COMPSCI 650 Applied Information Theory Feb 2, 2016

Lecture 5

Instructor: Arya Mazumdar Seribe: _

1 Huffman Coding

1.1 Last Class’s Example

Recall the example of Huffman Coding on a binary string from last class:

X=1{01}, p0)=>, p(1)=

1
4’ 4

H(X) =~ 0.81 per bit, so we know that the file is compressible (because H(X) < 1). In order to compress,

we have to group the characters together in groups of two (2-character superstrings), and calculate a
new set of probabilities:

30 =2 pa)

9
00) = — 01
p(00) p(O) o

16°

Note that this is still a valid probability distribution, as p(00) + p(01) + p(10) + p(11) = 1. Figure 1
shows how the code is generated, using the Huffman code procedure discussed in Lecture 4.

Code X p(x) a
0 00 9/16 —— — ‘ 1
7/16 —
10
—4/16 L
11 01 3/16 | o
100 10 3/16 100
101 11 1/16
101

Figure 1: Completed Huffman tree for the two-character code.

The code generated above has average length

9 3 3 1
L(C)=1 — 2 — : — : —) ~ 1.68.
() ><(16)+ ><(16)+3><(16)+3><(16) 5

This seems high, especially since H(X) = 0.81. Remember that entropy was calculated per bit and each
codeword in C' corresponds to two bits in the original bit string. If we calculate the per-bit code length,
we get L(C') = 1% =0.84

Ezample: Encode the following bit string using the above code: 001010000010100000.

First, notice that there are a lot of Os in the string, which is expected given that p(0) = 1‘ The first
step is to group the characters together in groups of 2, then replace each two-character string by the
appropriate codeword:

00 —-10—-10—-00 - 00— 10 — 10 — 00 — 00 group the string into groups of two)
0—-100—-100—-0-0-100—-100—-0-0 (match each two-bit section to its corresponding code)
01001000010010000 (final code after re-joining the groups)

1.2 Huffman Code for k-length Superstrings

ooking at the previous example, it is possible to group sets of characters into groups that are larger
Looking at t} le, it ble to g ts of charact to g that are larg
than just two characters. For example, if we grouped them into groups of three, we would have the
following probabilities:

p(000) = 25 p(001) = =
p(010) = (;)—4 p(011) = 63—4
p(100) = 2= p(10) = 2,
p(110) = 6% p(111) = 6%1

Note again that > p(x) = 1, so this is a valid probability distribution. If we were to build a new Huffman
Code for this set of 3-character groupings, we would find that I:(C) = 0.82. As you increase the size of
your character groupings, L(C') gets closer to H(x), but at the cost of an exponentially increasing graph
required to generate the code. In addition, there is a cost associated with sorting the code probabilities
as you build the graph, which increases with the size of the alphabet.

1.3 Comparing Huffman Code and Shannon Code

Recall that using a Shannon Code reduces the average codeword length to within 1 bit of entropy,
as

H(z) < L(Cs) < H(x) + 1.

If we use Huffman Coding with character groups of length k£, we can reduce that amount further,
since

L(CH) S H(fl?lflfgflf;;....’lfk).

If we assume that each character is independent, that is, H(z,y) = H(x) + H(y), then the previous

equation implies that L(Cy) < k-H(x)+1, s0 as L(Cy) = k- L(Cyr), we have L(Cy) < H(z)+ -

As k grows, the average character length goes to H(x), as shown in Figure 2.

— H(X)
4|, -- Lc)
U
|
2.1
53 \
‘6 \
] N
- T
R e
=
1
0 I
0 20 40 60 80 100

Figure 2: Average code length per bit as number of characters increases.

2 Shannon-Fano-Elias Coding

In general, the philosophy behind data compression is that we have some data that is nonuniform, and
we want to encode it in a way that makes it more uniform. This is because the amount of information
that can be represented by a single bit is maximized when the distribution is uniform, as we have seen
previously.

The main idea behind Shannon-Fano-Elias coding will be to make the encoded data close to uniform by
using the Cumulative Distribution Function.

Define the Cumulative Distribution Function (CDF), denoted Fx(x) for a random variable X, by
Fx(xz) = P(X < z). When the variable X is clear from context, we omit it and write simply F(x).

If we denote by Y = Fx(z) the encoding of F, then notice that

Fy(y) = P(Y <y) = P(Fx(z) <y) = P(X < Fx'(y)) = Fx(Fx'(y)) =

where the third equality follows from the fact that F' is nondecreasing.

Ezample: Let X = {1,2,3,4,5}, where p(1) = p(4) = 0.15, p(2) = p(5) = 0.25, and p(3) = 0.20. To do
Huffman coding we would need to sort the alphabet by probability, but for Shannon-Fano-Elias coding
this is not necessary. Just compute

F(1) = p(1)=0.15,

F(2) = p(1)+p(2) =04,

F@3) = p(1)+p(2) +p3)=0.6,

F(4) = p(1)+p(2) + p(3) + p(4) = 0.75,
F(5) = p(1)+p(2) +p3)+p(4)+p(5) = 1.

We want to use these values as the encoding, but need to convert them to binary first. Unfortunately,
they probably will not have terminating decimal representations in binary. To fix this, we will truncate
their binary representations after a certain (carefully chosen) point.

Note that if we treat a codeword f(z) = 10101 as a binary number between 0 and 1, so that instead
f(x) = 0.10101, then any other codeword with f(x) as a prefix is at most 27!(*) greater than f(x). This
means a prefix free code must have no codewords besides f(x) in the interval [f(z), f(z) +21)).

Ezample: Let X = {1,2,3,4}, and f be an encoding such that f(1) = 00, f(2) = 100, f(3) = 101, and
f(4) = 011. If we treat these codewords as the decimal portions of binary numbers between 0 and 1,
they correspond to intervals:

0 — [(ﬁr),
100 — [gé),
101 —s [é,?
o — [55).

Any other codeword in the same interval as one of the above would have to share a prefix with that
codeword. As the above encoding is prefix free, all the intervals are disjoint. Since each interval has
size 27'%) this provides us with another proof of Kraft’s inequality: for any prefix free code all such
intervals must be disjoint, in which case Z 271 <1,

zeX

Now we can describe the entire Shannon-Fano-Elias coding process:
1. Compute the CDF F(z) for each symbol of the alphabet X.
2. Compute F(z) = F(z —1) + ip(x), where F(0) = 0.
3. Truncate F(zx) to [F(I)Jl(w), where the final length of the codeword is I(z) = [log Iﬁ] + 1L

The intuition here is that F is defined so that the code will remain prefix free even after truncation, and

we want [(x) close to log ﬁ so that the length of the codewords is nearly optimal.

The average length of a codeword in this code is

ey = 3 pa)i)

reX
1
= :EEZXP(I)(UOg 1@] +1)
L
< 3 velon 52
= H(x)+ 2,

so this code is actually worse than the Shannon code. However, it avoids the sorting necessary for
Huffman coding, and we will see shortly that it can be used to obtain optimal codes that are easier to
compute than Huffman codes.

We should also verify that these codes are actually prefix free. The intervals given by the CDF F(z) are
disjoint and have size p(x), so we just need to verify that the intervals corresponding to | F(x)];(,) lie

within the intervals of F(x).

The most that truncation can shift the value of F(x) is:
F(z) = |F@))imy = 27'®

g—([og 51+1)
%.2—1"’5ﬁ
p(z)

2

Il

IA

Il

Thus the start of the interval corresponding to F(z) is shifted down by at most p%l but recall F(z) =
Flx —-1)+ p(TL) so the interval still starts after the start of the interval of F(x —1). Also, the interval
of F(x) has size 1)(21')= so regardless of how much it is truncated it will be contained in the interval
[F(z — 1), F(x)). This shows that the code is prefix free.

3 Arithmetic Coding

Let’s now extend the idea of Shannon-Fano-Elias coding to Arithmetic Coding. First, we'll do an example
where we encode a longer sequence of symbols, 101101100111, using a Shannon-Fano-Elias code. We
want to know the CDF of the entire sequence:

F(101101100111) = P(z1xoxs...x12 < 101101100111).

We can treat the above as a lexicographical comparison, and write Fx(101101100111) as

F(101101100111) = P(x; < 1)+ P(x; = 1,xp < 0) + P(x1 = 1,x2 = 0,x3 < 1) + - --
+ P(X1X2X3 s X1 = 101101100111)

More generally,

F(z)= Pxi<mm)+Px1=z1,x0 <x2) +P(x1 =x1,X0 = T0,Xg < x3) + -+~

+ P(x1 = x1,X2 = Z2,...,Xx < Tg),

k
so F(xizy---xp) = Zp(a:l cexy10) - @y
t=1

In the formula above, notice that we are concatenating a 0 to the end of the sequence within the
summation. This has the same effect as the lexicographic ordering above. If z; = 0, then we do not
add the term to the summation, because p(x; = x1,...,xy < x;) must be 0. But if ; = 1, then
p(x1 =x1,...,x, < ;) may be nonzero, and therefore we include it in the summation.

Arithmetic coding can consider the entire file in practice, because computing the equation above is very
fast. Once you calculate F(z), you can then use Shannon-Fano-Elias coding to encode.

Let’s look again at the size of this code. Recall that the average code length for a sequence in Shannon-
Fano-Elias coding of length k is L(C) < H(xy2zg - - -) +2. If we assume the characters are independent,
then that is the same as saying L(C) < k x H(x) + 2, and if we compute the average length per bit, we
get

L(C) < H(X) +

ol

So as k — oo, L(C) — H(X).

