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1 Concatenated Codes

A concatenated code comprises of two codes. One q-ary outer code, and a binary inner code.
The outer (linear) code Co is of length no, dimension ko and minimum distance do. The inner code

Ci is of length ni, dimension ki and minimum distance di. The codes are chosen such that q = |Ci| = 2ki .
The concatenated code is a binary linear code and is defined as follows. There is a fixed bijective

map f : Fq → Ci. Every symbol of every codeword of the outer code is replaced by a binary sequence
according to this map. As a result, we have |Co| binary vectors of length nino each. These constitute
the concatenated code C.

The length of C is n = nino. The size of the code is |Co| = qko = 2kiko . That means the dimension
of the code is k = koki. The minimum distance of the code is at least d = dodi. To see this, note that
the distance of the outer code is do, and in each of these do positions, upon applying the map f , there
will be a disagreement of di bits.

1.1 Zyablov bound

We show the best possible rate-distance trade-off achievable with binary codes that are explicitly (de-
terministically) constructible.

Consider the outer code to be a q-ary Reed-Solomon code of length no = q, and the inner code to
be a binary linear code that achieves the Gilbert-Varshamov (GV) bound. We must have ni = ki/Ri =
log2 q/Ri, where Ri is the rate of the inner code.

We have, n = noni = q logq /Ri. This is how we choose q.
Since the inner code has dimension log2 q < log2 n, it is possible to find a GV code (code that achieves

the GV bound) in polynomial time.
We have ko = no − do + 1 or Ro = no(1− do/no + 1/q), where Ro is the rate of the outer code. Also

Ri = ni(1 − h(di/ni)), since the inner code achieves the GV bound. If d = δn be the distance of the
overall code then

δ =
d

n
=
dido
nino

.

Therefore, the rate of the overall code is

R = RoRi ≥ (1− do/no)(1− h(di/ni)) = (1− δ/x)(1− h(x)),

where x is the relative distance of the inner code. Since we are free to choose that, for the best such
code we will have,

R ≥ max
0≤x≤1

(1− δ/x)(1− h(x)).

This is known as the Zyablov bound.
Now we will show an application of concatenated code to something called Group testing.

2 Group Testing

Suppose there are n items and among them at most t are defective. We are allowed to test the elements
for defectiveness in pools or groups. For any group of items, a test tells us whether there exists a defective
item in the group or not. How many such tests are necessary to find out all the defective items? (We
mentioned couple of applications: soldiers with syphilis and finding failed links in a network).
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If there is only up to 1 defective, then we may proceed to do a binary search, testing a group of size
∼ n/2 for the first test, and a group of size ∼ n/4 in the second and so on. In this way within log n tests
we will be able to identify the defective element.

If we do the above procedure t times, each time removing a found defective element, then we will be
able to identify up to t defective elements. This will take a total of t log n tests.

On the other hand, since each test reveal at most 1 bit of information and there are
∑
i = 0t

(
n
i

)
possibilities for the defective sets, we need at least log2

∑
i = 0t

(
n
i

)
> t log2

n
t tests. Therefore the

aforementioned adaptive scheme is very close to being optimal.
Hence the main challenge lies in designing a nonadaptive scheme for group testing, where all the

tests are simultaneously performed. This also has a lot of applications.

2.1 Nonadaptive testing: a testing matrix

A nonadaptive testing scheme with m tests can be represented using a binary m × n testing matrix
A = (ai,j). In this matrix, the (i, j)th entry is 1 if and only if the ith test include the jth item
(otherwise it is 0).

What is the property that this matrix must satisfy such that it is possible to recover any up to t
defective items?

Let x ∈ {0, 1}n be the defective indicator vector, i.e., xi = 1 if and only if the ith item is defective.
Then the testing procedure and the results can be summarized as,

A ∧ x = y,

where y ∈ {0, 1}m is the results of the tests. The operation ∧ signifies a Boolean OR operation. Indeed,
y is the point wise Boolean OR of the columns of A that correspond to the entries of x that are 1. One
can also think of this as a matrix-vector multiplication over reals, followed by a quantization operation
where anything nonzero is substituted by 1.

This problem is philosophically similar to the compressed sensing problem (which is over reals and
such quantization is not done) and the decoding of linear codes via parity check matrix (where Boolean
XOR instead of OR is used).

Therefore the aim is to construct a matrix A such that the Boolean OR of any up to t columns of
the matrix must be different. Such matrices are called t-separable. In other words, we need a matrix
such that union of supports of any up to t columns are different. Given n, t, the aim is to come up with
a matrix with minimal number of rows such that this is possible.
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