COMPSCI 650: HOMEWORK 2

INSTRUCTOR: A. MAZUMDAR

All problems carry equal points Some problems are from Cover and Thomas, 2nd Ed. Due Date: Mar 10, 2016: Start of Class/Midterm

- (1) Let X be a discrete random variable. Show that the entropy of a function of X is less than or equal to the entropy of X.
 - Prove the data-processing inequality for relative entropy. That is, suppose X is a (discrete) random variable and Y = g(X). Let P_1 and P_2 be two distributions for X. Define the distributions \hat{P}_1 and \hat{P}_2 for Y as follows.

$$\hat{P}_1(Y=y) = P_1(g^{-1}(y)),$$

and

$$\hat{P}_2(Y=y) = P_2(g^{-1}(y)).$$

Now prove that,

$$D(P_1||P_2) \ge D(\hat{P}_1||\hat{P}_2).$$

(2) Pinsker's inequality. For any two distributions on a discrete support set \mathcal{X} ,

$$D(P_1||P_2) \ge \frac{2}{\ln 2} ||P_1 - P_2||_{TV}^2.$$

In the class we have shown Pinsker's inequality to be true for two Bernoulli distributions. Use that fact and the data-processing inequality to prove Pinsker's inequality for two arbitrary distributions. (Hint: For a random variable X with support \mathcal{X} and $A \subset \mathcal{X}$, define a new Bernoulli random variable Y: Y = 1 if $X \in A$. This defines two distributions \hat{P}_1 and \hat{P}_2 for Y, where $\hat{P}_1(1) = P_1(A)$ and $\hat{P}_2(1) = P_2(A)$.) We are given the following joint distribution on (X, Y), $X \in \{1, 2, 3\}$, $Y \in \{1, 2, 3\}$.

(3) We are given the following joint distribution on (X, Y), $X \in \{1, 2, 3\}$, $Y \in \{1, 2, 3\}$.

$$p(x,y) = \begin{cases} \frac{1}{6}, & x = y; \\ \frac{1}{12}, & x \neq y \end{cases}$$

Let $\hat{X}(Y)$ be an estimator for X (based on Y) and let $P_e = \Pr{\{\hat{X}(Y) \neq X\}}$.

- Find the minimum probability of error estimator $\hat{X}(Y)$ and the associated P_e .
- Evaluate Fanos inequality for this problem and compare.

(4) Let X_1, X_2, \ldots, X_n be i.i.d. $\sim p(x)$. Consider the hypothesis test $H1: p = p_1$ vs. $H2: p = p_2$. Let

$$p_1(x) = \begin{cases} \frac{1}{2}, & x = -1; \\ \frac{1}{4}, & x = 0; \\ \frac{1}{4}, & x = 1. \end{cases}$$

$$p_2(x) = \begin{cases} \frac{1}{4}, & x = -1; \\ \frac{1}{4}, & x = 0; \\ \frac{1}{2}, & x = 1. \end{cases}$$

Find the probability of error, $\Pr\{\text{Decide } H2|H1 \text{ true}\}\$ in the best hypothesis test of H1 vs. H2 subject to $\Pr\{\text{Decide } H1|H2 \text{ true}\} \leq \frac{1}{2}$.

(5) Consider an *n*-length random binary $\{0, 1\}$ -sequence $X_1^n \equiv X_1, \ldots, X_n$, where each X_i is independently generated according to a Bernoulli $(\frac{1}{2})$ distribution. Consider another random sequence $Y_1^n \equiv Y_1, \ldots, Y_n$ exactly similarly generated. The *Hamming distance* between the two sequences, $d(X_1^n, Y_1^n)$ is defined to be the number of coordinates where the two sequences differ:

$$d(X_1^n, Y_1^n) \equiv |\{i : X_i \neq Y_i\}|.$$

- What is $\mathbb{E}d(X_i^n, Y_i^n)$, the average value of the Hamming distance between the two sequences?
- Suppose each entry of X_1^n is flipped with probability p. And as a result we obtain a sequence \hat{X}_1^n . What is $\mathbb{E}d(X_1^n, \hat{X}_1^n)$?
- What is $\mathbb{E}d(Y_1^n, \hat{X}_1^n)$?
- What is $Pr\{d(X_1^n, \hat{X}_1^n) \ge d(Y_1^n, \hat{X}_1^n)\}$
- (6) Let $\{X_i\}$ be i.i.d. $\sim p(x), x \in \{1, 2, ...\}$. Consider two hypotheses, $H0: p(x) = p_0(x)$ vs. $H1: p(x) = p_1(x)$, where $p_0(x) = (\frac{1}{2})^x$ and and $p_1(x) = qp^{x-1}, x = 1, 2, 3, ...$
 - Find $D(p_0||p_1)$.
 - Let $Pr\{H0\} = \frac{1}{2}$. Find the minimal probability of error test for H0 vs. H1 given data $X_1, X_2, \ldots, X_n \sim p(x)$.
- (7) Let $Pr(X = i) = p_i, i = 1, 2, ..., m$, and let $p_1 \ge p_2 \ge p_3 \ge \cdots \ge p_m$. The minimal probability of error predictor of X is $\hat{X} = 1$, with resulting probability of error $P_e = 1 p_1$. Maximize $H(\{p_1, ..., p_m\})$ subject to the constraint $1 p_1 = P_e$ to find a bound on P_e in terms of H.