COMPSCI 650 Applied Information Theory

March 3 2016

Lecture 12

Instructor: Arya Mazumdar Scribes.

1 Multi-Armed Bandit

Consider a casino owner who presents a gambler with a set of N coins, of which k < N are biased in favor of the gambler. In order for the casino owner to ensure that the regret of the gambler is high:

- 1. there should be few favorably biased coins, i.e. $k \ll N$
- 2. the biased coins should not be too favorable; otherwise, the gambler will win with little regret.
- 3. the biased coins should sufficiently favorable

Recall that given a bias ϵ , the gambler must flip $T = \mathcal{O}\left(\frac{N}{\epsilon^2}\right)$ coins. Therefore the optimal bias is given as

$$\epsilon = \mathcal{O}\left(\sqrt{\frac{N}{T}}\right)$$

With this bias, the gambler has at least regret of

$$\epsilon = \mathcal{O}\left(\sqrt{NT}\right)$$

The best known algorithm for finding the biased coin incurs a regret of $\mathcal{O}\left(\sqrt{NT\log N}\right)$. The algorithm is as follows:

- 1. with probability p, select a random coin
- 2. with probability 1-p, toss according to the best estimate
- 3. p is the only hyperparameter and is selected as a function of N and T

2 Differential Entropy

We can define entropy over a continuous random variable, much in the same way we did for discrete random variables. The differential entropy of a random variable X is defined as

$$h(X) \triangleq -\int f_X(x) \ln f_X(x) dx$$

2.1 Differential Entropy of a Uniform Random Variable

Recall a uniform distribution f over a random variable X is defined as $f_X(x) =$

$$\begin{cases} \frac{1}{a} & x \in [0, a] \\ 0 & otherwise \end{cases}$$

The differential entropy of X is

$$h(X) = -\int_0^a \frac{1}{a} \ln \frac{1}{a} dx$$
$$= -\frac{1}{a} \ln \frac{1}{a} \int_0^a dx$$
$$= \frac{1}{a} a \ln a = \ln a$$

2.2 Properties of Differential Entropy

Theorem: Given any two random variables X and Y = X + a,

$$h(Y) = h(X) \tag{1}$$

Proof:

$$h(Y) = -\int f_Y(y) \ln f_Y(y) dy$$
$$= -\int f_X(y-a) \ln f_X(y-a) dy$$
$$= -\int f_X(x) \ln f_X(x) dx = h(X)$$

The equivalence $f_Y(y) = f_X(y-a)$ follow from:

$$F_Y(y) = P(Y \le y)$$

$$= P(x + a \le y)$$

$$= P(x \le y - a)$$

$$= F_x(y - a)$$

2.3 Differential Entropy of a Normal Random Variable

Consider $X \sim \mathcal{N}(\mu, \sigma^2)$. Recall the equation of the normal distribution is

$$\frac{1}{\sqrt{2\pi\sigma^2}}e^{-\frac{(x-\mu)^2}{\sigma^2}}$$

As a result of theorem 1, we can safely drop μ from the equation. That is, the entropy of $\sim \mathcal{N}(\mu, \sigma^2)$ is equal to the entropy of $\sim \mathcal{N}(0, \sigma^2)$, because μ only shifts the distribution. The area under the normal distribution remains unchanged. So let

$$f_X(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{x^2}{\sigma^2}}$$

The differential entropy of X is

$$h(X) = -\int f_X(x) \ln\left(\frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{\sigma^2}}\right) dx$$
$$= \int \frac{1}{2} f_X(x) \ln(2\pi\sigma^2) dx + \int f_X(x) \frac{x^2}{2\sigma^2} dx$$
$$= \frac{1}{2} \ln(2\pi\sigma^2) \int f_X(x) dx + \frac{1}{2\sigma^2} \int f_X(x) x^2 dx$$

The first integral is equivalent to 1, by the integrate-to-one constraint on valid probability distributions. The second integral is exactly the second moment of the normal distribution, which is simply the variance σ^2 . Then

$$h(X) = \frac{1}{2}\ln(2\pi\sigma^2) + \frac{\sigma^2}{2\sigma^2}$$
$$= \frac{1}{2}\left(\ln(2\pi\sigma^2) + 1\right)$$
$$= \frac{1}{2}\left(\ln(2\pi e\sigma^2)\right)$$

2.4 Quantization of the Probability Density Function

We can generate a discrete probability distribution from a continuous probability distribution over X by partitioning the x-axis into δ -sized intervals. Then for any point in interval i, the probability is

$$p(x_i) = \int_{i\Delta}^{(i+1)\Delta} f_X(x) dx \triangleq f_X(x_i) \Delta$$

Then the discrete entropy is

$$H(\hat{X}_{\Delta}) = -\sum_{i} p(x_i) \ln p(x_i)$$

where \hat{X}_{Delta} is the discrete analog of the continuous random variable X, defined by Δ .

$$\begin{split} H(\hat{X}_{\Delta}) &= -\sum_{i} f(x_{i}) \Delta \ln(p(x_{i}) \Delta) \\ &= -\sum_{i} f(x_{i}) \Delta \ln p(x_{i}) + \ln \Delta \\ &= -\sum_{i} f(x_{i}) \Delta \ln p(x_{i}) - \sum_{i} f(x_{i}) \Delta \ln \Delta \end{split}$$

Notice that

$$\sum_{i} f_X(x_i) \Delta = \sum_{i} \int_{i\Delta}^{(i+1)\Delta} f_X(x) dx = \int f_X(x) dx = 1$$

The first term, therefore, is h(X) and the second term becomes $\ln \Delta$, giving

$$H(\hat{X}_{\Delta}) = h(X) - \ln \Delta$$

Therefore the entropy of n-bit quantization of the distribution over X is h(X) + n.

2.5 Maximal Entropy with Fixed Variance

Theorem: A Gaussian random variable has the highest entropy of all random variables with fixed variance.

Proof: Consider an arbitrary distribution g(x) with variance σ^2 . Because g is a valid probability distribution,

$$\int g(x)dx = 1$$

And by definition of the second moment,

$$\int x^2 g(x) dx = \sigma^2$$

We want to show that $h_f(X) - h_g(X) \ge 0$.

$$h_f(X) - h_g(X) = -\int f(x) \ln f(x) dx + \int g(x) \ln g(x)$$
$$= \int g(x) \ln \frac{g(x)}{f(x)} dx + \int g(x) \ln f(x) dx - \int f(x) \ln f(x) dx$$

Notice that $\int g(x) \ln \frac{g(x)}{f(x)} dx$ is the divergence $D(g||f) \geq 0$. Thus

$$h_f(X) - h_g(X) = D(g||f) + \int g(x) \ln f(x) dx - \int f(x) \ln f(x) dx$$

For the second and third term, we have

$$\int g(x)\ln f(x)dx - \int f(x)\ln f(x)dx \ge \int g(x)\left(\ln\frac{1}{\sqrt{2\pi\sigma^2}} - \frac{x^2}{2\sigma^2}\right)dx - \int f(x)\left(\ln\frac{1}{\sqrt{2\pi\sigma^2}} - \frac{x^2}{2\sigma^2}\right)dx$$
$$= -\frac{1}{2\sigma^2}\sigma^2 + \frac{1}{2\sigma^2}\sigma^2 = 0$$

Therefore, $h_f(X) - h_g(X) \ge D(g||f) \ge 0$, thus $h_f(X) \ge h_g(X)$. In other words, given fixed energy (variance), Gaussian random variables are the most uncertain. This has some significant implications in the domain of quantum mechanics.

This meants that

$$\max_{w} h(w) = \frac{1}{2} \ln(2\pi e \sigma^2)$$

We can express σ^2 in terms of $\max_{w} h(w)$ as follows:

$$\sigma^2 = \frac{1}{2\pi e} e^{\max_{w} 2h(w)}$$

And this can be expressed as an inequality (because it may be difficult to compute the maximum), as follows:

$$\sigma^2 \ge \frac{1}{2\pi e} e^{2h(X)}$$

2.6 Mean Square Error

Given a random variable X and an estimate \hat{X} , the mean square error (MSE) is defined as

$$E[(X - \hat{X})^2] \ge E[(X - E[X])^2] = var(X)$$

Therefore the mean square error is lower bounded by the variance. How do we know this inequality holds?

$$E[(X - a)^{2}] = E[X^{2} - 2Xa + a^{2}]$$
$$= E[X^{2}] - 2aE[X] + a^{2}$$

Taking the derivative in terms of a gives

$$\frac{d}{da}(\cdot) = -2E[X] + 2a$$

This is 0 when a = E[X] and it can be easily shown (by examining the sign of the second derivative) that this is a local minimum. Altogether this implies that

$$MSE \ge \frac{1}{2\pi e} e^{2h(X)}$$

2.7 Parameter Estimation

Consider a family of distributions $f(x;\theta)$ with parameterization $\theta \in \Theta$. The Gaussian distribution is an example of such a family with parameters $\theta = \mu, \sigma$.

In the problem of parameter estimation, we want to find a function T which estimates θ given samples $X_1, X_2, ..., X_n$ which minimizes the estimation error

$$E_{\theta}[T(X_1, X_2, ..., X_n) - \theta]$$

if for all θ , this is 0, then the estimator is called **unbiased**. Also, it is said that T_1 dominates T_2 if $\forall \theta$:

$$E_{\theta}[(T_1(X_1, X_2, ..., X_n) - \theta)^2] \le E_{\theta}[(T_2(X_1, X_2, ..., X_n) - \theta)^2]$$

In other words T_1 has a smaller mean square error. In the next class we will define the Fisher information $J(\theta)$ and show how this relates to the mean square error of an estimator.