
COMPSCI 690T Coding Theory and Applications Apr 19, 2017

Lecture 21
Instructor: Arya Mazumdar Scribe: Names Redacted

1 Covering Codes and Lossy Data Compression

Last time, we started discussing the following lossy data compression problem: given x ∈ {0, 1}n, we

wish to compress x to y ∈ {0, 1}k, then decompress y into x̂ ∈ {0, 1}n such that d(x, x̂) ≤ δn. Thus we
allow for a loss of up to a δ fraction of the information bits, in exchange for compressing the n bit string
to a k bit string.

To solve this problem, we introduced the notion of a δn-covering code, defined as a set M ⊆ {0, 1}n
with the property that for any x ∈ {0, 1}n, there exists c ∈M such that d(c, x) ≤ δn. Thus every vector
in {0, 1}n is contained in (covered by) some ball of radius δn centered at a codeword of M .

Given a δn-covering code M , if k = dlog |M |e we can achieve data compression of a string of length
n down to a string of length k by mapping every vector x ∈ {0, 1}n to a length k representative of the
codeword c that covers it; there are only |M | ≤ 2k codewords of M , so this is always possible. For

example, we could take the representative of c to be the input vector in {0, 1}k that encodes to c. If M
is not linear, it may be difficult (i. e. require exponential time) to determine what the codeword c that
covers x is, but if M is linear, then using any efficient decoding algorithm for linear codes to decode x
will decode to the closest codeword c ∈M , which must satisfy d(c, x) ≤ δn.

Last class, we showed that any δn-covering code must satisfy R = log |M |
n ≤ 1− h(δ), where h is the

binary entropy function. Today we will show that this bound is tight, by constructing a covering code
achieving this rate. We do this by a random construction: let M consist of vectors chosen randomly and
uniformly from {0, 1}n. We will determine exactly how many vectors should be in M shortly.

If we fix x ∈ {0, 1}n and c ∈M , then we have

Pr[d(c, x) ≤ δn] =

∑δn
i=0

(
n
i

)
2n

.

As each c ∈M is chosen independently, we then have

Pr[∀c ∈M,d(c, x) > δn] = (1−
∑δn
i=0

(
n
i

)
2n

)|M |.

Then applying a union bound over all 2n possible choices of x, we have

Pr[∃x ∈ {0, 1}n : ∀c ∈M,d(c, x) > δn] ≤ 2n(1−
∑δn
i=0

(
n
i

)
2n

)|M |

≤ e−|M |(
∑δn
i=0 (ni)

2n )+n ln 2.

Now, if we substitute |M | = 2n·2n ln 2∑δn
i=0 (ni)

, the probability above is at most 2−n, so with high probability

if we choose this many random vectors to form the code, the probability any vector in {0, 1}n is not
covered is exponentially small. Also, we then have

R =
log |M |
n

=
n+ log(2n ln 2)− nh(δ)

n
= 1− h(δ) +

log(2n ln 2)

n
,

and the last term goes to 0 for large n, so we achieve a rate of 1− h(δ) in the limit, meeting the lower
bound proved last time.

This construction yields a nonlinear code, so the actual encoding process may not be efficient. It can
also be shown that random linear codes are good covering codes, but this is much more difficult. No
deterministic constructions of covering codes are known attaining R = 1− h(δ).

1



2 List Decoding Capacity

Recall that a code C is said to be (pn, L)-list decodable if every Hamming ball of radius pn around a
codeword of C contains at most L codewords.

Here we discuss list decoding capacity, specifically the relationship between the code rate and the
error rate that can tolerated using list decoding with a particular list size L. Namely, we will prove
that (as long as the code length and list size are sufficiently large) the list decoding capacity is given
by RL(p) = 1 − h(p), where pn is the number of errors that can be tolerated, and h(p) is the (binary)
entropy function. More formally, if n→∞ and L grows polynomially with n, then RL(p) = 1− h(p).

Proof Suppose C is a (pn, L)-list decodable code of size M . Randomly and uniformly pick a point z
from {0, 1}n. For each of the M codewords, we define an indicator Xi for the event that z is in the ball
of radius pn around the codeword ci. In particular, for ci ∈ C, we define

Xi =

{
1, if d(ci, z) ≤ pn
0, otherwise

.

We note that the sum of the indicators X = X1 + ...+XM is the number of codewords that are in the
ball of radius pn around Z, and then consider the expected value of this sum, E[X]:

E[X] = E[X1] + E[X2] + · · ·+ E[XM ]

= M · E[Xi]

= M · P (Xi = 1)

= M · P (d(ci, z) ≤ pn).

Thus E[X] = M ·
∑pn
i=0 (ni)
2n . Note that E[X] =

M(ni)
2n ≤ L, because there must exist some point with

at least E[X] codewords in a ball of radius pn around it, which implies M ≤ L·2n∑pn
i=0 (ni)

. This gives us

logM
n ≤ 1− h(p) + logL

n , and thus RL(p) ≤ 1− h(p), as when L grows polynomially in n, logL
n goes to 0

for large n.
Now we show a construction which achieves this capacity. To do so, we let the code C be formed

by independently and uniformly picking M points from {0, 1}n at random. We define the bad event
Ex,c1,c2,...,cL+1

to be that the L+ 1 codewords c1, . . . , cL+1 all lie in the ball of radius pn around x. For
a particular choice of x and codewords c1, . . . , cL+1, the probability of a bad event is

P (Ex,c1,...,cL+1
) =

(∑pm
i=0

(
n
i

)
2n

)L+1

,

so applying a union bound over all possible choices of x and all possible choices of a set of L+1 codewords,
we have that the probability of any bad event occurring is bounded by

P (∃x, c1, . . . , cL+1 : Ex,c1...cL+1
occurs) ≤ 2n

(
M

L+ 1

)(∑pn
i=0

(
n
i

)
2n

)L+1

≤ 2nML+12−n(1−h(p))(L+1)

= 2n+(L+1) logM−n(L+1)(1−h(p))

= 2n(L+1)( 1
L+1+

logM
n −(1−h(p))).

If we set this probability to be equal to 2−n so that it goes to 0 exponentially with n, we find R =
logM
n = 1− h(p)− 2

L+1 , which goes to 1− h(p) as L becomes large.

2



3 Introduction to Polar Codes

Next, we will begin studying polar codes, a family of codes which achieve the Shannon capacity 1−h(p)
in the random error model where codewords are transmitted one bit at a time, and each bit is flipped
with probability p. We will first use some of the information-theoretic tools we developed to analyze the
wiretap channel to get some intuition for the idea behind polar codes.

To set things up, let x1 and x2 be bits drawn from Ber(p), so each is 1 with probability p. Then
suppose we have the following circuit which adds x1 and x2:

Figure 1: A circuit that adds x1 and x2.

As x1 and x2 are independent, H(x1, x2) = H(x1) + H(x2) = 2H(x1). But also x1 and x2 are
completely determined by u1 and u2, so we must have H(u1, u2) = 2H(x1). Then by the chain rule,
H(u1, u2) = H(u1) +H(u2|u1). We can compute that Pr[u1 = 1] = 2p(1− p), whereas Pr[x1 = 1] = p,
so as H is increasing on the interval [0, 12 ], on this interval we have H(u1) ≥ H(x1), as 2p(1 − p) ≥ p,
with equality when p = 1

2 . Putting this all together, we have

H(u1) ≥ H(x1) ≥ H(u2|u1).

Thus we have taken two “equally random” bits x1 and x2, and using the circuit, created two “unequally
random” bits u1 and u2.

We can perform a similar process for more than 2 bits, by inductively creating larger and larger
circuits. The following circuit performs a similar procedure for 4 bits:

Figure 2: A circuit that adds 4 bits together.

Instead of working with circuits directly, we can view the circuit as matrix multiplication; the two
bit adder corresponds to (

1 1
0 1

)(
x1
x2

)
=

(
u1
u2

)
.

3



Then if we let A =

(
1 1
0 1

)
, the matrix for the 4-bit adder is the block matrix

(
A A
0 A

)
=


1 1 1 1
0 1 0 1
0 0 1 1
0 0 0 1

 .

More generally, recall that the Kronecker product of an m1 × n1 matrix A and an m2 × n2 matrix B,
written A⊗B, is the m1m2 × n1n2 block matrix

A⊗B =


a11 a12 · · · an11

a21 a22 · · · an12

...
...

. . .
...

am11 am12 · · · am1n1

⊗B =


a11B a12B · · · an11B
a21B a22B · · · an12B

...
...

. . .
...

am11B am12B · · · am1n1
B

 .

Then the matrix corresponding to the circuit that adds 2k bits is the Kronecker product of A with itself
k times, written A⊗k. Even though this matrix is extremely large, because it is defined by repeatedly
applying this simple rule we can work with it very efficiently. As the matrix becomes larger and larger,
the entropy of some ui will become closer and closer to 1, while for others it becomes closer and closer
to 0. This is the reason for the “polar” in “polar” codes; the entropy of the resulting bits is polarized to
either 0 or 1. Next time we will see how to use these ideas to actually construct polar codes.

4


