COMPSCI 650 Applied Information Theory

Jan 21, 2016

Lecture 2

Instructor: Arya Mazumdar Scribe:

1 Entropy

Definition: Entropy is a measure of uncertainty of a random variable. The entropy of a discrete random variable X with alphabet \mathcal{X} is

$$H(X) = -\sum_{x \in \mathcal{X}} p(x) \log p(x)$$

When the base of the logarithm is 2, entropy is measured in bits.

Example: One can model the temperature in a city (e.g. Amherst) as a random variable, X. Then the entropy of X measures the uncertainty in Amherst temperature. Let Y be a random variable representing the temperature in Northampton. We know that X and Y are not independent (they are usually quite similar). Hence, when Y is given, some uncertainty about X goes away.

Example: Consider a fair die with $pmf \ p(1) = p(2) = \dots = p(6) = 1/6$. Its entropy is

$$H(x) = -6 \cdot \frac{1}{6} \log \frac{1}{6} = \log 6$$

Maximum entropy is achieved when all outcomes of a random variable occur with equal probability. (Note: you can prove this by assigning a variable p_i to the probability of outcome i. Then, partially-differentiate the entropy function with respect to each p_i . Set the derivatives to zero and solve for the p_i 's. You will see that they are equal.)

In general, for M equally-probable outcomes, the entropy is $H(X) = \log M$.

1.1 Joint Entropy

Definition: For two random variables X and Y, $x \in \mathcal{X}, y \in \mathcal{Y}$, joint entropy is defined as

$$H(X,Y) = -\sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} p(x,y) \log p(x,y)$$

where p(x, y) = Pr[X = x, Y = y] is the joint pmf of X and Y.

1.2 Conditional Entropy

Definition: The conditional entropy of a random variable Y given X = x is

$$H(Y|X=x) = -\sum_{y \in \mathcal{Y}} p(y|x) \log p(y|x)$$

When a particular value of x is not given, we must average over all possible values of X:

$$\begin{split} H(Y|X) &= -\sum_{x \in \mathcal{X}} p(x) \left(\sum_{y \in \mathcal{Y}} p(y|x) \log p(y|x) \right) \\ &= -\sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} p(x,y) \log p(y|x) \end{split}$$

The conditional entropy of X given Y is

$$H(X|Y) = -\sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} p(x, y) \log p(x|y)$$

In general, $H(X|Y) \neq H(Y|X)$.

1.3 Chain Rule for Entropy

The *Chain Rule for Entropy* states that the entropy of two random variables is the entropy of one plus the conditional entropy of the other:

$$H(X,Y) = H(X) + H(Y|X) \tag{1}$$

Proof:

$$\begin{split} H(X,Y) &= -\sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} p(x,y) \log \Big(p(x) p(y|x) \Big) \\ &= -\sum_{x \in \mathcal{X}} \left(\sum_{y \in \mathcal{Y}} p(x,y) \right) \log p(x) - \sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} p(x,y) \log p(y|x) \\ &= -\sum_{x \in \mathcal{X}} p(x) \log p(x) - \sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} p(x,y) \log p(y|x) \\ &= H(X) + H(Y|X) \end{split}$$

Similarly, it can also be shown that

$$H(X,Y) = H(Y) + H(X|Y) \tag{2}$$

From (1) and (2), we see that

$$H(X) - H(X|Y) = H(Y) - H(Y|X) = I(X;Y)$$

I(X;Y) is known as **Mutual Information**, which can be thought of as a measure of reduction in uncertainty.

Example: Consider the random variables $X \in \{0, 1\}, Y \in \{0, 1\}$, representing two coin tosses. Their joint distribution is shown in Table 1.

$Y \setminus X$	0	1
0	1/2	1/4
1	1/8	1/8

Table 1: Joint distribution of two coin tosses.

The joint entropy of X and Y is

$$H(X,Y) = -\frac{1}{2}\log\frac{1}{2} - \frac{1}{4}\log\frac{1}{4} - \frac{2}{8}\log\frac{1}{8} = 1.75$$

Note that if all probabilities were equal, we would have

$$H(X,Y) = \log 4 = 2$$
 bits, which is the maximum entropy.

The individual entropies are

$$H(X) = -\frac{5}{8}\log\frac{5}{8} - \frac{3}{8}\log\frac{3}{8} \approx 0.9544$$

$$H(Y) = -\frac{3}{4}\log\frac{3}{4} - \frac{1}{4}\log\frac{1}{4} \approx 0.8113$$

Question: What is the conditional entropy of X given Y?

Answer: One possible way of solving this problem is to compute the conditional distribution of X given Y, for all possible values of X and Y. However, since we have already determined the joint and individual entropies, we can instead use the Chain Rule for Entropy: H(X,Y) = H(Y) + H(X|Y).

$$H(X|Y) = 1.75 - 0.8113 \approx 0.9387$$

2 Relative Entropy

Let X be a random variable with alphabet $\mathcal{X} = \{0, 1\}$. Consider the following two distributions:

$$p(0) = \frac{1}{4}$$
 $q(0) = \frac{1}{2}$ $q(1) = \frac{3}{4}$ $q(1) = \frac{1}{2}$

Let r be another probability distribution, defined below:

$$r(0) = \frac{1}{8}$$
$$r(1) = \frac{7}{8}$$

Question: Is r closer to p or q?

Answer: r is closer to p, because they are both biased toward the outcome X = 1.

How do we measure this similarity? One way is to use **relative entropy**.

Definition: Relative entropy, also known as **Divergence** or **Kullback-Leibler Distance**, is defined by

$$D(p||q) = \sum_{x \in \mathcal{X}} p(x) \log \frac{p(x)}{q(x)}$$

Property 1: Relative entropy is *not symmetric*. In other words, it is not necessarily true that D(p||q) = D(q||p).

Property 2: Relative entropy is always non-negative: $D(p||q) \ge 0$. Equality is achieved only if p(x) = q(x), $\forall x \in \mathcal{X}$. This property is also known as **Information Inequality**.

Property 3: Relative entropy does not satisfy the triangle inequality.

Because KL-distance does not obey the triangle inequality and is not symmetric, it is not a true metric.

Example: Consider the distributions p and q introduced earlier, where $p, q \in \{0,1\}, p(0) = 1/4, p(1) = 1/4$

$$3/4$$
, $q(0) = 1/2$, $q(1) = 1/2$.

$$D(p||q) = \frac{1}{4} \log \left(\frac{1/4}{1/2}\right) + \frac{3}{4} \log \left(\frac{3/4}{1/2}\right) = \frac{3}{4} \log 3 - 1 \approx 0.1887 > 0$$

$$D(q||p) = \frac{1}{2} \log \left(\frac{1/2}{1/4}\right) + \frac{1}{2} \log \left(\frac{1/2}{3/4}\right) = \frac{1}{2} \left(1 - \log \frac{3}{2}\right) \approx 0.2973 > 0$$

Note that $D(p||q) \neq D(q||p)$.

Proof of Property 2 (Information Inequality): To prove this property, we will use the following fact:

Identity:

$$\log_2 y \le \frac{y-1}{\log_e 2}, \ \forall \ y \ \in \ \mathbb{R}$$

Proof of identity: First, note that the following is true:

$$1 + x \le e^x, \ \forall \ x \in \mathbb{R} \tag{3}$$

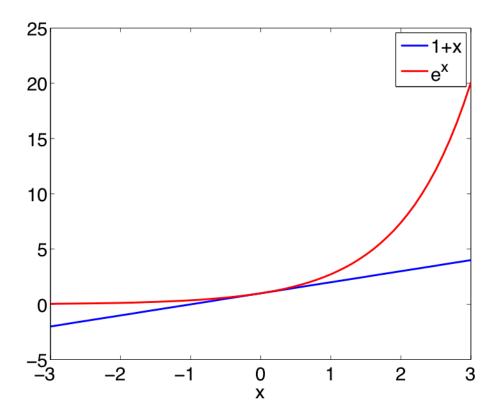


Figure 1: 1 + x and e^x

Taking the natural log of both sides of (3),

$$\log_e(1+x) \le x$$

Using the fact that $\log_e T = \log_e 2 \log_2 T$ (change of base formula),

$$\begin{split} \log_e 2\log_2\left(1+x\right) \leq x \\ \log_2\left(1+x\right) \leq \frac{x}{\log_e 2} \end{split}$$

Let y = x + 1:

$$\log_2 y \le \frac{y-1}{\log_e 2}$$

Going back to the proof of Information Inequality,

$$D(p||q) = \sum_{x \in \mathcal{X}} p(x) \log \frac{p(x)}{q(x)}$$

$$= -\sum_{x \in \mathcal{X}} p(x) \log \frac{q(x)}{p(x)}$$

$$\geq -\sum_{x \in \mathcal{X}} p(x) \left(\frac{1 - \frac{q(x)}{p(x)}}{\log_e 2}\right)$$

$$= -\frac{1}{\log_e 2} \sum_{x \in \mathcal{X}} (p(x) - q(x)) = 0$$

$$\Longrightarrow D(p||q) \geq 0$$

Identity: Let $X \in \mathcal{X}$, $|\mathcal{X}| = M$. Then

$$\log M - H(X) > 0$$

Proof: As stated previously, the maximum value of entropy is $\log |\mathcal{X}| = \log M$, which occurs when X is uniformly-distributed. Now we can prove this by KL-distance.

$$\log M - H(X) = \sum_{x \in \mathcal{X}} p(x) \log M + \sum_{x \in \mathcal{X}} p(x) \log p(x)$$
$$= \sum_{x \in \mathcal{X}} p(x) \log \frac{p(x)}{1/M}$$
$$= D(p||\frac{1}{M}) \ge 0$$

Note that the inequality above is known to us by the non-negativity property of KL-distance.

If the distribution of X is uniform, where $p(X = x) = \frac{1}{M} \ \forall \ x \in \mathcal{X}$, then $D(p||\frac{1}{M}) = 0$.

3 Mutual Information

Definition: Mutual information is defined by

$$I(X;Y) = H(X) - H(X|Y)$$

$$= H(Y) - H(Y|X)$$

$$\triangleq D(p(x,y) \mid\mid p(x)p(y))$$

Proof:

$$\begin{split} D\Big(p(x,y) \mid\mid p(x)p(y)\Big) &= \sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} p(x,y) \log \frac{p(x,y)}{p(x)p(y)} \\ &= \sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} p(x,y) \log \frac{p(x)p(y|x)}{p(x)p(y)} \\ &= \sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} p(x,y) \log \frac{p(y|x)}{p(y)} \\ &= -\sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} p(x,y) \log p(y) + \sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} p(x,y) \log p(y|x) \\ &= H(Y) - H(Y|X) \end{split}$$

If X and Y are independent, I(X;Y) = 0.