
Reducing Duplicate Filters in Deep Neural Networks

Aruni RoyChowdhury 1 Prakhar Sharma 1 Erik Learned-Miller 1

Abstract
This paper investigates the presence of duplicate
neurons or filters in neural networks. This phe-
nomenon is prevalent in networks and increases
with the number of filters in a layer. We observe
the emergence of duplicate filters over training
iterations, study the factors that affect their con-
centration and compare existing network reducing
operations. We validate our findings using con-
volutional and fully-connected networks on the
CIFAR-10 dataset.

1. Introduction
In this paper, we focus on two ways in which neurons or
filters in neural networks may be redundant – (1) if they
have negligibly small values (i.e. the filters have weight
vectors with low norm), or (2) if their functionality is mim-
icked by another filter. The latter may be quantified as high
cosine similarity between the weight vectors of two filters.
The presence of near-duplicate filters in deep neural net-
works (Zeiler & Fergus, 2014; Rodríguez et al., 2016) is
an interesting phenomenon which to our knowledge has
not been explored empirically for recent neural network
architectures. The contributions of this paper are:

(i) empirically shows that fully-connected networks have
a significantly larger number of near-duplicate parame-
ters with increasing layer size and contrasts this to the
behaviour of convolutional networks;

(ii) visualizes the evolution and convergence of duplicate
filters in networks over training iterations;

(iii) draws connections between low-rankedness of weight
matrices and increasing redundancy;

(iv) provide a network-equivalent reduction operation to
eliminate duplicates, and empirically compares exist-
ing norm-based approaches with the duplicate-based
approach to redundancy-removal.
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2. Related Work
Singularities and irreducible neural networks. Several
papers in the early neural network literature have studied
the phenomenon of identical parameters and their effect
on optimization in feed-forward neural networks. Chen
& Hecht-Nielsen (1991) analyzes a class of “equi-error"
weight space transformations for multi-layer perceptrons
that leaves the network input-output map unchanged. Suss-
mann (1992) introduces the concept of an irreducible net
– one that does not have zero-weight nodes, nor a pair of
nodes that could be collapsed into a single node without
altering the network input-output map. Fukumizu (1996)
show that a neural network with such redundancies will have
a singular Fisher information matrix. Amari et al. (2006)
and Wei et al. (2008) analyze the learning dynamics near sin-
gularities of the Hessian and identify two types of plateaus
in the optimization landscape that arise due to identical or
redundant model parameters. Recently, Orhan & Pitkow
(2017) show that residual networks overcome the singularity
problem due to the presence of skip connections between
layers.

Convergent learning. Li et al. (2015) pose the question:
do different neural networks (with the same architecture)
learn the same things? Based on their experiments, different
networks do converge to a similar set of weights, up to a
permutation symmetry (e.g. unit 1 in network 1 may be a
red color detector, while in network 2 the red detector is in
unit 47), with a few unique weights that are not commonly
learned across networks. Our work is similar is spirit but
focuses on the different situation of duplicate filters in the
same layer of a single network.

Decorrelated network weights. A line of work has fo-
cused on loss functions that penalize the correlation of neu-
ral network parameters, such as the DeCov loss (Cogswell
et al., 2015) and OrthoReg (Rodríguez et al., 2016), thus
ensuring diversity in the neurons of a layer.

Network pruning. Li et al. (2017) discuss the advantages
of structured pruning of network parameters, wherein entire
filters with low L1-norm are dropped, as opposed to ap-
proaches that zero out redundant weights in an unstructured
fashion and then rely on sparse libraries to take advantage
of the sparsity structure. Mariet & Sra (2016) select a sub-
set of diverse neurons using a Determinantal Point Process
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(DPP) based on correlations between their activations. They
also observe that simply dropping neurons causes a large
change in the input-output map and propose to re-weigh the
selected neurons to account for this using a least squares
solution. The only work to our knowledge that addresses the
redundancy due to near-identical neurons in deep networks
is from Srinivas & Babu (2015), which uses an iterative
procedure to eliminate near-duplicates a single pair at a
time, but does not focus on analysing duplicate filter con-
centration. Molchanov et al. (2016) use a Taylor expansion
of the network function w.r.t. activations, which results in
removing both low-activation and low-gradient neurons.

3. Duplicate filters in neural networks
We use two simple network architectures — a fully-
connected multi-layer perceptron (MLP) and a convolu-
tional neural network (CNN). We use filter to denote both
the channels of a convolutional layer and also indicate an
individual neuron’s weights in the weight matrix of a fully
connected layer.

The MLP has two fully-connected (fc) layers followed by a
10-way softmax. The size of the first layer (fc1) is varied
across 100, 500 and 1000 units. The size of the second
layer (fc2) is fixed at 100 units. The CNN consists of two
convolutional layers (conv1 and conv2), each followed
by a ReLU non-linearity and 2× 2 max-pooling, two fully-
connected layers (fc1 and fc2) , both followed by a ReLU
and finally a 10-way classifier with a softmax. The first
conv-layer’s size is varied across 100, 500, 1000, similar
to what we do for the MLP experiments. The second conv-
layer is fixed to have 50 filters. The fc-layers have sizes
120 and 84. Both networks are trained till convergence on
CIFAR-10 (Krizhevsky & Hinton, 2009). Visualizations of
the first layer filters are in the Appendix.

3.1. Distribution of redundant filters

Each of the MLP networks are trained from 100 different
random initializations. The distribution of intra-network
filter similarity (measured in terms of cosine similarity,
〈 wi

||wi|| ,
wj

||wj || 〉 for filters i and j, with 〈., .〉 denoting the
inner-product between two vectors) among the first layer
weights is plotted in subplots (a-c) of Figure 1. The right
tail shows a small but significant heaviness with increasing
layer size, indicating that there are more filters with a high
cosine similarity between them as we keep increasing the
network width. This trend was not evident in similar plots
for CNNs.

The distributions of the norms of filter weights for the MLP
networks are plotted in Figure 1(d-f). We use the 2-norm,
||wi||, for filter i. With increasing layer size there is a
corresponding increase in the the frequency of low-norm

(a) (b) (c)

(d) (e) (f)

Figure 1. (a-c) distribution of cosine similarity between filters with
increasing layer size. The right tail gets heavier – kurtosis values
are 3.367 (fc:100), 4.152 (fc:500), 4.149 (fc:1000); (d-f)
distribution of filter norms for fc:100, fc:500 and fc:1000.

filters. These plots give a visual indication that both kinds
of redundancy – low-norm and duplicates – increase with
over-parameterization of the network. 1

3.2. Grouping duplicate filters

Considering the fc1:500 MLP network as an example,
the first layer weights (W ∈ R500×3∗32∗32), can be viewed
as 500 discriminative filters acting upon 3-channel 32× 32
images, each filter being a 3 ∗ 32 ∗ 32 dimensional vector.
A similarity matrix S is then formed, where each entry
sij measures the cosine similarity between filters i and j.
By thresholding S at a particular value τ , we can induce a
similarity graphGτ over the filters in a layer. The connected
components (CCs) of Gτ result in groups of near-duplicate
filters at a particular threshold τ of their cosine similarity.
For CNNs we consider the 4-D tensor of k convolutional
kernels of spatial support c × c acting on d-dimensional
inputs to be a set of k vectors, each of size dc2. Some
examples of such grouped filters in the first layers are shown
for MLP and CNN in Figure 2(b). The effect of changing
the similarity threshold τ is visualized for MLP filters in
Figure 3.

3.3. Analysis of duplicates

Layer size and duplicate concentration. A method to
quantify the degree of duplicate filters in a network is de-
scribed here. Let η be the ratio of number of filter groups
and the total number of filters at different thresholds τ in
Gτ . The quantity 1− η, plotted as the y-axes of Figure 2(b-
c) gives an estimate of the concentration of duplicates in
a layer. For the MLP, the curves become higher as we in-

1We observe in passing that the distributions of filter norms,
which are the lengths of high dimensional random variables, re-
semble a Rayleigh distribution with decreasing scale parameter for
increasing layer size.
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Figure 2. (a) Test accuracy of MLP on CIFAR-10 with increasing
layer size over 100 runs; (b) Groups of similar filters in the first
layer of a 500-unit MLP (top) and CNN (bottom); (c-d) concen-
tration of duplicates with increasing layer size for the MLP and
CNN.

crease the number of filters in the first layer (Figure 2(b)).
For the CNN (Figure 2(c)), near-duplicate filters is not very
common in the first layer and do not occur at all in the later
layers. We note from Figure 1 that for larger first layer size
in MLPs, the distribution of inter-filter cosine similarity had
heavier right-tails, indicating more filters with high similar-
ity. This trend was not evident in CNNs. It is possible that
having fewer parameters and being less prone to over-fitting,
the CNN architecture rarely develops completely identical
filters, unlike the fully-connected MLP networks.

Relation to matrix rank. Having filters in a network with
high cosine similarity means that the vectors are both point-
ing in the same direction, with a possible difference in scale.
This would indicate that the rank of the weight matrix is
small when it has many duplicate filters (the converse is not
true – small rank does not necessarily indicate duplicates).
Gunasekar et al. (2017) observe that stochastic gradient de-
scent (SGD) is biased to finding the minimum nuclear norm
solution. We conjecture that the presence of duplicates in
over-parameterized networks could be an effect of finding a
set of weight matrices with low nuclear norm, which implies
low rank. Figure 4(d) plots a slightly modified matrix trace
complexity (Srebro & Salakhutdinov, 2010) (for a matrix
W ∈ Rn×m, tc = ||W ||tr√

nm
), which acts as an indicator of

matrix rank, as we increase layer size in the MLP networks,
averaged over 100 runs. This shows that with increasing
layer size, there is a decrease in effective rank, normalized
for matrix size.

The following discussion focuses on MLPs, since they ex-
hibit duplicates more noticeably. We adapt the method of
SV-CCA (Raghu et al., 2017) to compare the subspaces
spanned by the filters as the layer is widened. The singu-
lar values of the filters are plotted in Figure 4 (a-c), which

Figure 3. Visualizing MLP filter groups at various cosine similarity
thresholds τ . Rows from top to bottom: τ = {0.95, 0.9, 0.8}. At
strict thresholds the filters are virtually indistinguishable from
each other visually; in numerical terms this means that the filters
have weight vectors pointing in almost the exact same direction.
Relaxing the similarity threshold results in visually dissimilar
filters being clustered together, as is particularly evident for the
last row.

indicate a low effective rank of the weight matrices. The
average correlation between the first layer filters of the net-
works after the CCA is very high across the different layer
sizes, as shown in Figure 4 (e). This would indicate that the
subspaces spanned by the weight vectors of the network as
we increase the layer-size are quite similar. We observe qual-
itatively that filters across the models are roughly similar.
The new filters being learned with the increased capacity are
subtly different from the filters in a smaller network — they
are tuned to fine-grained differences (e.g. a “brown" color
detector may now be replaced by detectors for the shades
“auburn" and “chestnut").
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Figure 4. (a-c) Singular values with increasing fc1 layer size in
MLP. The vertical red line marks 99% of the singular values’
energy. (d) Trace complexity of weight matrices of fc:{100,
500, 1k}, averaged over 100 runs each. (e) Modified SV-CCA
similarity matrix (upper-triangle) between the MLP networks
fc1:100,500,1000.

Dropout and neuron co-adaptation. Dropout (Hinton
et al., 2012; Srivastava et al., 2014) was introduced to
prevent overfitting in neural networks by reducing co-
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Table 1. The fractions show #CC
#filters

in Gτ=0.9 at different
dropout rates on the MLP models. Smaller #CC means more
duplicates.

Dropout: none 0.2 0.5 0.8

fc1:100 91/100 95/100 95/100 97/100
fc1:500 277/500 272/500 290/500 285/500
fc1:1k 356/1k 365/1k 368/1k 384/1k

Table 2. Increasing weight decay in the MLP fc:100.

Wt. decay Train acc.(%) Test acc.(%)

0.001 81 54
0.010 63 55
0.018 55 52

adaptations between neurons. Dropout randomly zeroes
out a fraction of features at each training iteration — this
amounts to randomly dropping the contributions of an entire
row of a layer’s weight matrix (or a whole filter in case of
a conv-layer). The results in Table 1 show that even with
dropout the filters can be grouped into clusters of duplicates
– if there were no duplicates then the number of CCs in Gτ
would be equal to the number of filters in that layer. Dropout
decreases the number of duplicates by a small amount, but
does not eliminate the issue. It is also to be noted that set-
ting a very high dropout rate adversely affects the test-time
performance of the network.

Initialization and convergence. A sample plot of inter-
filter similarity over training iterations is shown in Figure 5.
The learning rate is exponentially decayed over training
epochs. Starting at random values, most of the weight
vectors are nearly orthogonal to each other (Diaconis &
Freedman, 1984) during the initial iterations, shown in Fig-
ure 5 (b). The first sharp drop in the loss, denoted by the
two red lines in the loss plot Figure 5 (a), is accompanied
by a significant change in similarity structure (b-c). Groups
of filters attain similar values, evident in the block structure
of Figure 5 (c). As training proceeds the filters gradually
become distinct (Figure 5 (d)), and we get the similarity
structure at the final stages ((Figure 5 (e)).

Effect of regularization. The results of varying weight
decay are shown in Table 2 and the filters are visualized
in Figure 6. The filters are seen to be quite noisy with low
regularization and higher regularization decreases the perfor-
mance slightly while resulting in smoother filters. Duplicate
filters are visually evident in the rightmost plot (highest
weight decay) in Figure 6 – in particular a prominent green
patch is repeated quite frequently.
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Figure 5. (a) MLP fc1:500 data loss over training iterations,
batchsize of 100. (b-e) First layer filter similarity matrices
(500× 500) at different iterations (batches). Colors correspond to
iterations at vertical lines in the loss plot. Best viewed in color and
high zoom.

4. Network Reduction
Let us consider the two-layer MLP with weight matrices
W ∈ RK1×D and V ∈ RK2×K1 for the first and second
layer respectively, and input features x ∈ RD. For ease of
exposition, we discuss eliminating duplicate filters in the
first layer, i.e. the rows of W , denoted as wi, with biases bi
and non-linearity φ(.).

4.1. Duplicate Neuron Reduction

Equivalence-preserving weight normalization. Al-
though filters in a group have their weight vectors pointing in
the same direction, their magnitudes are empirically found
to be quite different (see Figure 7). By dividing each fc1
layer filter (rows ofW ) by its L2-norm and then multiplying
the corresponding connections to the fc2 layer (columns
of V ) by the same scalar, the network’s functional map re-
mains unchanged, but we end up with unit-normalized first
layer filters. This requires φ(ax) = aφ(x) for some scalar
a ∈ R+, which holds true for the widely used ReLU non-
linearity. The symmetry of neural network weights under
the multiplicative group of positive real numbers has been
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Figure 6. Effect of regularization on filters. First layer filters of the
MLP fc:100, from left to right, with increasing weight decay:
0.001, 0.01, 0.018.

referred to in Neyshabur et al. (2015); Badrinarayanan et al.
(2015).

(a) (b)

Figure 7. Plotting the L2-norms of the weight vectors of filters
from (a) fc1:500 and (b) fc1:1k MLPs. Same color denotes
filters within the same group (colors are cycled). The filters are
grouped using τ = 0.9. Filters within the same group are observed
to have widely varying weight vector magnitudes.

Redundant filter aggregation. Following unit-
normalization of the filters, we go through the groups of
near-identical filters at a layer, say fc1, and replace all
filters in a group with the within-group mean filter. The
implementation of this procedure is simplified by the
connected component (CC) step for clustering similar filters.
We collapse all the filters within a connected component
and appropriately modify their upstream connections,
resulting in a network that has #filters equal to #CCs at the
pruned layer. The details of the procedure are as follows:

Consider an fc2 layer feature: y = v1φ(w1x + b1) +
v2φ(w2x+ b2) + v3φ(w3x+ b3) + . . ..

If w1 = w2 and b1 = b2, then y = (v1 + v2)φ(w1x +
b1) + v3φ(w3x+ b3) + . . .

Therefore, after collapsing the duplicates in the fc1 layer
weights W , their corresponding connections in the fc2
layer weight matrix V should be aggregated by summation.
This results in an unaltered output when the collapsed filters
are identical. In practice, we also have to approximate the
bias terms by their mean2.

4.2. Network Reduction Experiments

For each network, while varying the first layer size, a fixed
set of thresholds is applied on the filter similarity matrix.

2Applying weight decay on the bias terms during network
training can make the bias values negligible, so empirically we do
not lose much performance due to this approximation.

(a)

(b)

Figure 8. Plotting compression vs. performance as filters are aggre-
gated at fixed similarity thresholds τ = {1, 0.95, 0.9, 0.85, 0.8}.
(a) accuracy of the MLP; (b) accuracy of the CNN. The x-axis in
each plot shows the reduction (%) in number of filters.

A smaller threshold results in more filters being marked as
identical. These duplicates are then pruned following the
reduction procedure in Sec. 4.1. The duplication-removal
procedure (“dup”) is compared with a simple norm-based
pruning strategy (“norm”) that sorts a layer’s filters based
on their L1-norm and keeps the largest K filters (Li et al.,
2017). TheK for the baseline is chosen to match the number
of filters obtained using our method. To be consistent with
the author’s method for norm-based pruning, we use the
L1-norm in this case instead of the L2-norm and note that
Li et al. (2017) mention that both the norms give equivalent
results. Both the methods of eliminating redundant filters
that we compare here are data-independent — we do not
require access to a suitably large dataset to get statistics of
activations or any other such heuristic. This appears to be a
reasonable choice for the norm-based baseline, since Li et al.
(2017) report the filter norm-based pruning strategy yields
comparable-to-better empirical performance than activation-
based approaches.

The results are summarized in Figure 8. In the case of
the MLP, the first fully-connected layer exhibits a large
number of duplicates as we keep increasing its size. As a
result of this, our method is able to reduce a majority of
the filters without causing too much change in the input-
output map of the network, and consequently lesser drop
in test accuracy (Figure 8(a)), than the baseline method of
eliminating filters based on low L1-norm. The convolutional
layers in the CNN have a fewer number of near-duplicate
filters compared to the MLP. Setting conservative thresholds
on the similarity ends up with almost no duplicates and
more aggressive thresholds results in merging filters that are
sufficiently dissimilar so as to impact the performance of
the network (Figure 8(b)).

5. Conclusion
We have shown that duplication of filters occurs more in
MLPs than CNNs, and this appears to be an outcome of
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over-parameterization in the fully-connected MLP model.
Increasing the number of filters at a layer results in more
duplicates for MLP and is less marked for CNNs. A method
to reduce a network based on near-duplicate filters is intro-
duced and is shown to work well for fully-connected nets
in the regime of moderate compression. For CNNs, a norm-
based pruning strategy works as well or better, underlining
their differences with MLPs in how parameter redundancy
is manifested.

Future directions to explore include the connections between
the two heuristics for parameter redundancy – low-norm
and duplication, and how this affects network compression
strategies in large architectures beyond the controlled small-
scale experiments performed in our current work.
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Appendix

A. AlexNet on CIFAR-10
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Figure 9. (a) First layer filters of AlexNet trained on CIFAR-10;
(b) Plotting percentiles with layer-size. The different points on
the curves correspond to different levels of filter pruning and cor-
responding accuracy at the following filter-similarity thresholds:
τ = {0.25, 0.3, 0.45, 0.6, 0.8, 0.9}.

Preliminary results with AlexNet (Krizhevsky et al., 2012)
on CIFAR-10, pruning each layer individually, are shown in
Figure 9(b). The layer sizes are: 64 (conv1), 192 (conv2),
384 (conv3), 256 (conv4) and 256 (conv5). Setting the
thresholds τ = {0.25, 0.3, 0.45, 0.6, 0.8, 0.9} results in dif-
ferent numbers of filters being pruned.

Conv1 is understandably sensitive to pruning – it has too
few filters to have significant redundancy (Figure 9(a) shows
this qualitatively). Conv2 shows moderate drop in accuracy
with a large percentage of filters being pruned. Conv3 and

conv4 do not show much redundancy – even setting very
low thresholds like 0.3 does not result in substantial reduc-
tion of filters. Conv5 is again very sensitive to pruning.

These results indicate that the AlexNet filters are sufficiently
disparate that merging them requires (1) very relaxed thresh-
olds of similarity, and (2) results in non-trivial drops in
accuracy.

B. Filter visualizations

(a) (b)

(c)

(d)

Figure 10. First layer filters of the MLP, fc1: (a)50, (b) 100, (c)
500, (d) 1000. A relatively high weight decay value (0.18) was
chosen such that the filters look smooth. The increase in number
of near-identical filters is quite apparent as layer size is increased.
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Figure 11. First layer conv filters from the CNN, conv1: (a)50,
(b) 100, (c) 500, (d) 1000.


