COMPSCI 650 Applied Information Theory Jan 21, 2016

Lecture 2

Instructor: Arya Mazumdar Seribe:

1 Entropy

Definition: Entropy is a measure of uncertainty of a random variable. The entropy of a discrete random
variable X with alphabet A" is

H(X)= - Z p(x) logp(x)

redX

When the base of the logarithm is 2, entropy is measured in bits.

Ezample: One can model the temperature in a city (e.g. Amherst) as a random variable, X. Then
the entropy of X measures the uncertainty in Amherst temperature. Let Y be a random variable repre-
senting the temperature in Northampton. We know that X and Y are not independent (they are usually
quite similar). Hence, when Y is given, some uncertainty about X goes away.

Ezample: Consider a fair die with pmf p(1) = p(2) = ... = p(6) = 1/6. Its entropy is

1 1
H(z)=—6- gl()g — = log6

6

Maximum entropy is achieved when all outcomes of a random variable occur with equal probability.
(Note: you can prove this by assigning a variable p; to the probability of outcome i. Then, partially-
differentiate the entropy function with respect to each p;. Set the derivatives to zero and solve for the
pi’s. You will see that they are equal.)

In general, for M equally-probable outcomes, the entropy is H(X) = log M.

1.1 Joint Entropy

Definition: For two random variables X and Y, z € X,y € Y, joint entropy is defined as

H(X,)Y)= - Z Zp(:z:,y)logp(:z:,y)

reX yey

where p(z,y) = Pr[X = z,Y = y] is the joint pmf of X and Y.
1.2 Conditional Entropy

Definition: The conditional entropy of a random variable Y given X = x is

HY| X =xz)=— Zp(y[:z:) log p(y|z)
yey

When a particular value of x is not given, we must average over all possible values of X:

HY|X)=- Z p(x) Zp(y[:z:)logp(y[:z:)

reX yey
= — Z Zp(:z:,y)l()gp(y[:l:)
reX yey



The conditional entropy of X given Y is

HX|Y) ==Y plx,y)logp(aly)

reX yey

In general, H(X|Y) # H(Y|X).

1.3 Chain Rule for Entropy

The Chain Rule for Entropy states that the entropy of two random variables is the entropy of one plus

the conditional entropy of the other:

H(X,Y)=H(X)+H(Y|X) (1)

Proof:

HX,Y)==>_ > plz.y)log (p(ﬂv)p(ylr))

reX yey

zeX \yey

=Y | Do p,y) | logp(x) = Y > pla,y)log plylz)

reX yey

= > p(@)logp(x) = Y Y plx,y) logp(ylz)

zeX zeX yey
=H(X)+H(Y|X)
Similarly, it can also be shown that
H(X,)Y)=H(Y)+H(X|Y) (2)

From (1) and (2), we see that

H(X)-H(X|Y)=H(Y)- HY|X)=I(X;Y)

I(X;Y) is known as Mutual Information, which can be thought of as a measure of reduction in

uncertainty.

Ezample: Consider the random variables X € {0,1},Y € {0,1}, representing two coin tosses. Their

joint distribution is shown in Table 1.

YWX [ 0 | 1
0 |1/2]1/4
1 [1/81/8

Table 1: Joint distribution of two coin tosses.

The joint entropy of X and Y is

H(X,Y) = —

log

B | =

Note that if all probabilities were equal, we would have

B | =

==

log

W |
|
0| N
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H(X,Y) = log4 = 2 bits, which is the maximum entropy.



The individual entropies are

H(X)= -

HY) = -

Question: What is the conditional entropy of X given Y?

Answer: One possible way of solving this problem is to compute the conditional distribution of X given
Y, for all possible values of X and Y. However, since we have already determined the joint and individual
entropies, we can instead use the Chain Rule for Entropy: H(X,Y) = H(Y) + H(X|Y).

H(X|Y) = 1.75 — 0.8113 ~ 0.9387

2 Relative Entropy
Let X be a random variable with alphabet X = {0,1}. Consider the following two distributions:
p(0) =

p(1) =

q(0) =

q(1) =

=] QO = =
N = N =

Let 7 be another probability distribution, defined below:
r(0) =

r(l) =

0| =~10| =

Question: Is r closer to p or ¢?
Answer: r is closer to p, because they are both biased toward the outcome X = 1.

How do we measure this similarity? One way is to use relative entropy.

Definition: Relative entropy, also known as Divergence or Kullback-Leibler Distance, is defined
by

Do) = 3 pla)log )

zeX ()

Property 1: Relative entropy is not symmetric. In other words, it is not necessarily true that

D(pllq) = D(q||p).

Property 2: Relative entropy is always non-negative: D(p|lg) = 0. Equality is achieved only if
p(z) = q(x), ¥V x € X. This property is also known as Information Inequality.

Property 3: Relative entropy does not satisfy the triangle inequality.
Because K L-distance does not obey the triangle inequality and is not symmetric, it is not a true metric.

Ezample: Consider the distributions p and ¢ introduced earlier, where p, g € {0,1}, p(0) =1/4, p(1) =



3/4, q(0) =1/2, ¢(1) =1/2.
1 1/4 3, 3/4\ 3 e
D(p||q)—4l (1/2>+—lb<1/—2>—110 3-1=0.1887>0
Ll (12 2Y JL() 8
D(qllp)—21¢,<1/4> 5o <3/4> 2( og >~0.2973>0
Note that D(p||q) # D(q||p).

Proof of Property 2 (Information Inequality): To prove this property, we will use the follow-
ing fact:

Identity:

log, y < ¥y~ , Vy € R

D(’.‘

Proof of identity: First, note that the following is true:

l4zx<e®, Vo e R (3)
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Figure 1: 1 + x and e”*
Taking the natural log of both sides of (3),

log,(1+z) <z



Using the fact that log, T = log, 2log, T (change of base formula),

log, 2log, (1 + ) <z
x

log, (1 + ) <
08 ( +I)_log‘EQ

Let y=ax+ 1:

log, y <
529 = loge2

Going back to the proof of Information Inequality,

(z)
D(pllg) = Y p(x)log?®
pllg :L;Yp o(2)

==Y p(@)log &2

zeX p(.I‘)

ey

redX 8e

LS (o(a) - q(x) = 0
eX

log, 2 s

IV

= D(pllg) = 0

Identity: Let X € X, |X| = M. Then
logM — H(X) >0

Proof: As stated previously, the maximum value of entropy is log|X| = log M, which occurs when X
is uniformly-distributed. Now we can prove this by KL-distance.

log M — H(X) = > p(x)log M + Y p(x)log p(x)

reX reX
_ oo PE)
reX

= D(pll5;) =0

Note that the inequality above is known to us by the non-negativity property of K L-distance.

If the distribution of X is uniform, where p(X = z) = 4; V z € X, then D(p||55) = 0.

3 Mutual Information
Definition: Mutual information is defined by

I(X;Y)=H(X)-H(X|Y)
= H(Y) - H(Y|X)

E D(p(ﬂlc= y) || P(I)p(y))



Proof:

D) || (@) = 3 3 pla. ) log L)

v p(x)p(y)
. p(r)p(ulr)
=2 2 e lee S
_ Z ZP(J‘ y) log 2YZ) P(U|I)
TEX yeY ( )
== > > pla,y)logp(y) + Y Y plx,y)logpy|r)
zeX yeY zEX yeY

= H(Y) - H(Y|X)

If X and Y are independent, I(X;Y) = 0.



