COMPSCI 650 Applied Information Theory April 7 2016

Lecture 19

Instructor: Arya Mazumdar Scribe: Names Redacted

1 TIterative Decoding

Given a possibly corrupted encoding ¢ of input message y, we would like to determine the best estimate
of y. Recall that the encoding can be generated using the k x n (Hamming) generator matrix G and
errors can be corrected using the n — k x n (Hamming) parity check matrix H.
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We can also infer the most likely message using Maximum A Priori estimation (MAP) or Maximum
Likelihood Estimation (ML or MLE). MAP is done by maximizing the probability of the code, given the
message:

maP(cly)

whereas ML is done by maximizing the likelihood of the code:

n
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In the binary case for a single bit, this becomes:
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We denote the variable degree as d,, and the check degree as d.. Then the transmission rate is ”é‘i”
where n in the number of bits. This should be clear from the image shown above.

The Tterative Decoding (or Message Passing) algorithm is a two step iterative process used to find
the best decoding of the encoded message received. In the first step, called the variable rule, we compute
the log-likelihood ratio as follows:
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Since the priors are the same for both 0 and 1, we can cancel P(z = 0) with P(z = 1). Then
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The second equivalence follows from the independence assumption of the memoryless channel. Then,
simplifying the log of products to a sum of logs, we get
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where [; is the log-likelihood ratio for a single bit.

For the second step of the Iterative Decoding algorithm, the check rule, we have d = d. and the
log-likelihood ratio is
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Notice the change of the bounds on y. Exponentiating the log-likelihood ratio gives
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Multiplying both numerator and denominator by P(z = 1|y1...yqs—1) gives
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The denominator evaluates to 1, because it the sum of a distribution over the entire outcome space.
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For a single bit, the log-likelihood ratio is:
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Then the ratio

Notice that
(e'ﬂL _ 1) + (em + 1) — 2677l
Dividing everything by ™ 4+ 1 gives the equality:
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Likewise, notice that
(em+1)—(em—-1)=2
Dividing by €™ + 1 gives:
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Then it follows that
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which implies

1.1 Implementation

The algorithm follows directly from the steps above. In each iteration of the message passage algorithm,
do the following;:

1. Initialization
2. Variable Rule
3. Check Rule

2 Expander Graphs

An expander graph is a strongly connected sparse graph. We can define an expander graph over the
encoding as follows

G={SeVi:[S| <an,|N(S)| > ~dy|S|}
for some positive o and ~y, where V; is the set of nodes in the message prior to encoding and N(.5)

is the set of neighbors of S.
In the next class we will show that if v > i, we will be able to correct up to §n = O(n) errors.



