COMPSCI 650 Applied Information Theory Mar 8, 2016

Lecture 1

Instructor: Arya Mazumdar Scribe: Arya Mazumdar

Today we will spend sometime discussing about the upcoming midterm. Hence the length of the
lecture is smaller than usual.

1 Secret Sharing Schemes

This is an example that we discuss in the class.
Suppose a secret S has to be divided between two users. The share of user 1 is X7, and share of user
2 is X5. We must have the following two properties:

1. H(S|X)) = H(S|X,) = H(S).
2. H(S|X1,X>) = 0.

Let S € X ={0,...,g — 1}. Then choose X; randomly and uniformly from X. Let X5 = (X; + 5)
mod ¢q. This scheme clearly satisfies the above two properties.
Question: Can you think of a generalization?

2 Parameter Estimation

Consider an indexed family of distributions {f(x;#)}. X is the underlying random variable with sample
space X. That is we have,

o f(z;6)>0.

o [ f(z;0)dz =1.

Here 6 € ©, the parameter set.
An estimator is a mapping
T: X" — 0.

The estimation error is
Ey(T(Xy,...,X,)—0),

where the 0 in the subscript denote that the expect ion is taken with respect to f(z;6). The estimator
is called unbiased if the estimation error is 0 for all § € ©. Note that we can ask for more out of an
estimator; such as Py(|T(X1,...,Xn) — 0] > €) = 0 for any € > 0. An estimator 7} dominates another
estimator 75 if for all 6,

Eo(Th(X1,...,X,) — 0)? < Bp(To(Xyq,...,X,) — 0)%

This begs the question: what is the best estimator?

2.1 Score function

The score function is:

0 .
V(X):%lnf(X;a):M_

If Xq,...,X, are i.i.d. f(x;0), then:

0

0
V(X1,...,Xy) = @lﬂf(xl,-n,Xn;@) = @Zlnf(Xi;G) = ZV(Xi)-



Also, we must have,

9 -0
EgV:/f(x;H)%dx:(%/f(x;ﬂ)dx:;)l:

Hence,

2.2 Fisher Information

How to quantify the amount of information about 6 that is present in the data?
Define,
J(0) = Varg(V) = EgV2.

If Xq,...,X, are i.id. f(z;0), then Varg(}_, V(X;)) = >, Varg(V(X;)). Hence,
Jn(0) =nJ(0).

2.3 Cramer-Rao bound

Theorem 1 The mean-square error of any unbiased estimator T is

1
Varg(T) > —.
(0)
Proof Just an application of the Cauchy-Schwartz inequality. Note,
EyT =106
and
EyV =0.
Hence,

Ey ((V ~EyV)(T — Eﬂ)) - (VT - VG)
= B, (VT)

5/ (x:6)
= xZ, o0 x)ax
- [ ra) BLEET (@)

0

=% /f(ac7 T (z)dx
3}

= =50

=1

But from Cauchy-Schwartz,

1= (Eg((v — EyV)(T — E(,T)>)2 < VargV - Varg(T) = J(6) - Varg(T).

Example: Consider X7,..., X, all i.i.d. Gaussian N (0, 0?).

0 1 x-02 X -0
X = 71 - 202 = .
V) =550 Jaran® e



Therefore,

o 1
J(0) = VaryV = i
SInce, J,(0) = nJ(6), from Cramer-Rao,
2
Vary(T) > 7.
n

Now consider the estimator

We have,
Eo(T — 0)% = Vary (% ZX) - % 3 Varg (X)) (; .

So we can achieve the Cramer-Rao bound!



