a coding scheme which results
in codes that have dual distance between the codewords
≥ 3, has orthonormal columns.

Proof. If a code has dual distance 3, then the corre-
sponding code matrix (stacked up codewords as rows)
is an orthogonal array of strength 2 (Delsarte & Lev-
enshtein, 1998). This means all the tuples of bits, i.e.,
{0, 0}, {0, 1}, {1, 0}, {1, 1}, appear with equal frequencies
in any two columns of the codeword matrix C. As a re-
sult the Hamming distance between any two columns of
C is exactly 2r−1 (half the length of the column). This
means after the BPSK mapping, the inner product between
any two codewords will be zero. It is easy to see that the
columns are unit norm as well.

This fact helps us use Lemma 3.4 from (Tropp, 2011)
which shows that randomly sampling the rows of such a
code matrix results in a well-conditioned matrix and gives
bounds for the singular values.

Lemma 7 (Row sampling) Let Φ be an 2r × ` code
matrix (with orthonormal columns), and let M =
2r.maxj=1,...,2r ‖e∗jΦ‖2. For a positive parameter α, se-
lect the sample size

n ≥ αM log(`).

Draw a random subset T from {1, . . . , 2r} by sampling n
coordinates without replacement. Then,√

(1− ν)n

2r
≤ σ`(STΦ) and σ1(STΦ) ≤

√
(1 + η)n

2r
(12)

with failure probability at most

`.

[
e−ν

(1− ν)(1−ν)

]α log(`)

+ `.

[
eη

(1 + η)(1+η)

]α log(`)

where ν ∈ [0, 1) and η > 0.

Since n is fixed and M = ` for a code matrix (all the
entries of the matrix are ±2−r/2), we get the condition
n ≥ α` log(`). The parameters α, ν and η are chosen
based on the inputs ` and n and the failure probability ac-
cepted. The bounds on the singular values of the above
lemma are proved in (Tropp, 2011) using Matrix Chernoff

Bounds. Since we use the scaling
√

2r

` , the bounds on the
singular values of the subsampled code matrix Ω will be√

(1− ν)n

`
≤ σ`(Ω) and σ1(Ω) ≤

√
(1 + η)n

`
. (13)

We substitute the above values for ‖Ω2‖2 and ‖Ω†1‖2 in (7)
to get the error bounds in (9) and substitute these values in
(8) of theorem 2 to get the bounds on singular values (11).

Clarkson and Woodruff (Clarkson & Woodruff, 2009) also
give the Frobenius norm error bound for low rank approx-
imation using k-wise independent sampling matrices. The
error bound in (10) is straight from the following lemma
which is a modification of theorem 4.2 in (Clarkson &
Woodruff, 2009).

Lemma 8 If Ω ∈ Rn×` is a ρ(k+ log(1/δ)-wise indepen-
dent sampling matrix, then for ` = O(k log(1/δ)/ε) with
probability at least 1− δ, we have

‖A−QQ∗A‖F ≤ ‖A−Ak‖F (1 + ε) (14)

Proof of this lemma is clear from the proof of theorem 4.2
in (Clarkson & Woodruff, 2009). This completes the proof
of theorem 5.


