COMPSCI 650 Applied Information Theory Apr 5, 2016

Lecture 18

Instructor: Arya Mazumdar Secribe:

1 Correcting Errors in Linear Codes
Suppose someone is to send us a message x on an errornous channel. To do so he will first obtain the
corresponding codeword ¢ by multiplying = with the generator matrix G:

r G = ¢ (1)

1‘><Jk kxn 1xn
He then sends the codeword ¢ on the channel; however, our channel introduces some error e:
cte=y (2)
On the other side of the channel we will recieve y and our objective is to infer the original message z. If
we could somehow identify the error e which the channel has introduced, we could obtain the codeword
¢ sent by the sender which directly would lead us to the original message x.

Lets multiply the parity-check matrix H with y:
Hy" = H(c" +¢e7)
=Hcl + HeT
HeT is zero by defintion (¢ is a codeword if multiplying it by H gives 0), thus:
Hy" = HeT (3)
This is called the syndrome of the received message.
If for every possible correctable error the channel may produce (e), we obtain a different value for
the syndrome (HeT), then we will be able to uniquely identify that error by simply multiplying the
parity-check matrix with the received message y. And if we can identify the error of the received mes-

sage, we will be able to obtain the codeword by flipping the error bits in the received bit stream. More
formally, if E' is the set of errors which we are able to correct:

E = {set of correctable errors} C {0,1}"
1,6 € EF = H(.’{ # H({

or in other words H(e] + el') # 0. (Note that + and - are the same in binary).

Example. Error Correcting in Hamming Code

For Hamming Code we have the parity-check matrix:

0001 1 11
H=10 11 0 0 1 1 (4)
1 01 0101

Note that all columns in this matrix are different. Suppose there is only one non-zero entry in our error
e. Then He® will simply produce one of the unique columns of H. So for Hamming code, the set of
correctable errors are the errors with only one non-zero entry:

E={ece{0,1}": wt(e) =1}

As you can see, we can identify any one-bit error in Hamming Code. Recall the minimum distance
in Hamming code is 3, that is the hamming distance between any two codewords is at least 3. If the
minimum distance were any lower, say 2, than a single-bit error could make us be as far away from the
original codeword as we are from some other codeword. This would not allow us to distinguish which of
the two is the original codeword. However, as long as the minimum distance between any two codewords
is 3, any single bit error would still keep us closer to the original codeword and is correctable. To confuse
a codeword in Hamming Code, we need at least two errors.

Now what if we want to correct more than one error? In other words, we want the set of correctable
errors to be:

E={eec{0,1}": wt(e) = t}

To do so, we must build our parity-check matrix H in such a way that:
Ve, ep € E: H(el +¢eX)#0

BCH codes can correct t errors as long as t is constant (i.e. does not work if ¢ as a function of n). BCH
codes are beyond the scope of this class but you can learn more in next year’s Coding Theory course.

2 Correcting Erasures in Linear Codes

In the previous section we investigated decoding messages on channels which introduce errors (i.e. flip
codeword bits). In this section we will look into a channel which erases bits. In this channel, each bit
could either remain unchanged or be changed to a new symbol 7.

Question. Suppose we have a code with a minimum codeword distance d. How many bit errors
and how many erasures can this code correct?

We'll start with errors. In order to be able to correct an error, the resulting sequence after ap-
plying the error on a codeword must remain closer to that codeword than any other codeword. Knowing
that the distance between the original codeword and any other is at least d, the maximum amount of
error bits we can have is [‘l%] Any more than this and the result will be closer to or as close to another
codeword and we will not be able to infer the original codeword.

In the case of erasures, even if we have up to d — 1 erasures we are still closer to the original
codeword than any other. However, any more than that we will make us confuse the codeword with
another.

As an example, in Hamming code where the minimum codeword distance is 3, we can correct up to
|351] =1 errors and 3 — 1 = 2 erasures.

2.1 Singleton bound

In Hamming code, any two columns of the parity-check matrix H are linearly independent. If you mul-
tiply H by any vector of weight two, which essentially means just summing two columns of H, the result
is never zero. However, for Hamming code three columns of the parity-check matrix may be lineary
dependent.

In general in an error correcting code with a minimum distance of d, any d — 1 columns of the parity-
check matrix are linearly independent. And to have an error correcting code with minimum distance d,
we need to construct a parity-check matrix such that any d — 1 columns are linearly independent.

Since the size of each column of H is n — k, there can be at most n — k column vectors in H which are
lineary independant.

d—1<n-—-k
d<n-—-k+1
d k1
- <1—-=+4-=
n n o n
d
;Sl—R%—O(l)

This is called the singleton bound.

2.2 Correcting Erasures

Lets consider an example. Suppose H is the parity-check matrix for the Hamming code and z is a bit
stream we have received on the channel. As shown below, we observe that three bits of the codeword
have been erased by the channel. Assuming bits xa, 23, 5, z have been received correctly, our objective
is to deduce the value of bits z1, x4, 7.

o o0 o 1 1 1 1
H=10 1 1 0 0 1 1
1 0 1 0 1 0 1
r= 7 1 0 ?2 0 0 7?

If = is to be a valid codeword we know by definition that Ha” = 0.
N
)
T3

1 1 0 0 1 1| |xzq4]l =0
1 0 1 0 1 0 1f =5

o
—
—
—
—

Tg
x7
We'll expand this multiplication to obtain the equations below.
e+ a5+ x5+ 27 =0
To+ a3+ x5+ 7 =10
T+ a3+ x5 +27=0
We already know the values for bits zo, 3, x5, g, so the equations will be reduced to
xy+ax7 =0
Ty = 1
r1+ax7 =0

We can solve this system of equations by writing it in the matrix format

0 1 1 fis] 0
0 0 1 4| = 1
1 0 1 x7 0
H‘unknuwn X'u.nkn own Hknuwn X anuwn

In other words, multiplying the unknown columns of H by the unknown variables must be equal to
multiplying the known columns of H by the known variables. Our decoding objective is to solve this set
of linear equations. The linear equation is solvable as long as H,,,xnown 18 invertable which is the case
in this example.

-1
T 0 1 1 0
z4| =10 0 1 1
x7 1 0 1 0

Note that we previously mentioned we can correct two erasures in Hamming code; however, in this ex-
ample we were able to correct three. This is due to the fact that the three columns erased in this example
are linearly independant. This would not always be the case when correcting more than two erasures in
Hamming code. For example, if x1, 29,23 were erased, Hypknown would have not been invertable and
we would not have been able to decode the message.

We are now able to correct erasures in polynomial time. However, our decoding performance is bottle-
necked at O(n*) by the matrix inversion step, which is unacceptable considering we take n to be very
large. We need an easier and faster way for solving the linear equation. Consider our previous example,
we can directly find the value of 7 to be 1 since it is in an equation with only a single variable. We can
then remove z7 from the other equations and find z; and x4 in the same way. Obvisouly this method
-annot be applied to all linear equations in general, but we will formalize this procedure in the next
section using Tanner Graphs.

3 Iterative Decoding using Tanner Graphs

A Tanner Graph is a bipartite graph with n variable nodes, one for each variable, on one side of the
graph and n — k check nodes on the other. Each check node represents a linear constraint and there will
be and edge between a check node and a variable node if the variable is contained within the equation
represented by the check node. In other words, you could consider the H parity-check matrix the adjency
matrix for the Tanner graph.

The Tanner graph of a code with the parity-check matrix below is shown in Figure 1. A different
parity-check matrix will lead to a different Tanner graph representation.

p—
p—
o
o
—
—

0
H= |0
1

We will use Tanner graphs to solve linear equations such as that obtained in Section 2.2. The pro-
cedure is as follows. Define the Erasure Set £ to be the subset of variable nodes which are erased and
unknown. We look for a check node in the Tanner graph which has exactly one neighbor within the
erasure set. That is, a check node which represents a linear constraint containing only one variable. Our
iterative decoding procedure can procede as long as we find such a node. Once this check node is found,

Figure 1

Variable Nodes Check Nodes

&Iy .

| 4.5.6.7

T2 .
T3 .

@ 2.3.6.7
T4 .
x5 .

m1,3,57
76 @

7 @

we will sum all values of the known neighbors of the check node and place the result as the value of
the unknown variable. This unknown variable is now known and is removed from the erasure set. We
iteratively continue this procedure until all variable values are known.

Example.
Consider the example in Section 2.2. We will solve the linear equation using Tanner graphs, Figure 2
illustrates each step of the procedure.
The initial Erasure set is:
& ={x1,24,27}

Check node 2 is the only check node with a single neighbor in the erasure set.

Check Node 1 — {z4, 27} X
Check Node 2 — {z7} v
Check Node 3 — {z1, 27} X

We will sum the values of check node 2’s known variables, x5, x3, x4, and place the result 1 as the value
of z7 (Figure 2a). The new erasure set now contains only x4 and x7 and both check nodes are neighbors
with only one variable of the erasure set. We will apply the same process to these check nodes and
obtain 1 as the value for both variables (Figure 2b and Figure 2c).

3.0.1 Stopping Sets and Sparse Graph Codes

To be successful in iteratively solving the linear equation using a Tanner graph, we must be able to find
a check node with a single neighbor in the erasure set in every step of the process. We define a stopping
set to be a subset of variable nodes such that every check node has at least two neighbors within the
stopping set. More formally S is a stopping set if:

S C Viariable nodes : VU € Veheck nodes; IN(I') N SI >2

ot

Figure 2
(b) (c)

' @ 2 0@
=]
1. @ 1 2@
N
0@ @ N
~— N
, =} ~— N
210 @ 12, @ ~ \
~ N
~
0 @ o @ —

S
76 @ . 0@
2 = @ =@

If the erasure set contains a stopping set (S C &) then the iterative algorithm above will fail. A stopping
set will always exist in a large enough set if the graph is dense. However, if the graph is sparse, meaning
that every linear equation in the system has only a few variables involved, it is unlikely that we have a
stopping set.

Sparse Graph Codes also known as Low-Density Parity-Check Matriz Codes are codes where the number
of ones in the parity-check matrix is small compared to the number of zeros (the number of ones does
not linearly grow with n). The benefit of having Low-Density Parity-Check Matrix codes is being able
to use iterative algorithms for decoding.

4 Belief Propagation Decoding

Suppose ¢ is a binary codeword which has been sent over the channel. Also, suppose the channel
is probabilistically introducing some errors. In order to decode the message we could find the best
probability distribution given the observation y:

argmax p(cly)
ceC
This is called Mazimum A Posteriori (MAP) decoding and it is the best possible decoding. However,
doing MAP decoding directly is often infeasible and hard to do. We will look at two different approaches
to this problem.

4.1 Maximum Likelihood Decoding

In maximum likelihood decoding, we use the bayes rule to convert the MAP maximization above into

(c)

- p
argmax p(ylc)—/

ceC p(y)
Note that can be removed from the maximization since it does not depend on ¢. Assuming a uniform

ply P g
prior distribution for codewords, meaning all codewords are equally likely to occur, we can also remove
p(o):
argmax p(ylc)

ceC

Given the memoryless property of the channel, this could be computed as:

n
arg max p(yile:)
ceC i1

Figure 3: Binary Symetric Channel

0 1-p 0

1 1

In the case of Binary Symetric Channels, p(y;|c;) depends only on whether ¢; is equal to y; or not.
The channel flips the value of a bit with probability p, so ¢; and y; would have different values with
probability p. If the distance between y and ¢ is denoted by d(y, ¢), there are d(y, ¢) bits which differ in
total between y and ¢. So the maximum likelihood is reduced to:

arg max p(l(y,(:) (1 . p)n—(l(y,(:)

ceC
d(y.c)
AT 1 L 1 n
= argmax (1-p)
ceC 1- p
d(y.c)
_ - p
= argmax | ——
ceC - P
If p < % (which is a reasonable assumption since p = % would give us a channel that provides no
information) then ;1_'—1 < 1 and the maximization above is equivalent to minimizing d(y, c):

argmin d(y, c)
ceC
In other words, like we have seen in minimum hamming distance decoding, we find the codeword which
has the minimum hamming distance with the received bit stream y.

4.2 Belief Propagation Decoding

In belief propagation, instead of maximum likelihood we do a bit MAP decoding (bitwise MAP). In bit
MAP decoding, we find the value for each bit 7 by computing:

argmax p(c¢; = z|y)
ze{0,1}

The 7y, bit takes the value which has a higher probability of occuring as the ;5 bit in codewords, given
y. As you can see, in bit MAP decoding we are not trying to optimize over the codeword but rather
optimize over each bit of the codeword. As a result, the bit stream we end up with in the end may not
necessarily be codeword but it often does turn out to be.

To compute the value for each bit 7, we must sum over the probabilities of all codewords which have an
i, bit of 2. So the above maximization would be equivalent to:

arg max Z plcly)

we{0,1} ceCici=x

