1 Iterative Decoding

Given a possibly corrupted encoding c of input message y, we would like to determine the best estimate of y. Recall that the encoding can be generated using the $k \times n$ (Hamming) generator matrix G and errors can be corrected using the $n - k \times n$ (Hamming) parity check matrix H.

We can also infer the most likely message using Maximum A Priori estimation (MAP) or Maximum Likelihood Estimation (ML or MLE). MAP is done by maximizing the probability of the code, given the message:

$$\max_{c \in C} P(c|y)$$

whereas ML is done by maximizing the likelihood of the code:

$$\max_{c \in C} P(y|c) = \max_{c \in C} P(y|c) \prod_{i=1}^{n} P(y_i|c_i)$$

In the binary case for a single bit, this becomes:

$$\arg x \in \{0,1\} \max c \in C \max \sum_{c \in C} P(c|y)$$

$$= \arg x \in \{0,1\} \max \sum_{c \in C} P(y|c)$$

$$= \arg x \in \{0,1\} \max \sum_{c \in C} \prod_{i=1}^{n} P(y_i|c_i)$$

We denote the variable degree as d_v and the check degree as d_c. Then the transmission rate is $\frac{n \cdot d_v}{d_c}$ where n is the number of bits. This should be clear from the image shown above.

The Iterative Decoding (or Message Passing) algorithm is a two step iterative process used to find the best decoding of the encoded message received. In the first step, called the variable rule, we compute the log-likelihood ratio as follows:
\[m = \log \frac{P(x = 0|y_1\ldots y_d)}{P(x = 1|y_1\ldots y_d)} \]
\[= \log \frac{P(y_1\ldots y_d|x = 0)P(x = 0)P(y_1\ldots y_d)}{P(y_1\ldots y_d|x = 1)P(x = 1)P(y_1\ldots y_d)} \]

Since the priors are the same for both 0 and 1, we can cancel \(P(x = 0) \) with \(P(x = 1) \). Then

\[m = \log \frac{P(y_1\ldots y_d|x = 0)}{P(y_1\ldots y_d|x = 1)} \]
\[= \log \frac{\prod_{i=1}^{d} P(y_i|x_i = 0)}{\prod_{i=1}^{d} P(y_i|x_i = 1)} \]

The second equivalence follows from the independence assumption of the memoryless channel. Then, simplifying the log of products to a sum of logs, we get

\[m = \sum_{i=1}^{d} \log \frac{P(y_i|x_i = 0)}{P(y_i|x_i = 1)} \]
\[= \sum_{i=1}^{d} l_i \]

where \(l_i \) is the log-likelihood ratio for a single bit.

For the second step of the Iterative Decoding algorithm, the check rule, we have \(d = d_c \) and the log-likelihood ratio is

\[m = \log \frac{P(x = 0|y_1\ldots y_{d-1})}{P(x = 1|y_1\ldots y_{d-1})} \]

Notice the change of the bounds on \(y \). Exponentiating the log-likelihood ratio gives

\[e^m = \frac{P(x = 0|y_1\ldots y_{d-1})}{P(x = 1|y_1\ldots y_{d-1})} \]

Then it follows that

\[\frac{e^m - 1}{e^m + 1} = \frac{P(x = 0|y_1\ldots y_{d-1})}{P(x = 1|y_1\ldots y_{d-1})} - 1 \]
\[\frac{e^m - 1}{e^m + 1} = \frac{P(x = 0|y_1\ldots y_{d-1})}{P(x = 1|y_1\ldots y_{d-1})} + 1 \]

Multiplying both numerator and denominator by \(P(x = 1|y_1\ldots y_{d-1}) \) gives

\[\frac{e^m - 1}{e^m + 1} = \frac{P(x = 0|y_1\ldots y_{d-1}) - P(x = 1|y_1\ldots y_{d-1})}{P(x = 1|y_1\ldots y_{d-1}) + P(x = 0|y_1\ldots y_{d-1})} \]

The denominator evaluates to 1, because it the sum of a distribution over the entire outcome space.
\[
\frac{e^m - 1}{e^m + 1} = P(x = 0|y_1...y_{d-1}) - P(x = 1|y_1...y_{d-1}) \\
= P(x_1 + x_2 + ... + x_{d-1} = 0|y_1...y_{d-1}) - P(x_1 + x_2 + ... + x_{d-1} = 1|y_1...y_{d-1}) \\
= \prod_{i=1}^{d-1} (P(x_i = 0|y_i) - P(x_i = 1|y_i))
\]

For a single bit, the log-likelihood ratio is:

\[
l_i = \log \frac{P(y_i|x_i = 0)}{P(y_i|x_i = 1)} = \log \frac{P(x_i = 0|y_i)}{P(x_i = 1|y_i)}
\]

Then the ratio

\[
\frac{e^m - 1}{e^m + 1} = P(x_i = 0|y_i) - P(x_i = 1|y_i) \\
= \prod_{i=1}^{d-1} \frac{e^{l_i} - 1}{e^{l_i} + 1} \\
= \prod_{i=1}^{d-1} \frac{e^{l_i} - e^{l_i/2}}{e^{l_i} + e^{l_i/2}} \\
= \prod_{i=1}^{d-1} \tanh\left(\frac{l_i}{2}\right)
\]

Notice that

\[
(e^m - 1) + (e^m + 1) = 2e^m
\]

Dividing everything by \(e^m + 1\) gives the equality:

\[
\frac{e^m - 1}{e^m + 1} + 1 = \frac{2e^m}{e^m + 1}
\]

Likewise, notice that

\[
(e^m + 1) - (e^m - 1) = 2
\]

Dividing by \(e^m + 1\) gives:

\[
1 - \frac{e^m - 1}{e^m + 1} = \frac{2}{e^m + 1}
\]

Then it follows that
\[
e^m = \frac{1 + \prod_{i=1}^{d-1} \tanh(\frac{l_i}{2})}{1 - \prod_{i=1}^{d-1} \tanh(\frac{l_i}{2})}
\]

which implies

\[
m = \log \frac{1 + \prod_{i=1}^{d-1} \tanh(\frac{l_i}{2})}{1 - \prod_{i=1}^{d-1} \tanh(\frac{l_i}{2})}
\]

1.1 Implementation
The algorithm follows directly from the steps above. In each iteration of the message passage algorithm, do the following:

1. Initialization
2. Variable Rule
3. Check Rule

2 Expander Graphs
An expander graph is a strongly connected sparse graph. We can define an expander graph over the encoding as follows

\[
G = \{ S \in V_1 : |S| \leq \alpha n, |N(S)| \geq \gamma d_v |S| \}
\]

for some positive \(\alpha \) and \(\gamma \), where \(V_1 \) is the set of nodes in the message prior to encoding and \(N(S) \) is the set of neighbors of \(S \).

In the next class we will show that if \(\gamma > \frac{3}{4} \), we will be able to correct up to \(\frac{\alpha}{2} n = O(n) \) errors.