
COMPSCI 650 Applied Information Theory April 19, 2016

Lecture 22
Instructor: Arya Mazumdar Scribe: Names Redacted

1 Compressed Sensing

As in the last class, we are discussing compressed sensing, sometimes also known as compressive sampling.
We assume the existence of a “signal” vector x = (x1 x2 · · · xN ), and our goal is to design an m ×N
matrix Φ where m is much smaller than N , so that we can sample x by computing Φx = b, where b has
length m. We also want to design Φ in such a way that we can easily reconstruct x from b.

Without some assumptions on x, this is not possible; there are more vectors of length N than vectors
of length m, so we cannot hope to recover every vector in RN from a vector in Rm. Thus we assume
that x is “compressible” in some way. Our first order of business will be to define what this means more
rigorously.

1.1 Defining Compressibility

The issue of how compressible a sequence is has been well-studied, and is known as the Kolmogorov
complexity (or Minimum Description Length) of the sequence. Informally, the Kolmogorov complexity
of the sequence is the length of the shortest program which produces the sequence as output. Every
sequence of length n has at most O(n) Kolmogorov complexity, since a program can always just store the
uncompressed sequence and output it, and we can think of sequences with linear Kolmogorov complexity
as being nearly random. On the other hand, a sequence like “00000000000000000000000” is highly
repetitive, and can be compressed significantly (with, say, a loop).

While this definition of compressibility is theoretically nice, it is hard to work with in practice. It can
be very difficult to tell whether a particular sequence has high or low Kolmogorov complexity. As such,
we will use a more restrictive definition of compressibility.

One method of compression that we have examined previously is difference coding. Given a vector
x = (x1 x2 · · · xn), we encode to the vector y = (x1 x2 − x1 x3 − x2 · · · xn − xn−1), where each entry
yi is the difference of xi and xi−1. The hope is that adjacent coordinates of x will have similar values,
in which case the values of y will tend to be small, or even zero. We can represent this encoding process
as a linear transformation: 

1 0 0 · · · 0 0
−1 1 0 · · · 0 0
0 −1 1 · · · 0 0

0 0
. . .

. . . 0 0
...

...
...

. . .
. . .

...
0 0 0 · · · −1 1


x = y.

This process is easily decodable by setting x1 = y1 and then performing an addition at each step. We

1



can also write this decoding process as the inverse linear transformation:

1 0 0 0 · · · 0
1 1 0 0 · · · 0
1 1 1 0 · · · 0

1 1 1
. . . · · · 0

...
...

...
...

. . .
...

1 1 1 1 · · · 1


y = x.

A method more commonly used in practice than difference coding is to use a Discrete Fourier Transform
(DFT). The DFT is an invertible linear transformation, and the matrix has complex entries of a specific
form. It turns out to be the case that the DFT is good for compressing many real-world data sources, in
that often many coordinates of the compressed vector are close to zero. The matrix of the DFT has the
nice property that its columns form an orthonormal basis for Cn. It also has another desirable property
that will be important later.

We will take our definition of compressibility for a vector x to be that when some specific known
orthogonal transformation (meaning the columns form an orthonormal basis) is applied to x, the resulting
vector has many coordinates that are 0. Specifically, we say that for the known transformation F , Fx
is k-sparse, meaning at most k entries of Fx are nonzero. This will lead to a compression rate of k

n , if
we can decode correctly.

1.2 Spark Condition

Now that we have established a definition of compressibility, we return to the task of constructing a
good matrix Φ for compressed sensing. Note that the linear transformation F , while it transforms x to
a k-sparse vector, does not reduce the length of x as we desired. We can take our matrix Φ = ΨF for
some Ψ, in which case Φx = ΨFx = Ψy, where by our definition of compressibility, y is k-sparse. Thus
we can assume the signal vector x is k-sparse without any loss of generality.

As a sidebar, this situation is very close to the situation of designing the parity check matrix of a linear
code. Recall that in that case, we receive a vector y = c + e, where c is a codeword and e is the
error vector. Then we computed Hy = H(c + e) = Hc + He = He, since by definition of the parity
check matrix Hc = 0. When there is only one error, then He is the column of the parity check matrix
corresponding to the bit that was flipped from the codeword. In general, we assume that e is a sparse
vector, otherwise decoding is not possible. Then for both compressed sensing and linear decoding, the
goal is to design a matrix for recovering some sparse vector. The main difference is that for linear codes
the vectors are over finite fields, so there are only a finite number of such vectors, whereas for compressed
sensing the vectors are over Rn. In general similar techniques can be used in the two situations, such
as the bipartite graph decoding via belief propagation discussed in previous classes. However, the use of
real numbers tends to make things more difficult.

In order to recover x from Φx, we need it to be the case that for every other k-sparse vector x′, Φx 6= Φx′.
If this condition holds (though note that it may be difficult to show, as there are infinitely many vectors
x′), then x will be recoverable, although this does not take into account the potential complexity of the
decoding process. Equivalently, we want Φ(x − x′) 6= 0 for all pairs x,x′ of k-sparse vectors. x − x′ is
at most 2k-sparse, so if we can guarantee that Φz 6= 0 for every 2k-sparse vector z we can be sure that
Φx 6= Φx′ for any pair. If a 2k-sparse vector z has Φz = 0, then this corresponds to a linear dependence
between at most 2k columns of Φ. As such this condition is equivalent to requiring that every set of 2k
columns of Φ is linearly independent. This condition is sometimes referred to as the spark condition, as
the spark of Φ is the minimum number of linearly dependent columns of Φ.

2



1.3 Vandermonde Matrices

With the above information, we must next determine what the minimum size of m can be. Let’s first
consider the following m × N matrix, consisting of N values αi ∈ R, where each αi is unique. This is
known as a Vandermonde matrix.


1 1 · · · 1
α1 α2 · · · αN

α2
1 α2

2 · · · α2
N

...
... · · ·

...
αm−1
1 αm−1

2 · · · αm−1
N


A selection of any m columns from this matrix forms a square m × m submatrix β of the following
form:


1 1 · · · 1
β1 β2 · · · βm
β2
1 β2

2 · · · β2
m

...
... · · ·

...
βm−1
1 βm−1

2 · · · βm−1
m


We want to show that β is non-singular, so has no linearly dependent columns.

Recall that det(β) =
∏

1≤i<j≤m

(βi − βj). Because each β value is a unique real number, this product will

never be equal to zero. So, with m = 2k (to satisfy the spark condition), this matrix will work. However,
this is an unstable model, as it requires vectors that are exactly k-sparse, whereas when working with
real world data this will typically not be the case. We are instead interested in vectors which have many
entries that are nearly 0.

1.4 Approximate k-Sparsity

In order to avoid this instability, we can hope to approximately recover x with a degree of error dependent
on how close x is to being k-sparse. Let xk be the vector that contains the k largest coefficients in x.
We want to approximate Φx = b with an estimator x̂ such that (for some constant c):

‖x̂− x‖2 ≤ c‖x− xk‖2

Then our estimation error would be upper-bounded by the difference between x and xk. From the above,
if x is k-sparse, then the right-hand side of the inequality is 0, and therefore our estimator x̂ is simply
x. It turns out that this inequality will hold if Φ satisfies the Restricted Isometry Property, which states
that for any 2k-sparse signal x:

(1− δ)‖x‖22 ≤ ‖Φx‖22 ≤ (1 + δ)‖x‖22

Where δ =
√

2−1. This states that Φ must approximately preserve the `2 norm in order for the inequality
to hold. It is known that a random Gaussian matrix will work for Φ, where m = O(k log N

k ) ≈ O(k logN),
but the question of designing good explicit matrices is still largely open.

3



2 Clustering

We now turn our attention to applications of information theory in machine learning, specifically with
regards to clustering. Consider the following Gaussian mixture model:

f1(x) =
1√

2πσ2
e

−(x−µ1)2

2σ2 ,

f2(x) =
1√

2πσ2
e

−(x−µ2)2

2σ2 .

Given N i.i.d. samples, we must determine which distribution the samples came from. In other words,
given x1, x2, · · · , xN , we want to label each xi either 1 or 2 to indicate from which distribution it came.
We assume the samples come from f1 with probability p1, and f2 with probability p2.

First we consider the overall model f(x):

f(x) =

2∑
i=1

pi
1√

2πσ2
e

−(x−µi)
2

2σ2 .

For a given xi, we can calculate the probability that the label is 1 using Bayes’ Rule:

p(li = 1|xi) =
f(xi|li = 1)p(li = 1)

f(x)
.

To be continued in the next lecture.

4


