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Lecture 11
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Let X and X ′ denote two iid random variable. Then, we have:

Pr(X = X ′) ≥ 2−H(X) (1)

where H(·) denotes the entropy of a random variable.
Proof

Pr(X = X ′) =
∑
a∈X

Pr(X = a|X ′ = a) Pr(X ′ = a) =
∑
a∈X

(p(a))2 = 2log
∑

(p(a))2 (2)

According to the Jensen inequality, since logarithm is a concave function, then we have:

log
∑

(p(a))2 = logE[p(a)] ≥ E[log p(a)] =
∑
c

p(c) log p(c) (3)

We can then re-write Equation (3) using Equation (2) as follows:

Pr(X = X ′) ≥ 2
∑

c p(c) log p(c) = 2−H(X) (4)

1 MAB: Multi-Armed Bandit

Let at be the action of an agent at time t. The regret function R(N,T ) for T time and N actions is
computed as follows:

R(N,T ) = E

[
T∑
t=1

l(at)− min
i∈{1,...,N}

l(i)

]
(5)

where l denotes the loss function of each action. It can be shown that R(N,T ) ≥ c
√
NT where c is a

constant number. There is a generic algorithm for MAB with the regret value of O(
√
NT logN).

In the following subsections we prove that R(N,T ) ≥ c
√
NT .

1.1 Identifying Whether a Coin is Biased

Lemma 1 We need O( 1
ε2 ) coin tosses to discern a biased coin with the probability of 1

2 − ε for head (and
obviously with the probability of 1

2 + ε for tail), from an unbiased coin.

Proof Consider two hypothesises H1 and H2 where respectively denote biased and unbiased coins. In
other words, we have the following hypothesises:{

H1 : biased p(h) = 1
2 − ε

H2 : unbiased p(h) = 1
2

(6)

According to the Le Cam’s identity, we can compute the error probability as follows:

Pe =
1

2

[
1− ‖p(m)

1 − p(m)
2 ‖TV

]
(7)

where m denotes the number of coin tosses.
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Using the Pinsker’s Inequality we can find an upper-bound for the total variation distance between
two probabilistic distribution as follows:

‖p(m)
1 − p(m)

2 ‖2TV ≤
2

ln 2
D(p

(m)
1 ||p(m)

2 ) (8)

Considering Equation (7) and Equation (8), we have:

Pe ≥
1

2

[
1−

√
(2/ ln 2)D(p

(m)
1 ||p(m)

2 )

]
(9)

We now need to introduce a nice property of the KL-divergence as follows:

Proposition 2 Suppose P (X,Y ) and Q(X,Y ) two joint distributions. If X and Y denote two indepen-
dent random variables, then:

D(P (X,Y )||Q(X,Y )) = D(P (X)||Q(X)) +D(P (Y )||Q(Y )) (10)

Proof

D(P (X,Y )||Q(X,Y )) =
∑
x,y

P (x, y) log
P (x, y)

Q(x, y)

=
∑
x,y

P (x)P (y) log
P (x)P (y)

Q(x)Q(y)

=
∑
x

P (x) log
P (x)

Q(x)
+
∑
y

P (y) log
P (y)

Q(y)

= D(P (X)||Q(X)) +D(P (Y )||Q(Y )) (11)

Considering the result of Proposition 2, we can re-write Equation (9) as below:

Pe ≥
1

2

[
1−

√
(2m/ ln 2)D(p1||p2)

]
(12)

Keep in mind that coin tosses are independent of each other and p(m) denotes the probability of m
coin tosses. We can compute D(p1||p2) as follows:

D(p1||p2) = D(
1

2
− ε||1

2
) = (

1

2
− ε) log(

1
2 − ε

1
2

) + (
1

2
+ ε) log(

1
2 + ε

1
2

)

=
1

2
log((1− 2ε)(1 + 2ε))︸ ︷︷ ︸

negative

+ε log(
1 + 2ε

1− 2ε
)

≤ ε log(1 +
4ε

1− 2ε
)

≤ 4ε2

1− 2ε
(because1 + x ≤ ex)

≤ 8ε2 (∀ε ≤ 1/4) (13)

Considering both Equation (12) and Equation (13), we have:

Pe ≥
1

2

[
1−

√
(2m/ ln 2)8ε2

]
=

1

2

[
1−

√
(16/ ln 2)ε2m

]
(14)
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Suppose Pe <
1
4 . Then:

1

4
>

1

2

[
1−

√
(16/ ln 2)ε2m

]
⇒
√

(16/ ln 2)ε2m >
1

2
⇒ 16

ln 2
ε2m >

1

4
⇒ m >

ln 2

64ε2
(15)

Therefore, we need at least ln 2
64ε2 coin tosses to have lower than 1

4 error probability. We show that
we need O( 1

ε2 ) coin tosses and thus, the proof of Lemma 1 is completed (we can easily put parameters
instead of Pe <

1
4 ).

1.2 Identifying A Biased Coin

In the previous subsection, we show that we need O( 1
ε2 ) coin tosses to decide whether a coin is biased

or not. Now, assume that we have N coins and our purpose is to decide which coin is biased.

Lemma 3 At least O(Nε2 ) coin tosses needed to decide which coin among N coins are biased.

In other words, suppose (at, bt) is a pair in which at ∈ {1, 2, ..., N} and bt ∈ {1, 2, ..., N} respectively
denote the action (choose one coin and toss) and the decision (decide which coin is biased) at time t. If
t < N

100ε2 then there exists a set J ⊂ {1, 2, ..., N} and |J | ≥ N/3 where ∀j ∈ J : Pr(bt = j) < 1/2. In
fact, we cannot decide which coin is biased with a high probability. We will prove it.
Proof Let Aj be the number of times that ALG (a method for deciding which coin is biased) tosses
the jth coin. It is obvious that:

N∑
i=1

Aj = t (16)

where t denotes the total number of coin tosses. Consider J1 = {j ∈ {1, ..., N} : Aj ≤ 3t
N }. Therefore,

N − |J1| denotes the number coins that are tossed at least 3t
N times. Thus, we have:

(N − |J1|)
3t

N
≤ t⇒ N − |J1| =

N

3
⇒ |J1| ≥

2N

3
(17)

Now, consider J2 = {j ∈ {1, ..., N} : Pr(bt = j) ≤ 3
N }. Since, the sum of all probabilities should be

equal to one, thus we have:

(N − |J2|)
3

N
≤ 1⇒ |J2| ≥

2N

3
(18)

It is obvious that N ≥ |J1 ∪ J2| and we know that

|J1 ∪ J2| = |J1|+ |J2| − |J1 ∩ J2| (19)

According to Equation (17) and Equation (18), we have:

|J1 ∪ J2| ≥
2N

3
+

2N

3
− |J1 ∩ J2| ⇒ |J1 ∩ J2| ≥

N

3
(20)

Now, consider J ≡ J1 ∩ J2. Then, according to the Le Cam’s Inequality we have:

PH1(bt = j) ≤ PH2(bt = j) + ‖PH1(bt = j)− PH2(bt = j)‖

≤ 3

N
+

√
2

ln 2
D(P

Aj

H1||P
Aj

H2)

=
3

N︸︷︷︸
→0

+

√√√√√ 2

ln 2
Aj︸︷︷︸
3t
N

D(
1

2
− ε||1

2
)︸ ︷︷ ︸

≤8ε2

'
√
tε

N
.

16

ln 2
(21)
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In the above equations, we use the results of Proposition 2 and Equation 13. Now, suppose t < N ln 2
64ε2 ,

then PH1(bt = j) < 1
2 . So this is also true for t ≤ N

100ε2 . So Lemma 3 is successfully proved.

1.3 Proof of the Regret Lower-Bound in MAB

As pointed out in the beginning of Section 1, the regret function is calculated as:

R(N,T ) = E

[
T∑
t=1

l(at)− min
i∈{1,...,N}

l(i)

]
(22)

Consider hypothesis H1 as:

l(i) =

{
1 w/prob. 12
2 w/prob. 12

(23)

Also consider hypothesis H2 as:

l(i) =

{
1 w/prob. 12 − ε
2 w/prob. 12 + ε

(24)

According to these two hypothesis we have:

T∑
i=1

E
[

min
i∈{1,...,N}

l(i)

]
= (

1

2
− ε)T (25)

The other term in the regret function can be also computed as below (assume that J∗ is the biased
coin):

E[l(at)] = E[l(at)|j∗ ∈ J ] Pr(j∗ ∈ J) + E[l(at)|j∗ /∈ J ] Pr(j∗ /∈ J)

=
1

3
E[l(at)|j∗ ∈ J ] Pr(j∗ ∈ J) +

2

3
E[l(at)|j∗ /∈ J ] Pr(j∗ /∈ J)

≥ 1

3
[
1

2
(
1

2
− ε) +

1

2
/

1

2
] +

2

3
[
1

2
− ε]

=
1

3
[
1

2
− ε

2
] +

2

3
[
1

2
− ε]

=
1

2
− 2

3
ε (26)

According to Equation (25) and Equation (26), the regret function can be calculated as:

R(N,T ) = (
1

2
− 2

3
ε)T − (

1

2
− ε)T =

1

3
εT (27)

If we tosses more than N
100ε2 times, we have ε ≤ 1

10

√
N
T . Therefore, the regret is equal to:

R(N,T ) ≥ 1

30

√
NT (28)

Now, the proof is completed.
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