COMPSCI 650 Applied Information Theory Feb 23, 2016

Lecture 9

Instructor: Arya Mazumdar Scribe: Names Redacted

1 Review and formulas
e Le Cam’s identity: PX =1 — 1||P, — Py||7v

o Pinsker’s inequality: 2||P1 — Pa|lrv’ < D(Py||P2)
2 Proving Pinsker’s inequality

Take two Bernoulli distributions Py, Py, where Pi(X = 1) = p, P,(X = 1) = ¢q. With some elementary
substitution, we can manipulate the right side of the equation:

D(P\||Pz) = D(pllq)

p — P
=plog =+ (1 — p) log
We can also change the left side:
2 2 1 2
—||P1 — P, =——I|P — P
mol1F1 = Pellrv™ =575 [P0 = Palle,
= (2lp—g))?
51g 2P —al)
_2(p—q)°
In2

Our new goal is to show that the new right side minus the left side is > 0, or: f(p,q) = pln % +(1-
p)In % —2(p—q)? > 0, as this is equivalent to proving Pinsker’s inequality.
If we differentiate f with respect to ¢, we get:

%=—§+(1—p)1%q+4(p—q)
_ _q(ql)qu)(l =P L g)
= ﬁJr‘l(p—q)
== 0l- )

Is this differentiation increasing or decreasing? Since 0 < ¢ < 1, the maximum value ¢(1 — ¢) can
take is i, which occurs when ¢ = % So, the minimum value of m is 4, s0 4 — ﬁ will always be
negative. Thus, whether this differentiation is increasing or decreasing depends on (p — q).

If p > ¢ then 3—]; < 0. If p < g then Z—]; > 0. Thus, f(p,q) looks like an upside down parabola which

is lowest when p = ¢ and is always > 0. Therefore, since f(p,q) > 0, %HH — P2||TV2 < D(Py||P2),
which proves Pinsker’s inequality for Bernoulli random variables.



2.1 Implications

We can use Pinsker’s inequality to show this:

2¢2

2)? = —
(2€) In2

1
D >_—
(p+ellp) > 5o

This is the Chernoff bound.

3 Neyman-Pearson test

3.1 Binary hypothesis testing

Any binary hypothesis testing divides sample space into 2 parts, creating estimator g(X) PUT PIC
HERE (Instructor’s comment: Poor work by scribe)
What is the probability of error for g(X)?

H, chosen, if X € A; error = P;(A°)
Hj chosen, if X € A¢; error = P,(A)

Fix one P(A°) and then minimize the other

3.2 Neyman-Pearson test

Define: A(T) ={ze€ X : 2—5‘3 > T}, where A(T) is the decision region, and T is threshold

3.3 Proving Neyman-Pearson’s claim

Proof: Neyman-Pearson optimality

Py (A°) 2 «, where « is probability of error
Py(A) 2 3, where 3 is probability of error

In the Neyman-Pearson test, as — A(T),
Pi(A(T)) 2 o
A *
Py (A(T)) =5

Suppose there is another test with decision region B, B®
The claim of the Neyman-Pearson lemma is that if
a < o, then g > pg*.
If you can design any test that has better probability of error for the first term, the test will have a
worse probability of error for the second term.
another picture here (Instructor’s comment: Poor work)
Vx € X, we have

1, ifzeAd
1 =<7
Al@) {0, otherwise

1, ifzeB
Ig(z)=<"
5(@) {O, otherwise



Show that (1a(z) — 1g(z))(Pi(z) — TPs(x)) > 0V € X

Case 1: z € A,
(1a(x) — 1p(z))(Py(x) — TPy(x))
= (1 — 1g(z))(positive value) > 0
1g(x)is 1 or 0.
Case 2: x € A

(0 — 1g(x))(negative value) > 0

1p(x) is a negative value or 0.

Therefore, (1 4(x) — 1g(x))(Pi(x) — TP(z)) > 0Vx € X

(La(z) = 1p(2))(P1(z) = TP(x)) > 0
Z (1a(z)Pi(x) — T1A(x)Py(z) — 1p(x)Pi(z) + T1p(x)Py(z)) > 0

rzeX
> Pi(z)+ > Pi(x)-T> Pz)+T Y Paz) >0

z€A zEB z€A zEB
Pi(A) = Pi(B) —TP(A)+Th(B) >0
Pi(A) — Pi(B) = T(P>(A) — P(B))
(1-a")=(1-a)=T(" - B)
a—ao" =T(B" = p)

Therefore, if @ < a* = > §*.

4 Comparing Neyman-Pearson and Bayes’ tests

4.1 Bayes’ test

The Bayes test uses Bayes rule to derive an estimator based on the prior likelihood of a hypothesis. Say
we have two probability distributions P;, P>, and H; is the hypothesis that a sample came from P;.

P(H;, X = z)
P(H;|X = il ) s
(e PUHIX =) = max —pe
P(H;)
[ P(X =zl )P(X z)
= max P(X =z|H;)P(H;)

ie{1,2}

If P(x|H,)P(H,) > P(x|H2)P(Hz), then our estimator g(x) = 1, which means it chooses P;. Equiv-
alently, if Py (x)P(H;) > Pa(x)P(Hz). We can describe the Bayes decision region like so:
bPi(z) P(Hz)}
Py(x) = P(H)

This shows us that if we want to use the Bayes test, we need to know the prior probabilities, which
may not be available. Neyman-Pearson test is more flexible because it doesn’t require priors and because
you can choose a threshold T' for Neyman-Pearson. Thus, more people tend to prefer it.

A= {z|



5 Neyman-Pearson with multiple samples

Say we have multiple samples, x1, ..., x,. We can reformat the Neyman-Pearson test like this:

Pl(ml,...,xn)
A(T) = vy L) EXY|=—/—"T"""""2<>T
( ) {(.231, » L )E |P2(.’E1,...,.’En) > }
If all samples are independent, then:
n P1

={(z1,.an) € X”|H P2Ez3 > T}

If we take the log, the product becomes a sum, and the test becomes equivalent to the log likelihood
ratio:

~—

A(T) ={(z1,...,zn) € X" Zlog P;(:c >logT}
i=1

()
(z)

If we define a function A(z) = log g(x), we can rewrite the log likelihood ratio:

1 < logT
=3 AMa) = 2
n = n



