

## Lecture 9

Instructor: Arya Mazumdar

Scribe: Names Redacted

## 1 Review and formulas

- Le Cam's identity:  $P_e^* = \frac{1}{2} - \frac{1}{2}||P_1 - P_2||_{TV}$
- Pinsker's inequality:  $\frac{2}{\ln 2}||P_1 - P_2||_{TV}^2 \leq D(P_1||P_2)$

## 2 Proving Pinsker's inequality

Take two Bernoulli distributions  $P_1, P_2$ , where  $P_1(X = 1) = p, P_2(X = 1) = q$ . With some elementary substitution, we can manipulate the right side of the equation:

$$\begin{aligned} D(P_1||P_2) &= D(p||q) \\ &= p \log \frac{p}{q} + (1-p) \log \frac{1-p}{1-q} \end{aligned}$$

We can also change the left side:

$$\begin{aligned} \frac{2}{\ln 2}||P_1 - P_2||_{TV}^2 &= \frac{1}{2 \ln 2}||P_1 - P_2||_{\ell_1}^2 \\ &= \frac{1}{2 \ln 2}(2|p-q|)^2 \\ &= \frac{2(p-q)^2}{\ln 2} \end{aligned}$$

Our new goal is to show that the new right side minus the left side is  $\geq 0$ , or:  $f(p, q) = p \ln \frac{p}{q} + (1-p) \ln \frac{1-p}{1-q} - \frac{2(p-q)^2}{\ln 2} \geq 0$ , as this is equivalent to proving Pinsker's inequality.

If we differentiate  $f$  with respect to  $q$ , we get:

$$\begin{aligned} \frac{df}{dq} &= -\frac{p}{q} + (1-p) \frac{1}{1-q} + 4(p-q) \\ &= \frac{-p(1-q) + q(1-p)}{q(1-q)} + 4(p-q) \\ &= \frac{-p+q}{q(1-q)} + 4(p-q) \\ &= (p-q)\left(4 - \frac{1}{q(1-q)}\right) \end{aligned}$$

Is this differentiation increasing or decreasing? Since  $0 \leq q \leq 1$ , the maximum value  $q(1-q)$  can take is  $\frac{1}{4}$ , which occurs when  $q = \frac{1}{2}$ . So, the minimum value of  $\frac{1}{q(1-q)}$  is 4, so  $4 - \frac{1}{q(1-q)}$  will always be negative. Thus, whether this differentiation is increasing or decreasing depends on  $(p-q)$ .

If  $p \geq q$  then  $\frac{df}{dq} \leq 0$ . If  $p \leq q$  then  $\frac{df}{dq} \geq 0$ . Thus,  $f(p, q)$  looks like an upside down parabola which is lowest when  $p = q$  and is always  $\geq 0$ . Therefore, since  $f(p, q) \geq 0$ ,  $\frac{2}{\ln 2}||P_1 - P_2||_{TV}^2 \leq D(P_1||P_2)$ , which proves Pinsker's inequality for Bernoulli random variables.

## 2.1 Implications

We can use Pinsker's inequality to show this:

$$D(p + \epsilon || p) \geq \frac{1}{2 \ln 2} (2\epsilon)^2 = \frac{2\epsilon^2}{\ln 2}$$

This is the Chernoff bound.

## 3 Neyman-Pearson test

### 3.1 Binary hypothesis testing

Any binary hypothesis testing divides sample space into 2 parts, creating estimator  $g(X)$  **PUT PIC HERE** (Instructor's comment: Poor work by scribe)

What is the probability of error for  $g(X)$ ?

$H_1$  chosen, if  $X \in A$ ; error =  $P_1(A^c)$

$H_2$  chosen, if  $X \in A^c$ ; error =  $P_2(A)$

Fix one  $P(A^c)$  and then minimize the other

### 3.2 Neyman-Pearson test

Define:  $A(T) = \{x \in \mathcal{X} : \frac{P_1(x)}{P_2(x)} \geq T\}$ , where  $A(T)$  is the decision region, and  $T$  is threshold

### 3.3 Proving Neyman-Pearson's claim

Proof: Neyman-Pearson optimality

$P_1(A^c) \stackrel{\Delta}{=} \alpha$ , where  $\alpha$  is probability of error

$P_2(A) \stackrel{\Delta}{=} \beta$ , where  $\beta$  is probability of error

In the Neyman-Pearson test, as  $\longrightarrow A(T)$ ,

$P_1(A(T)) \stackrel{\Delta}{=} \alpha^*$

$P_2(A(T)) \stackrel{\Delta}{=} \beta^*$

Suppose there is another test with decision region  $B$ ,  $B^c$

The claim of the Neyman-Pearson lemma is that if

$\alpha < \alpha^*$ , then  $\beta > \beta^*$ .

If you can design any test that has better probability of error for the first term, the test will have a worse probability of error for the second term.

**another picture here** (Instructor's comment: Poor work)

$\forall x \in X$ , we have

$$\mathbb{1}_A(x) = \begin{cases} 1, & \text{if } x \in A \\ 0, & \text{otherwise} \end{cases}$$

$$\mathbb{1}_B(x) = \begin{cases} 1, & \text{if } x \in B \\ 0, & \text{otherwise} \end{cases}$$

Show that  $(\mathbb{1}_A(x) - \mathbb{1}_B(x))(P_1(x) - TP_2(x)) \geq 0 \forall x \in \mathcal{X}$

Case 1:  $x \in A$ ,

$$\begin{aligned} & (\mathbb{1}_A(x) - \mathbb{1}_B(x))(P_1(x) - TP_2(x)) \\ &= (1 - \mathbb{1}_B(x))(\text{positive value}) \geq 0 \\ & \quad \mathbb{1}_B(x) \text{ is 1 or 0.} \end{aligned}$$

Case 2:  $x \in A^c$

$$\begin{aligned} & (0 - \mathbb{1}_B(x))(\text{negative value}) \geq 0 \\ & \mathbb{1}_B(x) \text{ is a negative value or 0.} \end{aligned}$$

Therefore,  $(\mathbb{1}_A(x) - \mathbb{1}_B(x))(P_1(x) - TP_2(x)) \geq 0 \forall x \in \mathcal{X}$

$$\begin{aligned} & (\mathbb{1}_A(x) - \mathbb{1}_B(x))(P_1(x) - TP_2(x)) \geq 0 \\ & \sum_{x \in X} (\mathbb{1}_A(x)P_1(x) - T\mathbb{1}_A(x)P_2(x) - \mathbb{1}_B(x)P_1(x) + T\mathbb{1}_B(x)P_2(x)) \geq 0 \\ & \sum_{x \in A} P_1(x) + \sum_{x \in B} P_1(x) - T \sum_{x \in A} P_2(x) + T \sum_{x \in B} P_2(x) \geq 0 \\ & P_1(A) - P_1(B) - TP_2(A) + TP_2(B) \geq 0 \\ & P_1(A) - P_1(B) \geq T(P_2(A) - P_2(B)) \\ & (1 - \alpha^*) - (1 - \alpha) \geq T(\beta^* - \beta) \\ & \alpha - \alpha^* \geq T(\beta^* - \beta) \end{aligned}$$

Therefore, if  $\alpha < \alpha^* \Rightarrow \beta > \beta^*$ .

## 4 Comparing Neyman-Pearson and Bayes' tests

### 4.1 Bayes' test

The Bayes test uses Bayes rule to derive an estimator based on the prior likelihood of a hypothesis. Say we have two probability distributions  $P_1, P_2$ , and  $H_1$  is the hypothesis that a sample came from  $P_1$ .

$$\begin{aligned} \max_{i \in \{1,2\}} P(H_i | X = x) &= \max_{i \in \{1,2\}} \frac{P(H_i, X = x)}{P(X = x)} \\ &= \max_{i \in \{1,2\}} P(X = x | H_i) \frac{P(H_i)}{P(X = x)} \\ &= \max_{i \in \{1,2\}} P(X = x | H_i) P(H_i) \end{aligned}$$

If  $P(x | H_1)P(H_1) \geq P(x | H_2)P(H_2)$ , then our estimator  $g(x) = 1$ , which means it chooses  $P_1$ . Equivalently, if  $P_1(x)P(H_1) > P_2(x)P(H_2)$ . We can describe the Bayes decision region like so:

$$A = \{x \mid \frac{P_1(x)}{P_2(x)} \geq \frac{P(H_2)}{P(H_1)}\}$$

This shows us that if we want to use the Bayes test, we need to know the prior probabilities, which may not be available. Neyman-Pearson test is more flexible because it doesn't require priors and because you can choose a threshold  $T$  for Neyman-Pearson. Thus, more people tend to prefer it.

## 5 Neyman-Pearson with multiple samples

Say we have multiple samples,  $x_1, \dots, x_n$ . We can reformat the Neyman-Pearson test like this:

$$A(T) = \{(x_1, \dots, x_n) \in \mathcal{X}^n \mid \frac{P_1(x_1, \dots, x_n)}{P_2(x_1, \dots, x_n)} > T\}$$

If all samples are independent, then:

$$= \{(x_1, \dots, x_n) \in \mathcal{X}^n \mid \prod_{i=1}^n \frac{P_1(x_i)}{P_2(x_i)} \geq T\}$$

If we take the log, the product becomes a sum, and the test becomes equivalent to the log likelihood ratio:

$$A(T) = \{(x_1, \dots, x_n) \in \mathcal{X}^n \mid \sum_{i=1}^n \log \frac{P_1(x_i)}{P_2(x_i)} \geq \log T\}$$

If we define a function  $\lambda(x) = \log \frac{P_1(x)}{P_2(x)}$ , we can rewrite the log likelihood ratio:

$$\begin{aligned} & \sum_{i=1}^n \lambda(x_i) \\ & \frac{1}{n} \sum_{i=1}^n \lambda(x_i) \geq \frac{\log T}{n} \end{aligned}$$