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Abstract
This paper investigates the presence of duplicate
neurons or filters in neural networks. This phe-
nomenon is prevalent in networks and increases
with the number of filters in a layer. We observe
the emergence of duplicate filters over training
iterations, study the factors that affect their con-
centration and compare existing network reducing
operations. We validate our findings using con-
volutional and fully-connected networks on the
CIFAR-10 dataset.

1. Introduction
In this paper, we focus on two ways in which neurons or
filters in neural networks may be redundant – (1) if they
have negligibly small values (i.e. the filters have weight
vectors with low norm), or (2) if their functionality is mim-
icked by another filter. The latter may be quantified as high
cosine similarity between the weight vectors of two filters.
The presence of near-duplicate filters in deep neural net-
works (Zeiler & Fergus, 2014; Rodríguez et al., 2016) is
an interesting phenomenon which to our knowledge has
not been explored empirically for recent neural network
architectures. The contributions of this paper are:

(i) empirically shows that fully-connected networks have
a significantly larger number of near-duplicate parame-
ters with increasing layer size and contrasts this to the
behaviour of convolutional networks;

(ii) visualizes the evolution and convergence of duplicate
filters in networks over training iterations;

(iii) draws connections between low-rankedness of weight
matrices and increasing redundancy;

(iv) provide a network-equivalent reduction operation to
eliminate duplicates, and empirically compares exist-
ing norm-based approaches with the duplicate-based
approach to redundancy-removal.
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2. Related Work
Singularities and irreducible neural networks. Several
papers in the early neural network literature have studied
the phenomenon of identical parameters and their effect
on optimization in feed-forward neural networks. Chen
& Hecht-Nielsen (1991) analyzes a class of “equi-error"
weight space transformations for multi-layer perceptrons
that leaves the network input-output map unchanged. Suss-
mann (1992) introduces the concept of an irreducible net
– one that does not have zero-weight nodes, nor a pair of
nodes that could be collapsed into a single node without
altering the network input-output map. Fukumizu (1996)
show that a neural network with such redundancies will have
a singular Fisher information matrix. Amari et al. (2006)
and Wei et al. (2008) analyze the learning dynamics near sin-
gularities of the Hessian and identify two types of plateaus
in the optimization landscape that arise due to identical or
redundant model parameters. Recently, Orhan & Pitkow
(2017) show that residual networks overcome the singularity
problem due to the presence of skip connections between
layers.

Convergent learning. Li et al. (2015) pose the question:
do different neural networks (with the same architecture)
learn the same things? Based on their experiments, different
networks do converge to a similar set of weights, up to a
permutation symmetry (e.g. unit 1 in network 1 may be a
red color detector, while in network 2 the red detector is in
unit 47), with a few unique weights that are not commonly
learned across networks. Our work is similar is spirit but
focuses on the different situation of duplicate filters in the
same layer of a single network.

Decorrelated network weights. A line of work has fo-
cused on loss functions that penalize the correlation of neu-
ral network parameters, such as the DeCov loss (Cogswell
et al., 2015) and OrthoReg (Rodríguez et al., 2016), thus
ensuring diversity in the neurons of a layer.

Network pruning. Li et al. (2017) discuss the advantages
of structured pruning of network parameters, wherein entire
filters with low L1-norm are dropped, as opposed to ap-
proaches that zero out redundant weights in an unstructured
fashion and then rely on sparse libraries to take advantage
of the sparsity structure. Mariet & Sra (2016) select a sub-
set of diverse neurons using a Determinantal Point Process
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(DPP) based on correlations between their activations. They
also observe that simply dropping neurons causes a large
change in the input-output map and propose to re-weigh the
selected neurons to account for this using a least squares
solution. The only work to our knowledge that addresses the
redundancy due to near-identical neurons in deep networks
is from Srinivas & Babu (2015), which uses an iterative
procedure to eliminate near-duplicates a single pair at a
time, but does not focus on analysing duplicate filter con-
centration. Molchanov et al. (2016) use a Taylor expansion
of the network function w.r.t. activations, which results in
removing both low-activation and low-gradient neurons.

3. Duplicate filters in neural networks
We use two simple network architectures — a fully-
connected multi-layer perceptron (MLP) and a convolu-
tional neural network (CNN). We use filter to denote both
the channels of a convolutional layer and also indicate an
individual neuron’s weights in the weight matrix of a fully
connected layer.

The MLP has two fully-connected (fc) layers followed by a
10-way softmax. The size of the first layer (fc1) is varied
across 100, 500 and 1000 units. The size of the second
layer (fc2) is fixed at 100 units. The CNN consists of two
convolutional layers (conv1 and conv2), each followed
by a ReLU non-linearity and 2� 2 max-pooling, two fully-
connected layers (fc1 and fc2) , both followed by a ReLU
and finally a 10-way classifier with a softmax. The first
conv-layer’s size is varied across 100, 500, 1000, similar
to what we do for the MLP experiments. The second conv-
layer is fixed to have 50 filters. The fc-layers have sizes
120 and 84. Both networks are trained till convergence on
CIFAR-10 (Krizhevsky & Hinton, 2009). Visualizations of
the first layer filters are in the Appendix.

3.1. Distribution of redundant filters

Each of the MLP networks are trained from 100 different
random initializations. The distribution of intra-network
filter similarity (measured in terms of cosine similarity,
h wi

jjwijj ;
wj

jjwj jj i for filters i and j, with h:; :i denoting the
inner-product between two vectors) among the first layer
weights is plotted in subplots (a-c) of Figure 1. The right
tail shows a small but significant heaviness with increasing
layer size, indicating that there are more filters with a high
cosine similarity between them as we keep increasing the
network width. This trend was not evident in similar plots
for CNNs.

The distributions of the norms of filter weights for the MLP
networks are plotted in Figure 1(d-f). We use the 2-norm,
jjwijj, for filter i. With increasing layer size there is a
corresponding increase in the the frequency of low-norm
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Figure 1. (a-c) distribution of cosine similarity between filters with
increasing layer size. The right tail gets heavier – kurtosis values
are 3.367 (fc:100), 4.152 (fc:500), 4.149 (fc:1000); (d-f)
distribution of filter norms for fc:100, fc:500 and fc:1000.

filters. These plots give a visual indication that both kinds
of redundancy – low-norm and duplicates – increase with
over-parameterization of the network. 1

3.2. Grouping duplicate filters

Considering the fc1:500 MLP network as an example,
the first layer weights (W 2 R500�3�32�32), can be viewed
as 500 discriminative filters acting upon 3-channel 32� 32
images, each filter being a 3 � 32 � 32 dimensional vector.
A similarity matrix S is then formed, where each entry
sij measures the cosine similarity between filters i and j.
By thresholding S at a particular value � , we can induce a
similarity graphG� over the filters in a layer. The connected
components (CCs) of G� result in groups of near-duplicate
filters at a particular threshold � of their cosine similarity.
For CNNs we consider the 4-D tensor of k convolutional
kernels of spatial support c � c acting on d-dimensional
inputs to be a set of k vectors, each of size dc2. Some
examples of such grouped filters in the first layers are shown
for MLP and CNN in Figure 2(b). The effect of changing
the similarity threshold � is visualized for MLP filters in
Figure 3.

3.3. Analysis of duplicates

Layer size and duplicate concentration. A method to
quantify the degree of duplicate filters in a network is de-
scribed here. Let � be the ratio of number of filter groups
and the total number of filters at different thresholds � in
G� . The quantity 1� �, plotted as the y-axes of Figure 2(b-
c) gives an estimate of the concentration of duplicates in
a layer. For the MLP, the curves become higher as we in-

1We observe in passing that the distributions of filter norms,
which are the lengths of high dimensional random variables, re-
semble a Rayleigh distribution with decreasing scale parameter for
increasing layer size.
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Figure 2.(a) Test accuracy of MLP on CIFAR-10 with increasing
layer size over 100 runs;(b) Groups of similar �lters in the �rst
layer of a 500-unit MLP(top) and CNN(bottom); (c-d) concen-
tration of duplicates with increasing layer size for the MLP and
CNN.

crease the number of �lters in the �rst layer (Figure 2(b)).
For the CNN (Figure 2(c)), near-duplicate �lters is not very
common in the �rst layer and do not occur at all in the later
layers. We note from Figure 1 that for larger �rst layer size
in MLPs, thedistribution of inter-�lter cosine similarityhad
heavier right-tails, indicating more �lters with high similar-
ity. This trend was not evident in CNNs. It is possible that
having fewer parameters and being less prone to over-�tting,
theCNN architecture rarely develops completely identical
�lters, unlike the fully-connected MLP networks.

Relation to matrix rank. Having �lters in a network with
high cosine similarity means that the vectors are both point-
ing in the same direction, with a possible difference in scale.
This would indicate that the rank of the weight matrix is
small when it has many duplicate �lters (the converse is not
true – small rank does not necessarily indicate duplicates).
Gunasekar et al. (2017) observe that stochastic gradient de-
scent (SGD) is biased to �nding theminimum nuclear norm
solution. We conjecture that the presence of duplicates in
over-parameterized networks could be an effect of �nding a
set of weight matrices with low nuclear norm, which implies
low rank. Figure 4(d) plots a slightly modi�ed matrixtrace
complexity(Srebro & Salakhutdinov, 2010) (for a matrix
W 2 Rn � m , tc = jj W jj trp

nm ), which acts as an indicator of
matrix rank, as we increase layer size in the MLP networks,
averaged over 100 runs. This shows that with increasing
layer size, there is a decrease in effective rank, normalized
for matrix size.

The following discussion focuses on MLPs, since they ex-
hibit duplicates more noticeably. We adapt the method of
SV-CCA (Raghu et al., 2017) to compare the subspaces
spanned by the �lters as the layer is widened. The singu-
lar values of the �lters are plotted in Figure 4 (a-c), which

Figure 3.Visualizing MLP �lter groups at various cosine similarity
thresholds� . Rows from top to bottom:� = f 0:95; 0:9; 0:8g. At
strict thresholds the �lters are virtually indistinguishable from
each other visually; in numerical terms this means that the �lters
have weight vectors pointing in almost the exact same direction.
Relaxing the similarity threshold results in visually dissimilar
�lters being clustered together, as is particularly evident for the
last row.

indicate a low effective rank of the weight matrices. The
average correlation between the �rst layer �lters of the net-
works after the CCA is very high across the different layer
sizes, as shown in Figure 4 (e). This would indicate that the
subspaces spanned by the weight vectors of the network as
we increase the layer-size are quite similar. We observe qual-
itatively that �lters across the models are roughly similar.
The new �lters being learned with the increased capacity are
subtly different from the �lters in a smaller network — they
are tuned to �ne-grained differences (e.g. a “brown" color
detector may now be replaced by detectors for the shades
“auburn" and “chestnut").
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Figure 4.(a-c) Singular values with increasingfc1 layer size in
MLP. The vertical red line marks 99% of the singular values'
energy. (d) Trace complexity of weight matrices offc:{100,
500, 1k} , averaged over 100 runs each.(e)Modi�ed SV-CCA
similarity matrix (upper-triangle) between the MLP networks
fc1:100,500,1000 .

Dropout and neuron co-adaptation. Dropout (Hinton
et al., 2012; Srivastava et al., 2014) was introduced to
prevent over�tting in neural networks by reducing co-


