
COMPSCI 650 Applied Information Theory Feb 23, 2016

Lecture 9
Instructor: Arya Mazumdar Scribe: Names Redacted

1 Review and formulas

• Le Cam’s identity: P ∗e = 1
2 −

1
2 ||P1 − P2||TV

• Pinsker’s inequality: 2
ln 2 ||P1 − P2||TV

2 ≤ D(P1||P2)

2 Proving Pinsker’s inequality

Take two Bernoulli distributions P1, P2, where P1(X = 1) = p, P2(X = 1) = q. With some elementary
substitution, we can manipulate the right side of the equation:

D(P1||P2) = D(p||q)

=p log
p

q
+ (1− p) log

1− p
1− q

We can also change the left side:

2

ln 2
||P1 − P2||TV

2
=

1

2 ln 2
||P1 − P2||`1

2

=
1

2 ln 2
(2|p− q|)2

=
2(p− q)2

ln 2

Our new goal is to show that the new right side minus the left side is ≥ 0, or: f(p, q) = p ln p
q + (1−

p) ln 1−p
1−q − 2(p− q)2 ≥ 0, as this is equivalent to proving Pinsker’s inequality.

If we differentiate f with respect to q, we get:

df

dq
= −p

q
+ (1− p) 1

1− q
+ 4(p− q)

=
−p(1− q) + q(1− p)

q(1− q)
+ 4(p− q)

=
−p+ q

q(1− q)
+ 4(p− q)

= (p− q)(4− 1

q(1− q)
)

Is this differentiation increasing or decreasing? Since 0 ≤ q ≤ 1, the maximum value q(1 − q) can
take is 1

4 , which occurs when q = 1
2 . So, the minimum value of 1

q(1−q) is 4, so 4− 1
q(1−q) will always be

negative. Thus, whether this differentiation is increasing or decreasing depends on (p− q).
If p ≥ q then df

dq ≤ 0. If p ≤ q then df
dq ≥ 0. Thus, f(p, q) looks like an upside down parabola which

is lowest when p = q and is always ≥ 0. Therefore, since f(p, q) ≥ 0, 2
ln 2 ||P1 − P2||TV

2 ≤ D(P1||P2),
which proves Pinsker’s inequality for Bernoulli random variables.
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2.1 Implications

We can use Pinsker’s inequality to show this:

D(p+ ε||p) ≥ 1

2 ln 2
(2ε)2 =

2ε2

ln 2

This is the Chernoff bound.

3 Neyman-Pearson test

3.1 Binary hypothesis testing

Any binary hypothesis testing divides sample space into 2 parts, creating estimator g(X) PUT PIC
HERE (Instructor’s comment: Poor work by scribe)
What is the probability of error for g(X)?

H1 chosen, if X ∈ A; error = P1(Ac)
H2 chosen, if X ∈ Ac; error = P2(A)

Fix one P (Ac) and then minimize the other

3.2 Neyman-Pearson test

Define: A(T ) = {x ∈ X : P1(x)
P2(x) ≥ T}, where A(T ) is the decision region, and T is threshold

3.3 Proving Neyman-Pearson’s claim

Proof: Neyman-Pearson optimality

P1(Ac)
∆
= α, where α is probability of error

P2(A)
∆
= β, where β is probability of error

In the Neyman-Pearson test, as −→ A(T ),

P1(A(T ))
∆
= α∗

P2(A(T ))
∆
= β∗

Suppose there is another test with decision region B, Bc

The claim of the Neyman-Pearson lemma is that if
α < α∗, then β > β∗.

If you can design any test that has better probability of error for the first term, the test will have a
worse probability of error for the second term.

another picture here (Instructor’s comment: Poor work)
∀x ∈ X, we have

1A(x) =

{
1, if x ∈ A
0, otherwise

1B(x) =

{
1, if x ∈ B
0, otherwise
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Show that (1A(x)− 1B(x))(P1(x)− TP2(x)) ≥ 0∀x ∈ X
Case 1: x ∈ A,

(1A(x)− 1B(x))(P1(x)− TP2(x))

= (1− 1B(x))(positive value) ≥ 0

1B(x) is 1 or 0.

Case 2: x ∈ Ac

(0− 1B(x))(negative value) ≥ 0

1B(x) is a negative value or 0.

Therefore, (1A(x)− 1B(x))(P1(x)− TP2(x)) ≥ 0∀x ∈ X

(1A(x)− 1B(x))(P1(x)− TP2(x)) ≥ 0∑
x∈X

(1A(x)P1(x)− T1A(x)P2(x)− 1B(x)P1(x) + T1B(x)P2(x)) ≥ 0∑
x∈A

P1(x) +
∑
x∈B

P1(x)− T
∑
x∈A

P2(x) + T
∑
x∈B

P2(x) ≥ 0

P1(A)− P1(B)− TP2(A) + TP2(B) ≥ 0

P1(A)− P1(B) ≥ T (P2(A)− P2(B))

(1− α∗)− (1− α) ≥ T (β∗ − β)

α− α∗ ≥ T (β∗ − β)

Therefore, if α < α∗ ⇒ β > β∗.

4 Comparing Neyman-Pearson and Bayes’ tests

4.1 Bayes’ test

The Bayes test uses Bayes rule to derive an estimator based on the prior likelihood of a hypothesis. Say
we have two probability distributions P1, P2, and H1 is the hypothesis that a sample came from P1.

max
i∈{1,2}

P (Hi|X = x) = max
i∈{1,2}

P (Hi, X = x)

P (X = x)

= max
i∈{1,2}

P (X = x|Hi)
P (Hi)

P (X = x)

= max
i∈{1,2}

P (X = x|Hi)P (Hi)

If P (x|H1)P (H1) ≥ P (x|H2)P (H2), then our estimator g(x) = 1, which means it chooses P1. Equiv-
alently, if P1(x)P (H1) > P2(x)P (H2). We can describe the Bayes decision region like so:

A = {x|P1(x)

P2(x)
≥ P (H2)

P (H1)
}

This shows us that if we want to use the Bayes test, we need to know the prior probabilities, which
may not be available. Neyman-Pearson test is more flexible because it doesn’t require priors and because
you can choose a threshold T for Neyman-Pearson. Thus, more people tend to prefer it.
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5 Neyman-Pearson with multiple samples

Say we have multiple samples, x1, ..., xn. We can reformat the Neyman-Pearson test like this:

A(T ) = {(x1, ..., xn) ∈ Xn|P1(x1, ..., xn)

P2(x1, ..., xn)
> T}

If all samples are independent, then:

= {(x1, ..., xn) ∈ Xn|
n∏

i=1

P1(xi)

P2(xi)
≥ T}

If we take the log, the product becomes a sum, and the test becomes equivalent to the log likelihood
ratio:

A(T ) = {(x1, ..., xn) ∈ Xn|
n∑

i=1

log
P1(xi)

P2(xi)
≥ log T}

If we define a function λ(x) = log P1(x)
P2(x) , we can rewrite the log likelihood ratio:

n∑
i=1

λ(xi)

1

n

n∑
i=1

λ(xi) ≥
log T

n

.
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