
COMPSCI 650 Applied Information Theory April 7 2016

Lecture 19
Instructor: Arya Mazumdar Scribe: Names Redacted

1 Iterative Decoding

Given a possibly corrupted encoding c of input message y, we would like to determine the best estimate
of y. Recall that the encoding can be generated using the k × n (Hamming) generator matrix G and
errors can be corrected using the n− k × n (Hamming) parity check matrix H.

We can also infer the most likely message using Maximum A Priori estimation (MAP) or Maximum
Likelihood Estimation (ML or MLE). MAP is done by maximizing the probability of the code, given the
message:

max
c∈C

P (c|y)

whereas ML is done by maximizing the likelihood of the code:

max
c∈C

P (y|c) = max
c∈C

P (y|c)
n∏
i=1

P (yi|ci)

In the binary case for a single bit, this becomes:

arg
x∈{0,1}

maxP (ci = x|y) = arg
x∈{0,1}

max
∑
c∈C

P (c|y)

= arg
x∈{0,1}

max
∑
c∈C

P (y|c)

= arg
x∈{0,1}

max
∑
c∈C

n∏
i=1

P (yi|ci)

We denote the variable degree as dv and the check degree as dc. Then the transmission rate is n·dv
dc

where n in the number of bits. This should be clear from the image shown above.
The Iterative Decoding (or Message Passing) algorithm is a two step iterative process used to find

the best decoding of the encoded message received. In the first step, called the variable rule, we compute
the log-likelihood ratio as follows:
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m = log
P (x = 0|y1...yd)
P (x = 1|y1...yd)

= log
P (y1...yd|x = 0)P (x = 0)P (y1...yd)

P (y1...yd|x = 1)P (x = 1)P (y1...yd)

Since the priors are the same for both 0 and 1, we can cancel P (x = 0) with P (x = 1). Then

m = log
P (y1...yd|x = 0)

P (y1...yd|x = 1)

= log

∏d
i=1 P (yi|xi = 0)∏d
i=1 P (yi|xi = 1)

The second equivalence follows from the independence assumption of the memoryless channel. Then,
simplifying the log of products to a sum of logs, we get

m =

d∑
i=1

log
P (yi|xi = 0)

P (yi|xi = 1)

=

d∑
i=1

li

where li is the log-likelihood ratio for a single bit.
For the second step of the Iterative Decoding algorithm, the check rule, we have d = dc and the

log-likelihood ratio is

m = log
P (x = 0|y1...yd−1)

P (x = 1|y1...yd−1)

Notice the change of the bounds on y. Exponentiating the log-likelihood ratio gives

em =
P (x = 0|y1...yd−1)

P (x = 1|y1...yd−1)

Then it follows that

em − 1

em + 1
=

P (x=0|y1...yd−1)
P (x=1|y1...yd−1)

− 1

P (x=0|y1...yd−1)
P (x=1|y1...yd−1)

+ 1

Multiplying both numerator and denominator by P (x = 1|y1...yd−1) gives

em − 1

em + 1
=
P (x = 0|y1...yd−1)− P (x = 1|y1...yd−1)

P (x = 1|y1...yd−1) + P (x = 0|y1...yd−1)

The denominator evaluates to 1, because it the sum of a distribution over the entire outcome space.
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em − 1

em + 1
= P (x = 0|y1...yd−1)− P (x = 1|y1...yd−1)

= P (x1 + x2 + ...+ xd−1 = 0|y1...yd−1)− P (x1 + x2 + ...+ xd−1 = 1|y1...yd−1)

=

d−1∏
i=1

(P (xi = 0|yi)− P (xi = 1|yi))

For a single bit, the log-likelihood ratio is:

li = log
P (yi|xi = 0)

P (yi|xi = 1)

= log
P (xi = 0|yi)
P (xi = 1|yi)

Then the ratio

em − 1

em + 1
= P (xi = 0|yi)− P (xi = 1|yi)

=

d−1∏
i=1

eli − 1

eli + 1

=

d−1∏
i=1

e
li
2 − e

li
2

e
li
2 + e

li
2

=

d−1∏
i=1

tanh(
li
2

)

Notice that

(em − 1) + (em + 1) = 2em

Dividing everything by em + 1 gives the equality:

em − 1

em + 1
+ 1 =

2em

em + 1

Likewise, notice that

(em + 1)− (em − 1) = 2

Dividing by em + 1 gives:

1− em − 1

em + 1
=

2

em + 1

Then it follows that
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em =
1 +

∏d−1
i=1 tanh( li2 )

1−
∏d−1
i=1 tanh( li2 )

which implies

m = log
1 +

∏d−1
i=1 tanh( li2 )

1−
∏d−1
i=1 tanh( li2 )

1.1 Implementation

The algorithm follows directly from the steps above. In each iteration of the message passage algorithm,
do the following:

1. Initialization

2. Variable Rule

3. Check Rule

2 Expander Graphs

An expander graph is a strongly connected sparse graph. We can define an expander graph over the
encoding as follows

G = {S ∈ V1 : |S| ≤ αn, |N(S)| ≥ γdv|S|}

for some positive α and γ, where V1 is the set of nodes in the message prior to encoding and N(S)
is the set of neighbors of S.

In the next class we will show that if γ > 3
4 , we will be able to correct up to α

2 n = O(n) errors.
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