
COMPSCI 650 Applied Information Theory Mar 8, 2016

Lecture 1
Instructor: Arya Mazumdar Scribe: Arya Mazumdar

Today we will spend sometime discussing about the upcoming midterm. Hence the length of the
lecture is smaller than usual.

1 Secret Sharing Schemes

This is an example that we discuss in the class.
Suppose a secret S has to be divided between two users. The share of user 1 is X1, and share of user

2 is X2. We must have the following two properties:

1. H(S|X1) = H(S|X2) = H(S).

2. H(S|X1, X2) = 0.

Let S ∈ X ≡ {0, . . . , q − 1}. Then choose X1 randomly and uniformly from X . Let X2 = (X1 + S)
mod q. This scheme clearly satisfies the above two properties.

Question: Can you think of a generalization?

2 Parameter Estimation

Consider an indexed family of distributions {f(x; θ)}. X is the underlying random variable with sample
space X . That is we have,

• f(x; θ) ≥ 0.

•
∫
f(x; θ)dx = 1.

Here θ ∈ Θ, the parameter set.
An estimator is a mapping

T : Xn → Θ.

The estimation error is
Eθ(T (X1, . . . , Xn)− θ),

where the θ in the subscript denote that the expect ion is taken with respect to f(x; θ). The estimator
is called unbiased if the estimation error is 0 for all θ ∈ Θ. Note that we can ask for more out of an
estimator; such as Pθ(|T (X1, . . . , Xn)− θ| > ε) → 0 for any ε > 0. An estimator T1 dominates another
estimator T2 if for all θ,

Eθ(T1(X1, . . . , Xn)− θ)2 ≤ Eθ(T2(X1, . . . , Xn)− θ)2.

This begs the question: what is the best estimator?

2.1 Score function

The score function is:

V (X) =
∂

∂θ
ln f(X; θ) =

∂
∂θf(X; θ)

f(X; θ)
.

If X1, . . . , Xn are i.i.d. f(x; θ), then:

V (X1, . . . , Xn) =
∂

∂θ
ln f(X1, . . . , Xn; θ) =

∂

∂θ

∑
i

ln f(Xi; θ) =
∑
i

V (Xi).
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Also, we must have,

EθV =

∫
f(x; θ)

∂
∂θf(x; θ)

f(x; θ)
dx =

∂

∂θ

∫
f(x; θ)dx =

∂

∂θ
1 = 0.

Hence,
Varθ(V ) = EθV

2.

2.2 Fisher Information

How to quantify the amount of information about θ that is present in the data?
Define,

J(θ) = Varθ(V ) = EθV
2.

If X1, . . . , Xn are i.i.d. f(x; θ), then Varθ(
∑
i V (Xi)) =

∑
i Varθ(V (Xi)). Hence,

Jn(θ) = nJ(θ).

2.3 Cramer-Rao bound

Theorem 1 The mean-square error of any unbiased estimator T is

Varθ(T ) ≥ 1

J(θ)
.

Proof Just an application of the Cauchy-Schwartz inequality. Note,

EθT = θ

and
EθV = 0.

Hence,

Eθ

(
(V − EθV )(T − EθT )

)
= Eθ

(
V T − V θ

)
= Eθ

(
V T
)

=

∫
f(x; θ)

∂
∂θf(x; θ)

f(x; θ)
T (x)dx

=
∂

∂θ

∫
f(x; θ)T (x)dx

=
∂

∂θ
θ

= 1.

But from Cauchy-Schwartz,

1 =
(
Eθ

(
(V − EθV )(T − EθT )

))2
≤ VarθV ·Varθ(T ) = J(θ) ·Varθ(T ).

Example: Consider X1, . . . , Xn all i.i.d. Gaussian N (θ, σ2).

V (X) =
∂

∂θ
ln

1√
2πσ2

e−
(X−θ)2

2σ2 =
X − θ
σ2

.
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Therefore,

J(θ) = VarθV =
σ2

σ4
=

1

σ2
.

SInce, Jn(θ) = nJ(θ), from Cramer-Rao,

Varθ(T ) ≥ σ2

n
.

Now consider the estimator

T (X1, . . . , Xn) =
1

n

∑
i

Xi.

We have,

Eθ(T − θ)2 = Varθ

( 1

n

∑
i

Xi

)
=

1

n

∑
i

Varθ(Xi) =
σ2

n
.

So we can achieve the Cramer-Rao bound!
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