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1 Multi-Armed Bandit

Consider a casino owner who presents a gambler with a set of N coins, of which k£ < N are biased in
favor of the gambler. In order for the casino owner to ensure that the regret of the gambler is high:

1. there should be few favorably biased coins, i.e. k << N

2. the biased coins should not be too favorable; otherwise, the gambler will win with little regret.

3. the biased coins should sufficiently favorable
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Recall that given a bias €, the gambler must flip 7" = O (
as

) coins. Therefore the optimal bias is given

With this bias, the gambler has at least regret of

¢=0(VNT)
The best known algorithm for finding the biased coin incurs a regret of O (\/NT log N). The algorithm
is as follows:

1.

with probability p, select a random coin
2. with probability 1-p, toss according to the best estimate

3. p is the only hyperparameter and is selected as a function of N and T
2 Differential Entropy

We can define entropy over a continuous random variable, much in the same way we did for discrete
random variables. The differential entropy of a random variable X is defined as

h(X) & — / fx(x)In fx(x)dx
2.1 Differential Entropy of a Uniform Random Variable
Recall a uniform distribution f over a random variable X is defined as fy(x) =
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0 otherwise
The differential entropy of X is
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2.2 Properties of Differential Entropy

Theorem: Given any two random variables X and Y = X + q,

h(Y) = h(X) (1)

Proof:
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—/ fx(@)In fx(x)dx = h(X)

The equivalence fy (y) = fx(y — a) follow from:

Fy(y) =P(Y <y)
=P(z+a<y)
=P(x<y-—a)
= F.(y —a)

2.3 Differential Entropy of a Normal Random Variable

Consider X ~ N(p,02). Recall the equation of the normal distribution is
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As a result of theorem 1, we can safely drop p from the equation. That is, the entropy of ~ N (i, 0?) is
equal to the entropy of ~ N(0,02), because p only shifts the distribution. The area under the normal
distribution remains unchanged. So let

The differential entropy of X is
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The first integral is equivalent to 1, by the integrate-to-one constraint on valid probability distributions.

The second integral is exactly the sc,cond moment of the normal distribution, which is simply the variance
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2.4 Quantization of the Probability Density Function

We can generate a discrete probability distribution from a continuous probability distribution over X by
partitioning the x-axis into d-sized intervals. Then for any point in interval i, the probability is

(i+1)A
pa) = [ Ix@dr (e
Then the discrete entropy is
H(XA Zp(J‘L In p(z;)

where X pea 18 the discrete analog of the continuous random variable X, defined by A.

H(Xa) == 3 f(@) A In(p(e)A)
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Notice that
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The first term, therefore, is A(X) and the second term becomes In A| giving

H(XA)=h(X)—InA

Therefore the entropy of n-bit quantization of the distribution over X is A(X) + n.

2.5 Maximal Entropy with Fixed Variance

Theorem: A Gaussian random variable has the highest entropy of all random variables with fixed
variance.

Proof: Consider an arbitrary distribution g(x) with variance o?.

distribution,
/q(r)dr =1

Because g is a valid probability

And by definition of the second moment,

/IQg(a:)da: =02

We want to show that hy(X) — hy(X) >0

hp(X) = hy(X) = /f(r hlf(r)dr—{—/q(r)lnq(r)

= [s@m %S+ [ gy f@is - [ 1) f@is

Notice that [ g(x)n }((:; dzx is the divergence D(g||f) = 0. Thus

hy(X) = hy(X) = D(g|lf) + / g(2) In f(x)dz — / f(z)In f(z)dz

For the second and third term, we have
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Therefore, hy(X) — hy(X) > D(g||f) = 0, thus hy(X) > hy(X). In other words, given fixed energy
(variance), Gaussian random variables are the most uncertain. This has some significant implications in
the domain of quantum mechanics.
This meants that
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We can express o2 in terms of mazh(w) as follows:
w



2 1 max2h(w)

o= —e v
2me

And this can be expressed as an inequality (because it may be difficult to compute the maximum), as

follows:
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2.6 Mean Square Error

Given a random variable X and an estimate X, the mean square error (MSE) is defined as

EI(X - %)) 2 E[(X - E[X))?] = var(X)
Therefore the mean square error is lower bounded by the variance. How do we know this inequality

holds?

E[(X —a)?] = E[X? - 2Xa + d?
= E[X?] - 2aE[X] + d*

Taking the derivative in terms of a gives

d
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This is 0 when a = E[X] and it can be easily shown (by examining the sign of the second derivative)
that this is a local minimum. Altogether this implies that
L onx)
MSE > —e*"
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2.7 Parameter Estimation

Consider a family of distributions f(z;6) with parameterization # € ©. The Gaussian distribution is an
example of such a family with parameters 6 = u, 0.

In the problem of parameter estimation, we want to find a function T which estimates # given samples
X1, X5, ..., X,, which minimizes the estimation error

Eg|T (X1, X2, ... X)) — 0]

if for all 6, this is 0, then the estimator is called unbiased. Also, it is said that 7} dominates T5 if V#:

Ep[(T1(X1, Xa, ..., X)) — 0)?] < Ep[(To (X1, X2, ..., Xp) — 0)?]

In other words 73 has a smaller mean square error. In the next class we will define the Fisher information
J(6) and show how this relates to the mean square error of an estimator.



