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Abstract—Despite the explosive growth of mobile devices and
applications in recent years, today’s Internet provides little intrin-
sic support for seamless mobility. Prior solutions to addressing
this problem either handle only a subset of endpoint mobility
scenarios or require nontrivial changes to legacy infrastructure.
In this paper, we present the design and implementation of
msocket, a system that allows communicating endpoints to
move across network locations arbitrarily while maintaining
disruption-tolerant connectivity without any change to legacy
operating systems or network infrastructure. msocket supports
pre-lookup, connect-time, individual, and simultaneous mobility
of one or both endpoints across a multiihomed set of network
addresses, and enables seamless mobile-to-mobile communication
despite the presence of address translating middleboxes. We
have implemented msocket as a user-level socket library and
our evaluation shows that: (1) msocket recovers from mobility
of one or both endpoint(s) in roughly two round-trips; (2)
msocket’s multipath scheduler greatly enhances user-perceived
performance or power consumption in multihomed settings; and
(3) msocket imposes little additional overhead over traditional
sockets.

I. INTRODUCTION

Mobile devices and applications have experienced a phe-
nomenal growth in recent years with more smartphones today
than tethered hosts and the total Internet traffic originated
from mobile devices poised to surpass that between tethered
hosts [1], [2]. While the Internet’s TCP/IP stack has flexed re-
markably to accommodate this transformation, it continues to
provide poor intrinsic support for seamless endpoint mobility,
multihomed multipath, and mobile-to-mobile communication.
Consequently, mobile application developers relying on the
universal TCP/IP socket API are forced to resort to redundant
and fragile application-layer workarounds to these issues.

The frustrating lack of intrinsic support for mobility in
the Internet can be appreciated even by lay users today.
For example, users of popular mobile apps for voice-over-
IP (e.g., Skype, Viber, or Vonage) who might expect seamless
call mobility as they transition from a home WiFi network
to a cellular network on the road are disappointed to find
otherwise. A user downloading a large file from a web server
and getting late for work (or home) has to make the difficult
call of terminating and restarting the transfer. The frustration
extends beyond lay users to developers. Today, there is a
steeper learning curve for a networking professional trained
in tethered-host-centric, client-server programming before they
can start developing mobile-to-mobile apps partly because
there is no easy way to initiate communication to a mobile
behind an address-translating or firewalling middle box (as
developers have to either conform to notification service APIs

[3] provided by mobile OSes or set up their own cloud-
based infrastructure for greater flexibility); and partly because
they have to learn to manage session state in HTTP-based
applications (like Netflix or YouTube) in order to give users
the semblance of seamless mobility across networks.

Our goal is to simplify the development of mobile applica-
tions by providing an abstraction of truly location independent
communication [4], [5]. To enable location-independence, we
focus on three concrete subgoals, namely, to provide system
support for (1) seamless mobility, i.e., allowing endpoints
to freely move across network addresses while relieving
the application developer from keeping track of them, (2)
multihomed multipath communication, i.e., the ability to use
multiple network interfaces such as cellular, WiFi, and others
that are increasingly commonplace in parallel, and (3) mobile-
to-mobile (M2M) communication, i.e., enabling two mobiles
both behind address-translating or firewalling middleboxes
to communicate with each other without having to set up
application-specific forwarding infrastructure in the cloud.
Most of these goals have been studied in isolation, however
existing piecemeal solutions may not be universally available
at end-systems (e.g., multipath approaches available for a
specific OS [6], [7], [8]), or be necessarily compatible with
each other or with widely deployed middleboxes (e.g., [8],
[7], or the empirical observation that AT&T doesn’t support
MPTCP on port 80), or may rely on additional infrastructure
that is not yet widely deployed (e.g., MobileIP [9]).

Our contribution is the design, implementation, and eval-
uation of msocket, a user-level socket library that provides
system support for location-independence as defined above.
The user-level implementation means that developers of new
mobile apps can use it across diverse mobile operating sys-
tems. The user-level socket API is also very similar to the
familiar BSD socket API and requires minimal changes of
legacy applications in order to be ported to use msocket. To
achieve these goals, we contribute a novel synthesis of ideas
from a large body of prior work on transport-layer, host-based,
and application-specific approaches into a single user-level
system (as detailed in §II); unlike prior solutions, msocket is
immediately usable for developing mobile applications with
no change to legacy OS or network infrastructure.

We have implemented a prototype of msocket along with
an accompanying distributed proxy service in order to en-
able mobile-to-mobile communication, relying on a pub-
licly available, scalable, geo-distributed global name service,
Auspice[10]. Our extensive evaluation and case studies show:

(1) Seamless mobility: msocket can recover from the mo-



bility of one or both endpoints; the client- and server-initiated
recovery complete in 2 and 2.5 RTTs respectively.

(2) Multihomed multipath: msocket’s multipath scheduler
improves the single-best path’s performance by up to 1.5× in
WiFi+cellular settings similar to in-kernel MPTCP’s uncou-
pled mode despite having no access to internal TCP state.

(3) Mobile-to-mobile: Our case studies using an Android
phone show that msocket enables applications to employ
seamlessly mobile or “roaming” servers in a manner agnostic
to address-translating middleboxes.

More broadly, we hope that msocket has a pedagogical value
that may further spur longer-term innovation. A student being
introduced to network programming in a first course on net-
working will be immediately able to field their general-purpose
network programs as-is in new and interesting mobile-to-
mobile settings by using msocket instead of traditional sockets.
Whether or to what extent this ability fosters innovation, only
time will tell; msocket is but a first step towards that goal.

The rest of this paper is organized as follows. §III de-
scribes the detailed design and implementation of msocket.
§IV presents a comprehensive evaluation of msocket’s perfor-
mance, cost, and functionality using case study scenarios, and
§V concludes. We begin with a delineation of msocket’s goals
and design from a large body of closely related work.

II. BACKGROUND AND RELATED WORK

msocket draws upon a large body of prior work on enabling
intrinsic support for seamless mobility. To our knowledge,
msocket is the first immediately usable system to support all
four types of endpoint mobility; msocket is also the first to
offer an application-agnostic solution for bidirectional commu-
nication initiation despite the presence of address-translating
middleboxes. Below, we explain how msocket’s underlying
techniques compare to closely related prior work.

Architectural alternatives. Existing approaches to han-
dle mobility, i.e., an endpoint identifier changing network
location(s), can be broadly classified into three categories:
(1) indirection, (2) global name resolution, (3) name-based
routing. Indirection approaches, e.g., MobileIP [9], LISP[11],
i3[12], ROAM[13], GSM[14], route to a fixed network ad-
dress, the home address, and a home agent router tunnels
all data packets to the mobile’s current location. Indirection
schemes enable seamless mobility of one or both endpoints
at any time and are oblivious to non-mobile endpoints.
However, as a consequence, they have to indirectly route
all data through the home agent exacerbating path inflation;
direct routing extensions can address the triangle routing
problem but mobility of an endpoint is no longer oblivious to
the other endpoint. Global-name-resolution-based approaches,
e.g., HIP[8], LNA[15], MobilityFirst[16], XIA[17] rely on
a logically centralized global name service (e.g., DNS or
Auspice[10]) that resolves an endpoint identifier to its network
location(s). This approach requires a lookup to the name
service at connection initiation time and in order to handle
simultaneous (but not individual) mid-session mobility, and
does not suffer from data path inflation. Pure name-based

routing approaches, e.g., ROFL[18], TRIAD[19], NDN[20],
eschew network locators and route directly on flat or structured
names, which in theory allows any mobility to be completely
seamless to endpoints, but in practice can induce outage times
commensurate to convergence delays for network routing
unless they additionally rely on indirection or global name
resolution.

As an important goal of our work is immediate deploya-
bility, we restrict our discussion in the rest of this section to
related approaches that are interoperable with today’s TCP/IP
Internet and, in particular, do not require significant changes
to network routers or middleboxes.
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Fig. 1: Four types of endpoint mobility events.
Types of mobility events. Figure 1 shows how a global

name service can enable quick recovery from four types of
mobility events, a classification recently proposed by Sharma
et al [10]. These four types of mobility could be a common
case scenario when two mobile phones, as a server and a
client, are communicating and switching between cellular and
WiFi or switching WiFi APs. Today’s DNS-based Internet
is designed to support only pre-connect mobility at coarse
timescales. Table I shows whether and how several prior
proposals handle the remaining mobility events, as we also
explain in detail below.

Connect-time mobility: A connect(server_name)
request issued by a client can fail because the server endpoint
may have changed its network address after the client queried
the name resolution service but before a three-way handshake
completed. Addressing this scenario requires (1) a highly
scalable global name service that can quickly register and
return the fresh location of the server, and (2) a tight coupling
between the connect request and the name service. msocket
recovers from connect-time mobility by re-querying the Aus-
pice global name service [10] and retransmitting connection
requests. In contrast, the traditional socket API and most
host-based approaches relying on DNS do not support rapid
recovery from connect-time mobility and incur an outage time
commensurate to DNS’s long update propagation delays.

Individual mobility. Transport-layer approaches such as
ECCP[7], MPTCP[6], TCP-Migrate[21] use different ap-
proaches to handle individual endpoint mobility, i.e., when one
(but not both) endpoint moves at a time, the most well-studied
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msocket yes per-flowpath yes yes yes yes app
ECCP no per-flowpath yes no no no app, kernel, middlebox

MPTCP no per-flowpath no no yes no app, kernel
TCP-Migrate no per-interface no no no no app, kernel

HIP no per-interface yes yes yes no app, kernel
MobileIP yes per-interface yes yes no no app, kernel, router

TABLE I: Comparison of approaches for connection mobility, multipath, and middlebox-agnostic (M2M) communication.

mobility case. All of these recover from individual mobility
in a bilateral manner (without re-querying the name service).
TCP-Migrate and its precursor TCP-R[22] were early efforts
that pioneered the case for handling individual connection
mobility in a bilateral manner, but they implicitly assumed
a single-path TCP connection equating a connection endpoint
to a singly-homed host. HIP, a host-based approach, supports
multiple paths but equates a path with an interface. In contrast,
msocket, like ECCP and MPTCP, enables a flexible, many-to-
one mapping between flowpaths and network interfaces.

Server mobility, a special case of individual mobility, is
harder to handle than client mobility as it requires either (a)
the client to time out and re-query the global name service, or
(b) the server to proactively notify the client at its old address,
thereby implicitly requiring a listening “server” at the client.

Simultaneous mobility. Several prior transport approaches,
e.g., TCP-Migrate, MPTCP, consider simultaneous mobility,
when an endpoint loses its current address during the time the
other endpoint is changing its address, to be a rare case, sug-
gesting that they could fall back on a DNS-like external infras-
tructure to handle this case. However, simultaneous mobility
may not be that uncommon in disconnection-tolerant mobile
application scenarios, e.g., when a mobile user switches off
her smartphone while on the road and resumes watching
a movie using WiFi at home, by which time the virtual
machine hosting the Flash server may have been migrated for
load balancing purposes. HIP explicitly designates rendezvous
points in the architecture to handle this case, wherein the
host identifiers can be used to securely resynchronize the
connection. ECCP alludes to the possibility of handling this
case using a lightweight, network-layer router cache in either
endpoint’s subnet that briefly re-routes data packets (similar
in spirit to Mobile IP that seamlessly handles simultaneous
mobility using home agents), however their approach works
only if at least one path, the “control channel”, between the
endpoints remains unbroken.

Multipath data transfer. MPTCP supports multipath
scheduling but as it is a kernel based approach and changes
the TCP headers, it is not supported by all the middleboxes,
as acknowledged in [6]. msocket uses the legacy TCP connec-
tions and implements multipath scheduling in the application
layer. All the multipath connection establishment and data
packet headers are sent as data payload in TCP, so a msocket’s
multipath connection is never dropped by middleboxes. Our
evaluations show that msocket achieves performance close to
MPTCP, even after being implemented in the application layer.

Middlebox-agnostic M2M communication. None of the

transport- or host-centered approaches above are designed to
enable mobile-to-mobile communication when both mobiles
are behind address-translating or unidirectionally firewalling
middleboxes. msocket’s approach relies on an external proxy
service that is similar in spirit to application-specific ap-
proaches (e.g., Skype) but differs in that it provides an
application-agnostic socket API usable by any application.

Infrastructure changes. All host-centered approaches to
enable mobile and/or multihomed multipath communication
require some modification to legacy applications in order for
them to fruitfully leverage non-default policies to decide when
to migrate an existing flowpath or how to stripe data across
multiple interfaces. In this respect, msocket is comparable as
its API is very similar to the BSD socket API with support
for reasonable default policies for migration and multipath, and
new calls are required only to leverage non-default policies.
msocket’s strength is that it does not require any change to
diverse OS kernels, middleboxes, or routers.

Name service. Our envisioned approach to handle endpoint
mobility implicitly assumes a massively scalable global name
service (Figure 1) that can rapidly register updates and return
fresh responses to lookups. DNS with its heavy reliance on
long-lived TTLs, and designed in an era when mobility was
hardly the norm, is not well suited to this kind of usage.
Therefore, msocket relies on Auspice [10], an open scalable,
geo-distributed global name service that also shares our high-
level goal of recovering from arbitrary endpoint mobility in
an agile manner. However, the Auspice work focuses only
on the design of a distributed name service and leaves as an
open issue the design of an endpoint stack to achieve location-
independence–a gap that we fill with msocket in this paper.

III. MSOCKET DESIGN AND IMPLEMENTION

In this section, we describe the design of msocket that con-
sists of the following three functional components: (1) seam-
less connection mobility, (2) multihomed multipath schedul-
ing, and (3) middlebox-agnostic mobile-to-mobile communi-
cation. Clean support for the first greatly simplifies the design
of the latter two components as well, so we begin by describing
how msocket enables connection mobility.

A. Design overview

At a high-level, msocket enables a location-independent
communication abstraction that allows endpoints to con-
nect to and communicate with fixed names without wor-
rying about their changing network locations (or IP ad-
dresses). Thus, msocket allows a client to invoke a method



connect(server_name) (like most high-level network
programming languages do today) and additionally rest as-
sured that, even though the IP address(es) of both endpoints
may change arbitrarily, reliable byte-stream communication
will resume gracefully during periods when at least one
network path exists between the two endpoints.

A msocket is bound to a two-tuple [client name,
server name] that remains unchanged throughout its lifetime
until it is explicitly closed by one of the endpoints. Un-
derneath, msocket maintains zero or more active flowpaths,
wherein each flowpath is bound to a pair of [IP, port] tuples
respectively belonging to each endpoint. As msocket is a user-
level socket library, each flowpath is naturally well served
by an underlying traditional TCP/IP connection that is bound
to a pair of IP addresses (and ports) that are unchangeable
by design. However, connection mobility poses a challenge,
especially when exactly one flowpath exists between the
two endpoints and one of the endpoints ungracefully (or
unexpectedly) changes its address, as that requires msocket
to migrate from the old, unusable flowpath to a new one
while maintaining a reliable byte-stream abstraction from the
application’s perspective.

Ensuring correctness of the reliable transfer requires resyn-
chronizing sequence numbers over the new flowpath so that
an endpoint can ascertain the exact number of bytes correctly
received by the other endpoint over the old flowpath. However,
sequence numbers in the underlying connection are by design
not visible from the user level, i.e., an application (or for that
matter the kernel) can not determine exactly how many of the
outstanding bytes have been received by the other endpoint
at any point in time; moreover, an application has no way
to explicitly specify the initial sequence number of the byte-
stream over the new flowpath’s underlying connection.

msocket addresses this problem by maintaining separate
sequence numbers and buffers in a user-level structure that
enwraps the underlying sockets. A msocket comprises of:
(1) flowpath socket(s) that refer to one or more underlying
sockets for exchanging data; (2) output and input buffers that
are user-level buffers maintained by msocket respectively for
retransmission at the sender and to handle reordering at the
receiver; (3) connectionless control socket, a single underlying
connectionless socket used primarily as a connectionless server
at an msocket client in order to handle server mobility. We
explain msocket’s connection management in detail next.

B. msocket connection management

An msocket connection consists of four phases: (1) estab-
lishment, (2) data transfer, (3) migration, and (4) closure.

1) Connection Establishment: Figure 2 shows msocket’s
connection establishment phase between the client and the
server. Connection establishment is similar to the addition of
an individual flowpath as connection establishment is essen-
tially the addition of the very first flowpath.

This phase begins with the client establishing an underlying
connection to the server and using that to mutually agree upon
(1) a connection identifier (connID), (2) a flowpath identifier

Fig. 2: Connection establish-
ment

Fig. 3: Client-side flow mi-
gration

(pathID), and (3) connectionless control socket addresses at
the client and server (CCSA and SCSA respectively). connID
is a number that uniquely identifies the connection at both the
client and the server (but not necessarily in a globally unique
manner like a TCP four-tuple) and is chosen as follows. A
pathID of 0 (the first flowpath) in the client’s control message
indicates to the server to generate and append its portion into
the connID and send it back in its control message to the
client. CCSA and SCSA are also exchanged in the process,
but are not used until server migration is warranted (§III-B3).
At this point, the msocket connection has been established and
subsequent flowpaths may be added as shown in Figure 2 (the
steps below “Flow addition”) with the same control messages
but with different pathIDs.

2) Data transfer: After connection establishment, msocket
enters the data transfer phase wherein it can use one or more
flowpaths to transfer data. Each data message is an application-
level message that can be sent over any flowpath belonging to
the msocket connection. Each data message header contains
at least a sequence number and cumulative acknowledgment
number similar to TCP, and the length of the payload.

Each msocket endpoint maintains an output buffer that is
a retransmission queue storing a suffix of the msocket byte
stream starting from the oldest unacknowledged sequence
number. An endpoint retains data in the output buffer until it
receives a message with an acknowledgment number exceed-
ing the corresponding byte range. As the acknowledgments are
needed only to enable an endpoint to garbage-collect its output
buffer space, and not for reliability or performance reasons,
it suffices to send them infrequently. In order to handle out-
of-order delivery, a particularly common case with multiple
flowpaths, each endpoint also maintains an input buffer that
returns data in byte stream order upon application reads.

3) Flow migration: Each msocket flowpath can be inde-
pendently migrated at the client or the server side, and an
msocket can be migrated by migrating each of its constituent
flowpaths. Below, we describe how to migrate one flowpath.

Figure 3 shows the steps involved when a client migrates
a flowpath. The client first closes the underlying socket
connection on the existing flowpath and opens a new one to
the server. The server accepts this connection and awaits the
control message from the client. At this point, the server does



not know if the flowpath being established is opening a new
msocket connection, adding a flowpath to an existing one, or
migrating a pre-existing flowpath. The client’s control message
contains both the connID and the pathID that enable the server
to distinguish between these cases. If the server successfully
verifies that the connID and pathID correspond to an existing
msocket connection and flowpath respectively, then it responds
with its control message. The control message contains the
msocket acknowledgment sequence number (S-ackNum and
C-ackNum) that prompts the server (client) to resend any data
from its output buffer beyond the acknowledgment number
that had been sent over that flowpath just before migration.
S-ackNum and C-ackNum denotes the sequence number of
data received at the server and the client just before the
migration. Even if the explicit data acknowledgements are sent
infrequently, as noted before, exchanging of S-ackNum and C-
ackNum after the migration ensures that only the data that is
lost during the migration is resent.

Figure 19, in appendix, shows the steps involved when a
server wishes to migrate a flowpath. The procedure is identical
to client migration except that it is triggered by a RECONNECT
message that is reliably transmitted from the server using the
connectionless control sockets. The RECONNECT message is
a request from the server asking the client to reconnect to it
at its new address. To enable reliable transmission of control
messages over an underlying connectionless, unreliable socket,
the server transmits RECONNECT messages using a simple
stop-and-wait protocol with retransmissions triggered by a
fixed timeout.

In the case of simultaneous mobility, both endpoints change
their network addresses before either endpoint has had the
chance to successfully migrate an existing flowpath or msocket
connection using the bilateral protocol above. In this case,
the endpoints must rely on a third party service in order
to resynchronize connection information. The necessity of a
third party is best appreciated in the case when each msocket
endpoint has exactly one network interface address. In this
case, an endpoint can use neither an alternate flowpath nor
the connectionless control socket as they were all bound to the
(only) network address that is no longer usable. To handle this
case, the client (or server) eventually detects the connection
failure and queries a global name service to obtain the server’s
(client’s) updated listening address (connectionless control
socket address) as the server (client) would have registered
that new address with the global name service. At this point,
the migration procedure is similar to either a client or server
migration. The global name service that msocket relies upon is
Auspice [10], a geo-distributed key-value store that is designed
to store a number of addresses and other attributes for arbitrary
endpoint identifiers.

The client (or server) may obtain a stale value from the
global name service and the connection may fail, in which
case the client (or server) periodically tries to establish a
connection, which we call as periodic retry interval (ρ). The
upper bound on simultaneous mobility completion time is
given by ρ + q + w + 2RTT , where q and w are the client

querying time and the server update time to the global name
service and RTT denotes the round-trip time between the
server and the client. The proof intuition is described in the
tech report [23].

4) Connection closure: msocket enters the connection clos-
ing phase when the application invokes close(). msocket’s
closing phase requires the agreement of both the endpoints
for reasons different from TCP; if one side A is oblivious to
closing by the other side B, then A will presume an underlying
mobility event by default and invoke mobility handling proce-
dures that will block until either B comes back up or until A
times out eventually. To this end, msocket’s connection closing
state machine is similar in spirit to that of TCP using (user-
level) FIN and ACK messages sent and acknowledged by both
sides. However, TCP’s state machine is not designed to handle
mobility during connection closure, which can be a common
case in msocket. To handle mobility events correctly during
connection closure, an msocket endpoint writes the outgoing
FIN and ACK control messages into its output buffer and re-
transmits them after handling each mobility event that occurs
during connection closure. Indeed, if an endpoint moves during
connection closure, it is possible that both sides go through the
connection migration sequence only to exchange the remaining
FIN or ACK control messages. When both sides have received
the ACK for their FIN messages, they independently close the
msocket and free all the state.
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Fig. 4: msocket state machine: Dotted READY and CTRL WAIT
blocks are the same as the corresponding solid ones.

Figure 4 summarizes the entire msocket connection man-
agement state machine consisting of three parts–establishment,
migration, and closure–as explained above. A detailed descrip-
tion of the state machine is desrcibed in our tech report [23].

C. Multipath scheduling

The goal of msocket’s default policy for scheduling data
over multiple flowpaths is to achieve a throughput close to



the sum of the fair throughputs that would be achieved inde-
pendently along each flowpath in isolation by the underlying
connection. Thus, for an implementation based on underlying
TCP sockets, msocket seeks to achieve an aggregate through-
put that is the sum of the TCP-fair throughputs along each
flowpath (variously referred to in the multipath congestion
control literature as independent / uncoordinated / uncoupled
TCP). The justification for this goal is that msocket targets
the common case of multihomed multipath (e.g., cellular +
WiFi) and “coordinated” fairness across such different vertical
networks (with incomparable pricing) is not meaningful.

The above goal of utilizing the sum of the fair throughputs
along all the flowpaths is achieved by the scheduling policy as
follows. We first observe that, for sending any data, the optimal
policy is to stripe data across the flowpaths proportional to
their fair throughputs so that all of the flowpaths drain out
completely at the same instant. The problem is that the fair
throughputs are not known a priori and must be estimated
online. To this end, at the start of an msocket connection
when there is no prior information available about the quality
of the different flowpaths, the scheduler sends small chunks,
i.e., fixed-length data messages, on flowpaths proportional to
their round-trip times (that is known through the connection
establishment phase). Once the scheduler starts getting feed-
back on the number of bytes received by the other side along
each flowpath, it uses them to stripe larger windows of chunks
proportional to the estimated fair throughput. Next we describe
the flow control in the multipath scheduling.

The multipath scheduler knows the input buffer size of the
receiver, denoted by b, exchanged in the connection setup and
in the subsequent data packet headers. The input buffer stores
the out-of-order data received from flowpaths at the receiver.
While sending chunks over different flowpaths, as described
above, the scheduler maintains the last sequence number sent,
denoted by s, and the last sequence number acknowledged,
denoted by a. The scheduler sends chunks over flowpaths such
that s − a ≤ b, this guarantees the flow control between the
sender and the receiver across flowpaths and it prevents any
deadlock case when the input buffer is full and cannot store an
in-order data from flowpaths and cannot pass any data to the
application because it doesn’t have in-order data, also reported
in [6]. One thing to note here is that, if the size of the output
buffer is less than the size of the input buffer than the above
condition is always satisfied, as the sender sends data from the
output buffer. Next we describe the retransmission of chunks
to take into account the variability in flowpaths.

The scheduler retransmits chunks from slower paths to
faster paths in two cases, 1) All the chunks of the data are
scheduled once on flowpaths and now the scheduler is waiting
for the chunks to be acknowledged by the receiver. 2) All
chunks are not yet scheduled but the scheduler cannot send
any new chunks because s − a = b. msocket keeps track
of which data message was written to which flowpath in its
output buffer and uses that information for retransmission in
both the cases. In the first case, the scheduler retransmits
the unacknowledged data messages from slower flowpaths

to the faster ones, which have already drained out, until
all the chunks are acknowledged. In the second case, the
scheduler retransmits unacknowledged data messages from
slower flowpaths to the faster ones until s − a < b and it
can transmit a new chunk. Typically, when flowpath quality
does not fluctuate adversarially, this retransmission scheme
will retransmit lagging data messages at most once.

The difference between msocket and MPTCP multipath
scheduling policy is as follows. MPTCP scheduler at the kernel
layer has access to packet losses, congestion window and
TCP timeouts. On packet losses or fluctuation on a flowpath,
MPTCP can resend data from slower to faster flowpaths and
adjust the congestion window of slower flowpaths. While
in msocket, the data once sent to a slow flowpath will be
eventually be sent to the receiver by the underlying TCP even
if it requires multiple retransmissions on the same flowpath
due to losses. So, we design the msocket scheduler so that it
does retransmissions from slow flowpaths only when there are
no new chunks to send.

D. Middlebox-agnostic communication

The goal of msocket’s middlebox-agnostic communication
is to enable any endpoint to easily initiate communication
to non-globally-addressable mobile endpoints residing behind
address-translators or firewalls that by default prevent initiation
of communication from the outside. msocket supports a proxy
service that equips any endpoint that can initiate communi-
cation to also listen for communication initiation requests. In
principle, this proxy-based technique to circumvent middle-
boxes is well known and is widely used by applications, e.g.,
Skype, but our contribution is to channel this technique into
a general-purpose, application-agnostic socket API that also
supports mid-connection mobility and multihoming.

Fig. 5: msocket connection
establishment with proxy.

Fig. 6: msocket client-side
flow migration with proxy.

1) Connection and flowpath establishment: A msocket
server (Figure 5) needs to obtain and register one or more
proxy servers through the global name service, Auspice, and
these proxies tunnel all data exchanged between the client and
server. The msocket client is oblivious to the presence of a
proxy and as always obtains from the name service a set of
addresses corresponding to the globally unique service name,
so a multiply-proxied server looks identical to a multiply-
homed server. At startup time, an msocket server requests



the msocket proxy management system for one or more
proxy servers with support for policies for specifying the
requirements of the proxy (with policy details deferred to a
techreport [23]). In order to listen for incoming connections
through a proxy, the server opens and maintains a single
control channel to each proxy. Upon a client request to initiate
a new msocket connection or add a flowpath, the proxy assigns
a temporary proxyPathID to the client half of the flowpath
and notifies the server through the control channel prompting
it to open a corresponding connection-specific flowpath. The
proxy then splices the two halves of the flowpath using the
proxyPathID, and subsequently just relays the bytes on the
two halves.

2) Connection migration with proxy: Upon a mobility
event, a proxied msocket connection migrates both halves of
the flowpath (Figure 6). The client-to-proxy portion is similar
to the client-to-server portion shown in Figure 2. The server as
before opens a corresponding new flowpath to the proxy that
then splices the two halves. Note that we do not strictly need
to tear down and re-establish the server-to-proxy flowpath,
however we chose to do so to keep the proxy simple and
in order to keep the presence of a proxy oblivious to the
client (that would expect the corresponding control message
exchanges exactly as in the proxyless case).

msocket supports two approaches to migrate a proxied
msocket server based on (1) the connectionless control socket
as in the proxyless case in order to notify the client if the client
is globally addressable, or (2) an alternate approach relying
only upon the name service. In the latter approach, the server
as usual acquires and registers new proxy servers through the
name service and opens control channels to the newly acquired
proxies. An in-band failure detection mechanism based on
periodic keepalive messages, from the server to the client via
proxy, and timeouts enables the client to infer that the server
has migrated. Upon a keepalive timeout, the client queries the
name service and re-establishes the necessary flowpaths as in
client-initiated migration.

3) Distributed proxy management: msocket’s default proxy
service is based on dproxy, a distributed proxy management
subsystem for secure group management, a proximity- and
load-aware proxy location service, and a watchdog service to
monitor the health of proxies, all relying on Auspice as a
logically centralized persistent data store (with further details
deferred to a techreport [23]).

E. msocket implementation

We have implemented the msocket prototype in Java with
around 6K lines of code (number of semicolons) for the
msocket data path and around 3K lines of code for dproxy.
msocket and dproxy rely upon Auspice, a pre-existing service
that has been running on Amazon EC2 for over a year. We
chose Java because it is platform independent and is easily
usable on Android.

The API exposed by MSocket (MServerSocket) is similar to
java.net.Socket (java.net.ServerSocket) and supports all of the
latter’s methods. Typically, porting a legacy Java application

to use msocket with the default mobility and multihoming poli-
cies just means including the msocket package and replacing
a few classnames in java.net.* with msocket counterparts. To
keep the msocket API similar to the BSD API and yet provide
useful default mobility and multihoming policies in common-
case scenarios, we have implemented a mobility manager
module that automatically migrates flowpaths when there is
a change in ip addresses of the device. Example policies
include (1) prefer cellular (or WiFi) when available; and (2)
simultaneously use both WiFi and cellular (that needs a minor,
around 10 lines, change in the ConnectivityService
class in Android) when available. msocket is designed to
resume a connection after a mobility event even when an
endpoint becomes unreachable for a long period of time, so
endpoints must retain connection state for long durations. This
period is configurable from msocket API and by default set
to to a day, but it can be set to lower values to reduce the
overhead.

In our design, both ends needs to be modified to enable
msocket communication. In future, we plan to extend our
implementation so that the mobile end can use msocket and
communicate with the other end unmodified. We plan to
leverage dproxy to enable this functionality. The proxies can
act as translators and a mobile client or server uses proxies to
communicate with the unmodified other end and the mobile
end gets all the benefit of seamless mobility, multipath and
middlebox agnostic communication.

IV. EVALUATION

In this section, we seek to evaluate: (1) msocket’s perfor-
mance in handling mid-connection mobility of one or both
endpoints; (2) Performance of the multipath scheduling policy
and its throughput-energy trade-off on mobile phones; (3)
Performance of mid-connection client mobility in multipath
scenario. Furthermore, we demonstrate the full functionality
of msocket using the following case study scenarios: (4) A
mobile user running a server on the phone and roaming around
in the city downtown; (5) Leveraging msocket’s middlebox-
agnostic communication instead of Bluetooth for proximate
communication.

A. Mid-connection mobility of one or both endpoints

1) Client-side mobility: In client-side mobility, the client
end of an established connection changes its network address,
which msocket handles by migrating the corresponding flow-
path(s) to the new address. We evaluate the latency to migrate
a flowpath from the old to the new network address with an
experimental setup wherein the client runs on a laptop and the
server on a PlanetLab node. The client starts a file download
from the server using one WiFi access point, and midway
during the download, we switch the WiFi access point (AP) on
the client node, thereby changing its IP address. We measure
the latency incurred by msocket to recover from the mobility
event and for the file download to resume. The latency is
measured after the client successfully switches to the other
AP, so it does not include the AP switching latency.
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Figure 7 shows the client mobility recovery time for differ-
ent RTT values between the server and the client. The recovery
time increases linearly with the RTT and is roughly twice
the RTT. This is consistent with the client-initiated flowpath
migration protocol described in III-B3 as the reconnect(.) and
control message exchange takes 2RTTs.

2) Server-side mobility: In server-side mobility, the listen-
ing server changes its address, and all the already established
connections at the server along with the listening server must
therefore be migrated to the new address. In this experiment
we evaluate msocket’s recovery from server-side mobility,
including the overhead of moving all the extant connections.
There is one server and 5 clients with 107, 109, 104, 80 and
120 ms as respective RTTs from the server. The clients connect
to the server and start downloading a file during which the
server moves by changing its listening port number. In the
experiment, we evaluate the server mobility completion time
for different numbers of extant connections at the server. Each
established connection has just one flowpath.

Figure 8 shows the CDF of the number of established
connections that have re-connected to the server after the
mobility event. The server mobility recovery time is around
300 ms for 20, 40, 60 active connections, which is 2.5*RTT
and around 330 ms for 80 and 100 active connections. For
80 and 100 active connections, the delay is somewhat higher
because the processing delay becomes a bottleneck at the
server beyond that point.

3) Mobility of both the end points: In this case, both
endpoints move without the other side knowing the new
address. The experimental setup is as follows. The server runs
on a PlanetLab machine and the client runs on a desktop
machine, connected by WiFi. The RTT between the server and
the client is 116 ms. The client query time (q) and the server
update time (w) to Auspice, as described in §III-B3, are 100
ms and 32 ms respectively. The client connects to the server
and downloads a 10 MB file. Midway during the download,
first the server goes down (or disconnects from the network)
at t= 5 sec from the start of the download, then the client goes
down at t= 10 sec, then the client comes back up (connects to
a different WiFi AP) at t=20 sec and tries to connect to the
server, and then the server comes back up at its new listening
address at t=30 sec.

Figure 9 shows the mobility handling time, which is the time
to reconnect after both the sides have come back up, at t=30
secs, for different periodic retry intervals (ρ). The experiment

is consistent with the expected bound (ρ+ q+w+2RTT ) on
simultaneous mobility recovery time as described in §III-B3.

B. Multipath scheduling policy

In this section, we (1) compare the performance of msocket
multipath policy, as described in §III-C, with other schemes;
and (2) analyze the throughput-energy trade-off of multiplath
scheduling on mobile phones, and show that for large file
transfers, both the download time and the energy consumed
can be simultaneously reduced.

1) Multipath scheduler performance: We compare
msocket’s multipath scheduling policy (§III-C) with state-of-
the-art MPTCP [6] and an Ideal multipath scheduling scheme
that sends bytes over all flowpaths and the receiver simply
measures the time at which it cumulatively receives the
required number of bytes, i.e., it is not affected by re-ordering
or quality fluctuations across the flowpaths.

The experimental setup is as follows. The server runs on
an Amazon EC2 machine in Oregon. The server is MPTCP
v0.88 capable and uses the cubic congestion controller. The
client runs on an MPTCP-capable desktop machine. For Ideal
and msocket, MPTCP scheduling is turned off. The client has
two interfaces, one WiFi and other Verizon 4G LTE, so each
scheme opens and schedules data over two flowpaths. The
RTT between the server and the client on WiFi is 80 ms
and on the cellular network is 145 ms. In the experiment,
the client opens a connection to the server, sends a request for
the corresponding file size to the server, and then downloads
it from the server. The client downloads the file multiple times
as different runs of the experiment on the same already open
connection. The download time is measured from the time the
client requests the file till it completely receives it for each
run.

Figure 10 shows the results of the experiment. The high
error bars are due to the variation of the congestion window;
initial runs got lower congestion window than the later runs, as
runs were done back-to-back on the same connection. The re-
sults show that Ideal performs the best as expected. msocket’s
scheduling policy performs as good as MPTCP, which is
encouraging, and even somewhat surprising, as MPTCP is
implemented in-kernel with access to detailed information in
the TCP control block, timeout, losses, etc. while msocket is
implemented in user-space with no access to any TCP state.

2) Multipath power consumption: On mobile phones, keep-
ing both cellular and the WiFi active at the same time increases
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the power consumption, compared to using either one of them
individually. But with multipath scheduling, the throughput
also increases. In this experiment, we study this throughput-
energy trade-off on a mobile phone.

The experiment setup is as follows. The server is a Plan-
etLab node and the client is a Samsung Galaxy Nexus I9250
Android device that is tweaked to use both the WiFi and the
AT&T cellular network simultaneously. The RTT between the
client and the server over WiFi is 116 ms, and 246 ms over
cellular. We evaluate three schemes that respectively send data
using (1) only WiFi, (2) only Cellular, (3) both interfaces,
using multipath scheduling. We power the phone using an
external power supply, monsoon power monitor[24], which
gives us an accurate trace of the energy consumption during
the experiment. The energy consumption is in mAh (milli-
Ampere-hour).

Figures 11 and 12 show the time taken to download the
files and the respective energy consumed. The experiment
demonstrates that as the file size increases, the download time
decreases by using both the interfaces compared to using any
one of them. As the file size increases, the energy consumed
using both the interfaces remains same or lower than using one
of them individually. The reason behind the observation is that
the file download time decreases by using both the interfaces,
so the overall energy consumption decreases. Our aim here
is to just show that it is possible to simultaneous improve
both throughput performance and power consumption through
a suitable multipath scheduling policy; the detailed analysis
of the throughput-power tradeoff is beyond the scope of this
paper, and is deferred to future work.

C. Mobility in multipath scenario
In this section, we compare the handling of client mobility

in msocket and MPTCP. Two cases are compared (1) There
is one flowpath and the client switches from one network
to another in between a file download. (2) There are two
flowpaths one each on cellular and WiFi, and the client turns
off one of the networks in between a file download. In the
case 1, the old network goes down and the flowpath has to
be migrated to the newly connected network, while in case 2,
there are two flowpaths and the flowpath that is on the network
that is not turned off is used for the data transfer.

The experiment setup is as follows. The server and the
client are MPTCP enabled, with the path manager module
installed. For msocket measurements, MPTCP is disabled on
the machines and the legacy TCP is used. Cellular network

used is Verizon 4G-LTE and the local WiFi was used as the
WiFi network. The RTT between the server and the client
on the cellular network is around 59 ms and on the WiFi
network is around 0.9 ms. The client connects to the server,
using msocket or MP-TCP, and starts downloading a file. The
client performs the client side mobility from WiFi to cellular
or cellular to WiFi after it downloads one third of the file size.
We switch off and switch on the required interfaces through
automated scripts so that the delay to connect to a new network
is approximately the same for both the MP-TCP and msocket
experiments.

In one flowpath case, we study both cases when the client
switches from WiFi to cellular, Figure 13, and from cellular to
WiFi, Figure 14. Experimental results show that msocket and
MPTCP handle client mobility in similar fashion. In msocket
case, the inbuilt mobility manager of msocket detects the
change in interfaces on the client and migrates the affected
flowpath. In the case of two flowpaths. The client connects
to the server and opens two flowpaths, one on WiFi and
another one on cellular. After one-third of the file download,
it switches off either WiFi or cellular. Figure 15 and Figure
16 show the file download performance. Both the msocket
and MPTCP handle the this case similarly and use the other
flowpath to send the data.

D. Case studies
We use the full-featured msocket implementation to perform

two case studies. The first involves a user running a mobile
server on the phone roaming in a downtown area connecting to
different WiFi or cellular APs as available. The client connects
to this middlebox-agnostic server and downloads a file. The
throughput measured at the client, the connectivity of the
server to different networks and its geographical location is
shown in Figure 17. During the case study, sometimes the
mobile phone connected to the free WiFi networks that only
supported HTTP connections and sometimes just connecting
to WiFi APs, in interference prone downtown, took long time.
These are the reasons for some gaps in the connectivity. The
code to run this mobile agnostic server is exactly same as
writing a server program for a fixed, globally addressable
host, which is due to the seamless connection mobility and
middlebox-agnostic communication abstraction provided by
the msocket to applications.

The second case study quantitatively compares proximate
communication that is commonly achieved by Bluetooth today
against msocket’s middlebox-agnostic communication relying
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on IP-based communication. The case study involves trans-
ferring a 12 MB mp3 song from one phone to the another,
using Bluetooth and msocket over WiFi. In WiFi network, both
the phones are behind a middlebox (NAT) and use msocket’s
middlebox agnostic communication to accomplish the transfer.
The transfer over WiFi finishes sooner than Bluetooth, even
when the RTT from one phone to the another via proxy is
232 ms. The case study demonstrates a simple use-case and
effectiveness of the mobile-agnostic communication, which we
envision might even lead to saving the number of wireless
antennas and thereby power and space on the mobile devices.

V. CONCLUSION

In this paper, we presented msocket, a user-level socket
library and system for developing applications with seamless
individual or simultaneous endpoint mobility across network
addresses, multihomed multipath communication, and mobile-
to-mobile communication despite the presence of address-
translating middleboxes. Our design borrows liberally from
an enormous body of prior work on connection migration,
multipath transport, and application-specific techniques for
middlebox penetration, but contributes a novel synthesis of
these techniques into a holistic, simple, and immediately
usable system that requires no changes to legacy OS or net-
work infrastructure. Our extensive prototype-driven evaluation
shows that msocket significantly improves the performance,
power consumption, or ease of development of mobile ap-
plications while imposing minimal overhead despite its user-
level implementation. msocket with a test-drive toolkit can be
downloaded at http://people.cs.umass.edu/ayadav/msocket/

REFERENCES

[1] Gartner, “Sales of Android Phones to Approach One Billion in 2014,”
http://www.gartner.com/newsroom/id/2665715.

[2] “Cisco visual networking index: Global mobile data traffic forecast
update, 2012-2017.”

[3] “Google Cloud Messaging for Android.” [Online]. Available:
http://developer.android.com/google/gcm/index.html

[4] J. Saltzer, “On the Naming and Binding of Network Destinations,” 1993.
[5] Z. Gao, A. Venkataramani, and J. F. Kurose, “Towards a Quantitative

Comparison of Location-Independent Network Architectures,” in ACM
SIGCOMM, 2014.

[6] C. Raiciu, C. Paasch, S. Barre, A. Ford, M. Honda, F. Duchene,
O. Bonaventure, and M. Handley, “How hard can it be? designing and
implementing a deployable multipath tcp,” in Presented as part of the 9th
USENIX Symposium on Networked Systems Design and Implementation
(NSDI 12), 2012.

[7] M. Arye, E. Nordstrom, R. Kiefer, J. Rexford, and M. J. Freedman, “A
Formally-Verified Migration Protocol For Mobile, Multi-Homed Hosts,”
in ICNP, 2012.

[8] P. Jokela, P. Nikander, J. Melen, J. Ylitalo, and J. Wall, “Host Identity
Protocol, extended abstract,” in Wireless World Research Forum, 2004.

[9] C. E. Perkins, “Mobile IP,” IEEE Comm. Magazine, May 1997.
[10] A. Sharma, X. Tie, H. Uppal, A. Venkataramani, D. Westbrook, and

A. Yadav, “A Global Name Service for a Highly Mobile Internet.” in
ACM SIGCOMM, 2014.

[11] D. Farinacci, V. F. Fuller, D. Meyer, and D. Lewis, “The locator/id
separation protocol (lisp),” IETF RFC 6830. [Online]. Available:
http://tools.ietf.org/html/rfc6830

[12] I. Stoica, D. Adkins, S. Zhuang, S. Shenker, and S. Surana, “Internet
Indirection Infrastructure,” in ACM SIGCOMM, 2002.

[13] S. Zhuang, K. Lai, I. Stoica, R. Katz, and S. Shenker, “Host Mobility
Using an Internet Indirection Infrastructure,” Wireless Networks, vol. 11,
no. 6, pp. 741–756, Nov. 2005.

[14] “GSM Technical Specifications,” gSM UMTS 3GPP Numbering Cross
Reference. ETSI. December 2009.

[15] H. Balakrishnan, K. Lakshminarayanan, S. Ratnasamy, S. Shenker,
I. Stoica, and M. Walfish, “A Layered Naming Architecture for the
internet,” in ACM SIGCOMM, 2004.

[16] “MobilityFirst Future Internet Architecture Project,”
http://mobilityfirst.cs.umass.edu/.

[17] D. Han, A. Anand, F. Dogar, B. Li, H. Lim, M. Machado, A. Mukundan,
W. Wu, A. Akella, D. G. Andersen, J. W. Byers, S. Seshan, and
P. Steenkiste, “XIA: Efficient Support for Evolvable Internetworking,”
in USENIX NSDI, 2012.

[18] M. Caesar, T. Condie, J. Kannan, K. Lakshminarayanan, and I. Stoica,
“ROFL: Routing on Flat Labels,” in ACM SIGCOMM., 2006.

[19] M. Gritter and D. R. Cheriton, “An Architecture for Content Routing
Support in the Internet,” in USENIX USITS, 2001.

[20] “Named Data Networking,” http://www.named-data.net/.
[21] A. C. Snoeren and H. Balakrishnan, “An End-to-End Approach to Host

Mobility,” in ACM MobiCom, 2000.
[22] D. Funato, K. Yasuda, and H. Tokuda, “TCP-R: TCP mobility support

for continuous operation,” in ICNP, 1997.
[23] “msocket: Extended Technical Report.” [Online]. Available:

http://people.cs.umass.edu/ayadav/msocket/msocket-TR.pdf
[24] “Monsoon power monitor.” [Online]. Available:

https://www.msoon.com/LabEquipment/PowerMonitor/

APPENDIX

Fig. 19: Server-side flow migration. Dashed lines show mes-
sages sent over connectionless control sockets.


