
COMPSCI 650: HOMEWORK 2

INSTRUCTOR: A. MAZUMDAR

All problems carry equal points
Some problems are from Cover and Thomas, 2nd Ed.

Due Date: Mar 10, 2016: Start of Class/Midterm

(1) • Let X be a discrete random variable. Show that the entropy of a function of X is less than or equal
to the entropy of X .
• Prove the data-processing inequality for relative entropy. That is, suppose X is a (discrete) random

variable and Y = g(X). Let P1 and P2 be two distributions for X . Define the distributions P̂1 and P̂2

for Y as follows.
P̂1(Y = y) = P1(g

−1(y)),

and
P̂2(Y = y) = P2(g

−1(y)).

Now prove that,
D(P1||P2) ≥ D(P̂1||P̂2).

(2) Pinsker’s inequality. For any two distributions on a discrete support set X ,

D(P1||P2) ≥
2

ln 2
‖P1 − P2‖2TV .

In the class we have shown Pinsker’s inequality to be true for two Bernoulli distributions. Use that fact
and the data-processing inequality to prove Pinsker’s inequality for two arbitrary distributions. (Hint: For
a random variable X with support X and A ⊂ X , define a new Bernoulli random variable Y : Y = 1 if
X ∈ A. This defines two distributions P̂1 and P̂2 for Y , where P̂1(1) = P1(A) and P̂2(1) = P2(A).)

(3) We are given the following joint distribution on (X, Y ), X ∈ {1, 2, 3}, Y ∈ {1, 2, 3}.

p(x, y) =

{
1
6
, x = y;
1
12
, x 6= y

Let X̂(Y ) be an estimator for X (based on Y ) and let Pe = Pr{X̂(Y ) 6= X}.
• Find the minimum probability of error estimator X̂(Y ) and the associated Pe.
• Evaluate Fanos inequality for this problem and compare.

(4) Let X1, X2, . . . , Xn be i.i.d. ∼ p(x). Consider the hypothesis test H1 : p = p1 vs. H2 : p = p2 . Let

p1(x) =


1
2
, x = −1;

1
4
, x = 0;

1
4
, x = 1.
1
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p2(x) =


1
4
, x = −1;

1
4
, x = 0;

1
2
, x = 1.

Find the probability of error, Pr{Decide H2|H1 true} in the best hypothesis test of H1 vs. H2 subject to
Pr{Decide H1|H2 true} ≤ 1

2
.

(5) Consider an n-length random binary {0, 1}-sequence Xn
1 ≡ X1, . . . , Xn, where each Xi is independently

generated according to a Bernoulli(1
2
) distribution. Consider another random sequence Y n

1 ≡ Y1, . . . , Yn

exactly similarly generated. The Hamming distance between the two sequences, d(Xn
1 , Y

n
1 ) is defined to

be the number of coordinates where the two sequences differ:

d(Xn
1 , Y

n
1 ) ≡ |{i : Xi 6= Yi}|.

• What is Ed(Xn
i , Y

n
i ), the average value of the Hamming distance between the two sequences?

• Suppose each entry of Xn
1 is flipped with probability p. And as a result we obtain a sequence X̂n

1 .
What is Ed(Xn

1 , X̂
n
1 )?

• What is Ed(Y n
1 , X̂

n
1 )?

• What is Pr{d(Xn
1 , X̂

n
1 ) ≥ d(Y n

1 , X̂
n
1 )}

(6) Let {Xi} be i.i.d. ∼ p(x), x ∈ {1, 2, . . . }. Consider two hypotheses, H0 : p(x) = p0(x) vs. H1 : p(x) =
p1(x), where p0(x) = (1

2
)x and and p1(x) = qpx−1, x = 1, 2, 3, . . .

• Find D(p0||p1).
• Let Pr{H0} = 1

2
. Find the minimal probability of error test for H0 vs. H1 given data X1, X2, . . . , Xn ∼

p(x).
(7) Let Pr(X = i) = pi, i = 1, 2, . . . ,m, and let p1 ≥ p2 ≥ p3 ≥ · · · ≥ pm. The minimal probability of error

predictor of X is X̂ = 1, with resulting probability of error Pe = 1 − p1. Maximize H({p1, . . . , pm})
subject to the constraint 1− p1 = Pe to find a bound on Pe in terms of H .


