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1 More on Berlekamp-Welch Decoding

1.1 Reed-Solomon Codes

Last time we introduced a family of linear q-ary codes called Reed-Solomon codes. Recall that such a
code is defined by first fixing a defining set {α1, . . . , αn} of distinct elements in Fq (which requires q > n),
and then we define the code C = {eval(f) : deg(f) < k}, where eval(f) is the vector

(
f(α1) · · · f(αn)

)
.

We saw that these codes have d = n− k + 1, so are MDS (meet the Singleton bound with equality).

1.2 Berlekamp-Welch Decoding

We also saw a way to efficiently decode these codes. If we receive r =
(
r1 · · · rn

)
, we proved that we can

always find a polynomial Q(x, y) ∈ Fq(x, y) such that

1. Q(x, y) = Q0(x) + yQ1(x).

2. deg(Q0) ≤ n− t− 1, and deg(Q1) ≤ n− t− 1− (k − 1).

3. Q(αi, ri) = 0 for 1 ≤ i ≤ n.

Then to decode, we let f(x) = −Q0(x)
Q1(x)

, and decode to eval(f). We also showed last time that if there

are at most n−k
2 errors, this decoding will be correct.

1.3 Intuition for Berlekamp-Welch Decoding

In general when we try to decode Reed-Solomon codes, each codeword is an evaluation of a polynomial
of degree at most k − 1, on n different points. If there are t ≤ n−k

2 errors, then the received word still
must match some polynomial of degree at most k − 1 in at least n − t points, so our goal is to find a
curve in Fq that matches the received word in at least n− t points.

This is an interpolation problem, and we have more equations than unknowns, so the difficulty is
only in doing this quickly. If we don’t care about time, we can just take every set of n − t points, and
try and fit a curve to it. We will only be able to do this successfully if the subset we pick contains all
the errors, so when we find a curve that works, we will know where all t errors are. Unfortunately there
are

(
n
t

)
such subsets, so this is too slow.

By working backwards, we can get some intuition for why evaluating −Q0(x)
Q1(x)

is the right thing to do.

Assume f(x) is the correct polynomial, and we receive r =
(
r1 · · · rn

)
. First, we define the error locator

polynomial to be

Q1(x) =
∏

1≤i≤n
f(αi)6=ri

(x− αi),

so that Q1(αi) = 0 whenever f(αi) 6= ri, i. e., whenever there is an error at coordinate i.
Then we have that for any i, Q1(αi)f(αi) = Q1(αi)ri, because if f(αi) = ri clearly both sides are

equal, and if not, then Q1(αi) = 0, so both sides are 0. Then we have ri = −Q0(αi)
Q1(αi)

whenever Q1(αi) 6= 0,

so we are looking for a solution to the equation y = −Q0(x)
Q1(x)

.
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2 List Decoding

2.1 Berlekamp-Welch Generalization (Sudan 1996)

List decoding is a generalization of standard decoding, where rather than returning a single codeword
which we guarantee is the correct codeword, we return a list of ≤ L codewords and guarantee that one
of them is the correct codeword. In many cases list decoding will allow us to decode in the presence of
a greater number of errors than standard decoding.

In the previous lecture notes, it is shown how to generalize Berlekamp-Welch decoding for L-list
decoding. Given a defining set {α1, . . . , αn} and received word r =

(
r1 · · · rn

)
, we find a polynomial

Q(x, y) such that

1. Q(x, y) = Q0(x) + yQ1(x) + y2Q2(x) + · · ·+ yLQL(x).

2. deg(Qj) ≤ n− t− 1− j(k − 1) for 0 ≤ j ≤ L.

3. Q(αi, ri) = 0 for 1 ≤ i ≤ n.

Then, we find all f(x) that are y-roots of Q(x, y), and return as our list eval(f) for all such f . It is
shown in the previous lecture notes that we can find such a polynomial and that the correct codeword

f(x) will be a y-root, provided that the number of bits in error is t < min( nL
L+1 −

(k−1)L
2 , n− L(k − 1)).

2.2 2-List Decoding Example

As an example, we can compute when list decoding with L = 2 will allow us to decode in the presence
of more errors than regular decoding. This will occur when

n− k
2

< min(
2n

3
− (k − 1), n− 2(k − 1)).

Doing some algebra, we see that n−k
2 < 2n

3 − (k− 1) implies k
n <

1
3 −

1
2n , and n−k

2 < n− 2(k− 1) implies
k
n < 1

3 + 1
3n . For large n both of these values go to 1

3 , so we can decode from more errors with 2-list
decoding as long as the rate of our code is less than 1

3 . Figure 1 shows the two constraints on t for 2-list

decoding, and the shaded region represents achievable pairs of values for t
n and k

n .

Figure 1: The attainable region for 2-list decoding.
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3 Concatenated Codes

Recall that in a Reed-Solomon Code, the cardinality of the defining set must be less than the size of the
field, i.e., q > n for defining set {α1, . . . , αn} over Fq. In practice, it is inconvenient for the field size to
grow with the size of the defining set. For example, our analysis has been with respect to transmitting
symbols, but in practice these would need to be encoded to binary, but then a single bit error would
cause a symbol error, losing log2(q) information bits.

Concatenated codes are used to overcome this inconvenience, by re-encoding the q-ary Reed-Solomon
code to a binary code.1 More formally, we define a [no, ko, do]q = 2j Reed-Solomon code Co, which we
call the “outer code”, and a [ni, ki, di]2 linear “inner code” Ci, such that there is a one-to-one mapping
between the q-ary alphabet of the outer code and the binary codewords of the inner code. This injection
implies that the dimension of the inner code, ki, is equal to log2 q and the rate of the inner code, Ri, is

equal to log2 q
ni

.
We encode by taking the outer codeword symbols and multiplying them by the generator matrix

of the inner code. The resultant concatenated code is a linear code of length noni. We can compute
the dimension by taking log2 of the number of codewords of the outer code, and see that log2(|Co|) =
log2(qko) = ko log2(q) = koki. The minimum weight nonzero codeword must have at least do nonzero
outer code symbols, and each of these symbols will have at least di nonzero bits, as they are inner
codewords, so the minimum distance of the code is dodi.

1More generally, concatenated codes are also capable of re-encoding the q-ary code to b-ary, though it is most efficient
when q = bj for some j.
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