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Let X and X’ denote two iid random variable. Then, we have:

Pr(X = X') > 27 H&X) (1)
where H(-) denotes the entropy of a random variable.
Proof
Pr(X =X') =Y Pr(X =a|X' =a)Pr(X' =a) = Y _ (p(a))* =2"5>= (p(a))® (2)
aeX a€eX

According to the Jensen inequality, since logarithm is a concave function, then we have:
log ) _ (p(a))* = log E[p(a)] > Elog p(a)] Zpl%p (3)

We can then re-write Equation (3) using Equation (2) as follows:

Pr(X = X') > 2Xcp(9)logp(e) — 9= H(X) @

1 MAB: Multi-Armed Bandit

Let a¢ be the action of an agent at time ¢. The regret function R(N,T) for T time and N actions is
computed as follows:

i€{1, N}

T
=E|) l(a) = min_ (i) (5)

where [ denotes the loss function of each action. It can be shown that R(N,T) > ¢v NT where c is a
constant number. There is a generic algorithm for MAB with the regret value of O(v/NT log N).
In the following subsections we prove that R(N,T) > ¢V NT.

1.1 Identifying Whether a Coin is Biased

Lemma 1 We need O(e%) coin tosses to discern a biased coin with the probability of % —e¢ for head (and
obuviously with the probability of % + € for tail), from an unbiased coin.

Proof Consider two hypothesises H1 and H2 where respectively denote biased and unbiased coins. In
other words, we have the following hypothesises:

— €

{Hl : biased p(h) = (6)

H2 : unbiased p(h) =

N|— N

According to the Le Cam’s identity, we can compute the error probability as follows:
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where m denotes the number of coin tosses.



Using the Pinsker’s Inequality we can find an upper-bound for the total variation distance between
two probabilistic distribution as follows

m 2 m m
4™ = 5" 3y < 5 D™ 1p5™) (8)
Considering Equation (7) and Equation (8), we have

P> 1

= [1 e/ m2)pE™ pim)

(9)
We now need to introduce a nice property of the KL-divergence as follows

Proposition 2 Suppose P(X,Y) and Q(X,Y) two joint distributions. If X andY denote two indepen-
dent random variables, then:

D(P(X,Y)[|Q(X,Y)) =

D(P(X)[|Q(X)) + D(P(Y)|[Q(Y)) (10)
Proof
D(P(X,Y)||Q(X,Y)) ZP z,y) log (iz;

P(z)P(y)
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= D(P(X)[|Q(X)) + D(P(Y)[|Q(Y)) (11)
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Considering the result of Proposition 2, we can re-write Equation (9) as below

P> % {1 —/(2m/In Q)D('p1\|P2)}

(12)
Keep in mind that coin tosses are independent of each other and p("™) denotes the probability of m
coin tosses. We can compute D(p;||p2) as follows
1 1 1-e 1 3+e
D(pillp2) = D(5 — ell5) = (5 — €)log(£5—) + (5 + ¢) log(+5—)
2 2 2 3 2 3
142
=3 log((1 — 2¢)(1 + 2¢)) +elog(1 i_ QE)
negative
4e
<elog(l+ ———
< elog(l+ —-)
4¢?
< T
ST o (becausel + x < e”)
< 8¢? (Ve < 1/4) (13)
Considering both Equation (12) and Equation (13), we have
1 1
P>- [1 —/@m/ 1n2)862] = [1 —/(16/ ln2)e2m} (14)



Suppose P, < ;. Then:

1 1 1 16 1 In2
i 2 2 I 2 Z -
4>2{1 V/(16/1In2)e m}:>\/(16/1n2)e m>g = e m>4:>m>6462 (15)

Therefore, we need at least 52—622 coin tosses to have lower than i error probability. We show that

we need O(e%) coin tosses and thus, the proof of Lemma 1 is completed (we can easily put parameters
instead of P, < 1).
|

1.2 Identifying A Biased Coin

In the previous subsection, we show that we need O(E%) coin tosses to decide whether a coin is biased
or not. Now, assume that we have N coins and our purpose is to decide which coin is biased.

Lemma 3 At least O(g) coin tosses needed to decide which coin among N coins are biased.

In other words, suppose (a, by) is a pair in which a; € {1,2,..., N} and b; € {1,2,..., N} respectively
denote the action (choose one coin and toss) and the decision (decide which coin is biased) at time ¢. If
t < 1& then there exists a set J C {1,2,..., N} and |J| > N/3 where Vj € J : Pr(b, = j) < 1/2. In
fact, we cannot decide which coin is biased with a high probability. We will prove it.

Proof Let A; be the number of times that ALG (a method for deciding which coin is biased) tosses
the j* coin. It is obvious that:
> A=t (16)

where ¢ denotes the total number of coin tosses. Consider J; = {j € {1,..., N} : A; < 3L}, Therefore,
N — |J1| denotes the number coins that are tossed at least 3¢ times. Thus, we have:

(N_|J1|)NSt:}N_|J1|:§:>|J1|Z? (17)

Now, consider Jo = {j € {1,..., N} : Pr(b; = j) < &}. Since, the sum of all probabilities should be
equal to one, thus we have:

3 2N
N — — <1 > = 1
( |J2|)N <1=|Ja| > 3 (18)
It is obvious that N > |J; U J2| and we know that
|y U Jo| = |J1] + || = |J1 N Ja| (19)

According to Equation (17) and Equation (18), we have:

2N 2N N
3

|J1UJ2|Z?+?—|J10J2|$|J10J2|Z (20)

Now, consider J = J; N Jo. Then, according to the Le Cam’s Inequality we have:

Py (by = j) < Pra(be = j) + || Pa1(by = j) — Pra(by = j5)||
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In the above equations we use the results of Proposition 2 and Equation 13. Now, suppose t <

64€2
then Pyq(by = 7) < =. So this is also true for ¢ < 100 —2—~. So Lemma 3 is successfully proved.
|
1.3 Proof of the Regret Lower-Bound in MAB
As pointed out in the beginning of Section 1, the regret function is calculated as:
T
=E l — i 11 22
z:: (a) =, _min 1) (22)
Consider hypothesis H1 as:
1 b.L
iy =15 s (23)
2 w/prob.;
Also consider hypothesis H2 as:
1 b.i —
1) = w/pro € (24)
2 w /prob.2 +e
According to these two hypothesis we have:
ZE mln (z) = (1 —eT (25)
ie{l,.. 2

The other term in the regret function can be also computed as below (assume that J* is the biased
coin):

Ell(ar)] = E[l(a)|5* € J]Pr(5* € J) HE[ (a)lj™ & JIPr(j" ¢ J)

= LBy € JIPr(* € 7) + SEfi(a)lj* ¢ JIPr(y” ¢ J)
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According to Equation (25) and Equation (26), the regret function can be calculated as:

If we tosses more than # times, we have € < 1—10\/%. Therefore, the regret is equal to:

R(N,T) > ~VNT (28)

gl

Now, the proof is completed.
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