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1 Recap

In bipartite graph-based linear codes, the bipartite graph (Tanner graph) needs to be sparse to be solved
easily. Such codes are also known as “Low Deunsity Parity Check Codes” (LDPC codes), which are now
part of the CDMA standard. If the graph has no cycles, then we can assume local independence. If
there are no short cycles in the graph, then local independence is approximate.

Suppose we have a regular tree graph with n nodes, each with degree d. Then the number of nodes
at a given level [ is d'. Since d' <n = 1< %’iﬁ. This implies that in a non-tree graph, there will always
exist a cycle of length O(log n).

Now we want to show that there exist bipartite graph codes that can correct O(n) errors (or an
errors, v € (0,1)). Below is a timeline of related methods being proposed:

e Belief propagation to find marginals, 1986, Pearl
e In the context of codes, BP appeared in 1998, MacKay & Neal
e Expander graph, 1971, Pinsker

e Expander codes, 1996, Sipser & Spielman

2 Expander Graph

Consider the graph shown in Figure 1. There are n vertices on the left and n — k vertices on the right.
The vertices on the left, V7, have degree d,, each, and the vertices on the right, V5, have degree d. each.
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Figure 1: Bipartite graph.

Definition: A bipartite graph (e.g. as in Figure 1) is an (a, 7)-expander graph if

N(S) > ydy|S| V5 : |S

< an



Note that the maximum number of vertices that the subset S can touch is d,S, while the minimum

number of vertices that S can touch is %L|S |. Hence, we have the following:

4.15] > N($) > 15|

Theorem: (Sipser & Spielman) For a bipartite (a, g)—oxpandor with n vertices on the left (with
degrees d,), n,;—lt vertices on the right (with degrees d.), there exists a simple, iterative, linear-time

1
errors. Note that the number of errors that can be corrected is linear in the

decoding that corrects %

size of the codeword.

Proof: Suppose we transmit a codeword and some of the bits get flipped. Hence, some of the
parity check constraints will be unsatisfied. Let S = set of bits that are flipped. We want to find
a vertex v € V7 which has more unsatisfied checks than satisfied checks (we can always find such a
vertex through iterative decoding). Once we find that vertex v, we simply flip it, causing the number
of unsatisfied constraints to reduce. See Table 1 for the notation that will be used in the rest of the proof.

Name  Description

r Number of corrupted vertices on the left
t Number of unsatisfied checks in the neighborhood
s Number of satisfied checks in the neighborhood

S € Vi The set of corrupted vertices

Table 1: Notation
Note that an (r,t)—tuple can be viewed as the ‘state’ of the decoding algorithm at each iteration.
Suppose that r < an. Then
3 3
IN(S)| > JdulS] = dor
3
IN(S) =t+s> Zdvr (1)

Note that because of how parity check constraints work, s must contribute at least two edges per vertex
in s, while each vertex in ¢ can contribute just one edge. Hence, we also have the following constraint:

2s+t < d,r (2)

“ombining (1) and (2), we have:

(3)

(4)

Therefore, there must exist a vertex v that has more unsatisfied checks than satisfied checks.



At the 0Oth iteration of the algorithm, we have r(©) < %+ We need to show that r() < an (this is

the condition under which ¢ — 0). Suppose r®) = an. Then t®) > ‘,lzi(.m, by Eq. 3. But

d,
A < d,,,r(o) < ?an
5 d,
=t > 5 an > (0

This is a contradiction.

3 Network Coding
In this section, we show two examples of network coding:

Ezample 1: the Butterfly Network. The network is shown in Figure 2. Assume the following for this
network:

e it is corruption free
e there is no delay
e cach edge has unit capacity

e the network sends one packet every second
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Figure 2: Butterfly Network

As shown in the figure, there are two sources (S and S3) and two receivers (R and Ry). The sources
would like to send the messages 1 and x5 to both of the receivers. But in order to send x; to Ry and
Ty to Ry, the packets must form a queue at node v. Instead, we can achieve a better utilization of the
network through network coding using the following steps:

1. Sy sends x7 to Ro

2. S5 sends z9 to Ry



3. S1, Sy send xq, x5 to v, which XORs the two messages and broadcasts them to Ry and Ry. Each
receiver can then recover the message they do not yet have.

Ezample 2: Consider the network shown in Figure 3. Two nodes are connected to a broadcasting node,
B. The first node (on the left in the figure) has a message 1, which it would like to send to the second
node (on the right in the figure). The second node has a message xo, which it would like to send to
the first node. One method of exchanging the information between the two nodes would involve B first
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Figure 3: Network for exchanging files.
forwarding x; to the node on the right, and then forwarding zs to the node on the left. But a more
efficient method would utilize network coding: the left and right node can forward x; and x5 to B,

respectively, and B can broadcast x; & xs to both nodes. This method achieves the information swap
in less time than the first method, and it also has an inherent property of security.

4 Max flow-Min cut

Jonsider the scenario depicted in Figure 4, showing a set S of sources connecting to a single receiver R
through a network G.

Definition: A cut of a graph G is defined to be the set of edges that if removed from G, would
disconnect S and R.

Definition: A min cut is a cut of G that has minimum size of all possible cuts. A min cut can
be thought of us (a)the bottleneck in the network.
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Figure 4: Example of a unicast network.

Suppose that each edge has unit capacity. Let |min cut| = h. This means that we cannot send more
than h packets simultaneously through the network. In addition, if the minimum cut has size h, then



there exist h edge-disjoint paths from the sources to the destination (if not, then one could find a cut
smaller than h, which would be a contradiction).

Ezample: Multicast. Consider the multicast network shown in Figure 5.
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Figure 5: Example of a multicast network.

Suppose MinCut({Sy, ..., Sn},Ri) = h, Vi€ {1, M}. Then within one time slot, all h sources can

send all h packets (1 per source) to all M destinations using network coding.



