1 Random Linear Codes

1.1 Idea of a Random Construction

It is our goal to construct a code which achieves the Gilbert-Varshamov bound. One idea is to try a random construction and then attempt to derandomize. Here, we construct a random linear code. We will see that with high probability, such a code will achieve the Gilbert-Varshamov bound. Unfortunately, it is an NP-Hard question on determining if our code is good, thus making this construction impractical for use.

1.2 Achieving the Gilbert-Varshamov bound

We create a linear code by making a random Parity Check matrix

\[
H = \begin{bmatrix}
 x_{11} & x_{12} & x_{13} & \cdots & x_{1,n} \\
 x_{21} & x_{22} & x_{23} & \cdots & x_{2,n} \\
 \vdots & \vdots & \vdots & \ddots & \vdots \\
 x_{n-k,1} & x_{n-k,2} & x_{n-k,3} & \cdots & x_{n-k,n}
\end{bmatrix}
\]

Each \(x_{ij} \) is a Bernoulli random variable, with a half probability of being either 1 or 0. We know that the code will be the set

\[
C := \{ x \in \{0, 1\}^n | Hx = 0 \}
\]

From this construction, we have that \(R \geq \frac{k}{n} \).

Definition 1 \(A_w \) is \# of random codewords with weight \(w \).

We have that

\[
E[A_w] = \binom{n}{w} \frac{1}{2^{n-k}} \implies E[\sum_w A_w] = \frac{\sum_{i=1}^{d-1} \binom{n}{i}}{2^{n-k}}
\]

Define \(X \) as the number of codewords of weight \(\leq d - 1 \). Then

\[
\Pr[X \geq n \sum_{i=1}^{d-1} \binom{n}{i} \frac{1}{2^{n-k}}] \leq \frac{1}{n}
\]

by Markov's Inequality. Now if we set

\[
n \sum_{i=1}^{d-1} \binom{n}{i} \frac{1}{2^{n-k}} = 1 \implies k = \log \frac{2^n}{n \sum_{i=1}^{d-1} \binom{n}{i}}
\]

then \(X < 1 \) with probability \(1 - \frac{1}{n} \).

If we set \(d = \delta n \) for asymptotics, we see that

\[
R = \frac{k}{n} = 1 - \frac{1}{n} \log(n \sum_{i=1}^{\delta n-1} \binom{n}{i}) \implies R = 1 - h(\delta)
\]

where \(h(x) \) is the binary entropy function.
2 Recovery in Linear Codes

2.1 Correctable Errors

Let C be a code and let $x \in C$. Then the Set of Correctable Errors is the set of vectors e such that

$$d(x, x + e) < d(y, x + e) \quad \forall y \in C \setminus \{x\}$$

Definition 2 Voronoi Region of $x := \{x + e : e \text{ is correctable with } x\}$

For an example, let $C = \{0000, 1100, 1110\}$. Then the vector $e = 0010$ is correctable for 0000, but not for 1100, 1110. Note that if the code C is linear, then the set of correctable errors is the same for each $x \in C$.

Now suppose C is a linear code. Note that C is a subgroup of $\{0, 1\}^n$ under the operation of binary addition. By Lagrange’s Theorem, the number of cosets of C in $\{0, 1\}^n$ is $\frac{2^n}{|C|} = \frac{2^n}{2^k} = 2^{n-k}$. Therefore, there is a bijection between the cosets and the codewords of the dual code.

We define the Standard Array to be the tabular array of cosets. For example, here is the standard array of $C = \{0000, 1100, 0011, 1111\}$.

\[
\begin{array}{cccccc}
0000 & 1100 & 0011 & 1111 & 0000+C \\
0001 & 1101 & 0010 & 1110 & 0001+C \\
0100 & 1000 & 0111 & 1011 & 0100+C \\
1001 & 0101 & 1010 & 0110 & 1001+C \\
\end{array}
\]

Claim 1 The set of correctable errors is equal to the set of coset leaders which have the unique minimum weights in their cosets.

Proof Suppose e is a coset leader. We examine x and $x + e$. We see that

$$d(y, x + e) = d(x + y, e) > d(0, e) = d(x, x + e)$$

Now about for the Hamming Code? The coset leaders are the weight 1 binary vectors.

2.2 Decoding Linear Codes

Definition 3 Let $x \in \{0, 1\}^n$. The Syndrome of x is equal to Hx^T, where H is the Parity Check matrix.

Notice that we can redefine cosets here as groups of vectors which have the same syndrome. This is because if x, y are in the same coset, then $x = c_1 + r$ and $y = c_2 + r$, for some vector r and two codewords c_1, c_2.

$$Hx^T = H(c_1 + r)^T = H(c_2 + r)^T = Hr^T = Hy^T$$

We now can develop a general decoding method of errors in linear codes:

Say we have a codeword $x \in C$. After transmission, it becomes $r = x + e$, where e is an error vector. Find the coset which has the syndrome Hr^T. Subtract the coset leader of this coset from r, and we will retrieve x.

In the real domain, this process is known as Sparse Recovery/Compress Sensing.
2.3 Dual of the Hamming Code

Remember the Sphere Packing Bound:

\[A(n, d) \leq \frac{2^n}{\sum_{i=1}^{d-1} \binom{n}{i}}. \]

Codes that satisfy this are called perfect codes. We know that Hamming codes are perfect codes. There is also one other code, called the Golay Code. This code is \([23, 12, 7]\).

We now define the Dual of the Hamming Code. In this code, we will take the Parity Check matrix of the Hamming Code and use it as a generator matrix. It is known as Punctured Hadamard/Shortened Reed-Muller/Simplex Code. We have that the parameters of this code are \([2^m - 1, m, ?]\). We will investigate what the distance is.

Let us examine the case for \([7,3,?]\).

\[G^{(3)} = \begin{bmatrix} 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1 & 0 & 1 \end{bmatrix}. \]

Note that

\[G^{(3)} = \begin{bmatrix} 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & G^{(2)} & 0 & 1 & 1 & 1 \\ G^{(2)} & G^{(2)} & 1 & 0 & 1 & 1 \end{bmatrix}. \]

The codewords are \(S^{(3)}\)

\[
\begin{align*}
0000000 \\
0001111 \\
0110011 \\
1010101 \\
0111100 \\
1011010 \\
1100110 \\
1101001
\end{align*}
\]

But note that the codewords can be written as:

\[S^{(3)} = \begin{bmatrix} 0 & 0 & S^{(2)} \\ S^{(2)} & 0 & 0 \\ 1 & S^{(2)} & 1 \end{bmatrix}. \]

Thus, the distance \(d = 4\).

Claim 2 In general: \(d_{\text{min}} = 2^{m-1} = \frac{n+1}{2}\)

Thus, this code is \([n, \log(n + 1), \frac{n+1}{2}]\). Since,

\[A(n, d) \leq \frac{2d}{2d - n} = n + 1. \]

This means that the Punctured Hadamard code matches the Plotkin bound.