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ABSTRACT

In this paper, we examine the bandwidth-constrained place-
ment problem, focusing on trade-offs appropriate for wide
area network (WAN) environments. The goal is to place
copies of objects at a collection of distributed caches to
minimize expected access times from distributed clients to
those objects subject to a maximum bandwidth constraint
at each cache. We develop a simple algorithm to generate
a bandwidth-constrained placement by hierarchically refin-
ing an initial per-cache greedy placement. We prove that
this hierarchical algorithm generates a placement whose ex-
pected access time is within a constant factor of the optimal
placement’s expected access time. We then proceed to ex-
tend this algorithm to compute close to optimal placement
strategies for dynamic environments.

1. INTRODUCTION

This paper addresses the bandwidth constrained place-
ment problem for Wide Area Networks (WANs). The goal
is to place copies of objects at a collection of distributed
caches to minimize expected access times from distributed
clients to those objects. We assume a cooperative caching
model [10] in which a cache miss at one location may be sat-
isfied by another cache in the system. A number of scalable
request-forwarding directory schemes have been developed
to enable large-scale cooperative caching in WANs [1, 12,
26] and commercial content distribution networks of cooper-
ating caches have been deployed by companies such such as
Akamai and Digital Island.

Although traditional caches are filled when client demand
requests miss locally and cause data to be fetched from a
remote site, hit rates might be significantly improved by
pushing objects to caches before clients request them [16,
27]). The distributed cache placement problem attempts to
select which objects should be pushed to which caches in
order to optimize performance. A number of researchers
have examined the space-constrained placement algorithms
— in which cache storage space places limits on what can be
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cached where — in local area networks [10, 13, 21] and wide
area networks [20, 19]. However, little attention has been
paid to bandwidth constrained placement.

Unfortunately, for WAN replication, bandwidth constraints
may be more restrictive to replication than space constraints.
A number of web-trace simulations have indicated that only
modest cache sizes are needed to achieve maximum hit rates
[11, 15, 26]. Furthermore, maintaining a pushed copy of an
object in a cache consumes not only disk space but also net-
work bandwidth to update that copy when the origin data
changes. Gray and Shenoy [14] compare the dollar cost of
transmitting an object across the Internet to the dollar cost
of storing the object on disk and indicate that network costs
will be greater than disk storage cost for objects whose life-
time is less than 13 months.

In this paper, we extend Korupolu et al’s [20] space-
constrained placement algorithm to address bandwidth con-
straints. The bandwidth-constrained problem differs from
the simple space constrained model used by Korupolu et al.
in several important ways:

e The bandwidth-constrained cost model depends on ob-
ject update frequency and must account for the on-
demand replication of objects that naturally occurs as
demand-reads are processed. Conversely, the space-
constrained cost model does not depend on object-
update frequency, and a good space-constrained place-
ment may not be improved by on-demand replication
because any new replica must displace a previously
placed object.

e In a bandwidth-constrained placement model, replicas
of data initially present in caches should be left there,
while such initial copies have no advantage over other
objects under the space-constrained model.

e After a good bandwidth-constrained placement is cal-
culated, it may take considerable time to send objects
to their caches. In fact, in some cases bandwidth-
constrained placement may be a continuous process
as copies of objects are pushed to caches at some low
background bandwidth, new objects are created, and
existing objects are updated. Thus, it is important
for a bandwidth-constrained placement algorithm to
work well in a dynamically changing environment and
provide good performance at intermediate points in
its execution. Conversely, Korupolu et al.’s algorithm
only seeks to optimize the cost of the final, complete
placement and runs in a batch mode as opposed to an
incremental one.



We extend Korupolu et al.’s algorithm and show that
our Fized-ts;; algorithm generates a final placement that is

within a constant factor of the cost of a bandwidth-constrained

optimal placement under empty-cache initial conditions. We
then show that our InitFill algorithm also provides a final
placement that is within a constant factor of the optimal
even when considering an initial placement. Finally, we
show that our DoublingEpoch algorithm generates series of
placements that is continuously within a constant factor of
the optimal placement at any time ¢, but that to do so, it ex-
pands the required bandwidth by at most a factor of 4. This
means that the DoublingEpoch algorithm is well-suited to a
dynamic environment where objects are updated, demand-
read copies appear, and new objects appear because it re-
quires no a priori estimate of what point in time for which
to optimize the placement schedule.

Our placement algorithms have several limitations. First,

the constant cost and bandwidth-expansion factors that bound

our worst case performance appear large (about a factor
of 14 for the cost bound and 4 for the bandwidth expan-
sion bound). However, previous experimental evaluation of
the space-constrained placement algorithm indicates that for
practical topologies and workloads, its behavior closely ap-
proximates the ideal algorithm despite similarly large con-
stants [19]; our intuition leads us to expect similar behavior
in the bandwidth constrained case. Second, although the
DoublingEpoch algorithm is robust in a dynamic environ-
ment and provides a constant-factor approximation of the
optimal bandwidth-expanded placement within any interval
across which it is run, it must be restarted when system
conditions significantly change, and it is not provably near-
optimal across a series of executions. Finally, all of our
constant-factor bounds assume uniform unit-sized objects.
The nonuniform-size placement problem is NP-hard. We
present a simple heuristic that extends our algorithms to
accommodate variable-sized objects. Future work is needed
to experimentally validate our conjectures that for practi-
cal topologies and workloads our Fized-ts;;, InitFill, and
DoublingEpoch algorithms will be nearly optimal within any
interval, that our heuristics for chaining the DoublingEpoch
algorithm across intervals work well, and that our heuristics
for variable-sized objects work well.

The rest of this paper is organized as follows: In section
3, we describe the system architecture and the hierarchical
distance and cost model we are considering. In section 4, we
introduce the basic Fized-tsy; algorithm that is a straight-
forward extension of the Greedy algorithm in [20] and prove
that its cost is within a constant factor of the optimal. In
section 5, we remove the restrictions assumed while de-
veloping the Fized-tsy; algorithm and extend it to relate
to more realistic scenarios. Herein, we introduce the Dou-
bling Epoch algorithm and and analyze it for performance
bounds. In section 6, we explain a heuristic algorithm to
handle variable sized objects, and finally in section 7, we
summarize our conclusions. The appendix outlines the proof
of optimality to within a constant factor of the Fized-t s
algorithm. We also show that that the placement problem
for variable sized objects reduces to the partition problem
and is hence intractable and unyielding to efficient approxi-
mation algorithms.

2. RELATED WORK

The placement problem has traditionally been treated as

one constrained by space. Korupolu et al. [20] studied
the problem of coordinated placement for hierarchical caches
with space constraints, i.e. fixed cache sizes. They proved
that under the hierarchical model of distances, the space
constrained Amortized Placement algorithm is always within
a constant factor (about 13.93) of the optimal. Though
for practical purposes this factor is rather large, the exper-
imental work in [19] suggests that this algorithm yields
an excellent approximation of the optimal for a wide range
of workloads. In addition, the simplified greedy version of
the amortized algorithm introduced in [20] has also been
shown to provide an excellent approximation of the opti-
mal, though in theory its performance can be arbitrarily far
from optimal.

In an earlier study, Awerbuch, Bartal and Fiat [2] provide
a polylog(n)-competitive on-line algorithm for the general
space constrained placement problem under the assump-
tion that the size of each cache in the on-line algorithm
is polylog(n) times larger than the size in the optimal algo-
rithm. The placement problem for a network of workstations
modeled as a single level hierarchy has been studied by Leff,
Wolf and Yu [21]. They provide heuristics for a distributed
implementation of their solution. However, the heuristics
make use of particular properties of single-level hierarchies
and are not applicable to arbitrary hierarchies.

Replacement algorithms attempt to solve the problem of
determining which object(s) are to be evicted when a cache
miss occurs. Relevant studies of replacement algorithms
have been done in [6, 30]. In the space constrained scenario,
replacement algorithms may also be viewed as placement
algorithms starting with an empty placement. The work
in [19] shows that the hierarchical version of the Greedy-
Dual replacement algorithm exhibits good cooperation and
performs well in practice. However, for the bandwidth con-
strained placement problem, objects can be allowed to re-
main in the caches until they are modified, and hence re-
placement policy is not an issue.

The object placement problem has an orthogonal coun-
terpart, namely the object location problem. The object lo-
cation problem has been widely studied [5, 8, 25]. Recent
studies such as Summary Cache [12], Cache Digest [24],
Hint Cache [26], CRISP [23] and Adaptive Web Caching
[31] generalize from hierarchies to more powerful cache-to-
cache cooperation scenarios. Some recent studies have com-
bined the location problem with the placement problem by
remembering routing information at intermediate nodes [17,
22, 23, 29]. However, in this paper, we do not deal with
lower level routing issues and separately consider only the
placement problem.

To the best of our knowledge, the placement problem with
bandwidth constraints has not been studied for hierarchical
caching networks.

3. SYSTEM ARCHITECTURE

The system architecture is modeled as a set of N dis-
tributed machines and a set S of origin servers connected
by a network. Assume that these machines are accessing a
set of M shared objects maintained at any of the servers in
S and cached at the machines. For each machine i, there is a
fixed available bandwidth denoted by bw() to push objects
into the cache at machine 7. The size of the cache at every
machine is assumed to be very large. The cost of communi-
cation between any pair of machines ¢ and j is given by the



function dist(i, ).

Requests for objects are made by clients at or near these
machines. If there exists a local copy of a requested object
a at machine 4, then the object is served locally. If not, a
directory (e.g. a summary [12] or a hint cache [26]) is con-
sulted to find the nearest copy of object a, which is fetched
and served to the requester as well as stored locally at ma-
chine 7. This implies that all future requests for object o at
machine 7 will be local hits. Thus the cost of satisfying an
access request for an object a at a machine i, denoted by
¢(%, @) is given by the cost of communication dist(i, ) be-
tween ¢ and j, where j is the closest machine that possesses
a copy of object a. If no copy of object a resides on any
of the caches in the network, then c(i, ) is defined to take
a value A that denotes the miss penalty. In other words
this is the cost of obtaining a requested object directly from
an origin server rather than from one of the N cooperat-
ing caches. Note that A must at least be as large as the
maximum value of the function dist.

An example of a system with such properties is a large
scale content distribution network where bandwidth costs
dominate storage costs and where the caches have a limited
available bandwidth to receive object updates.

Hierarchical distance model

To make this problem tractable and applicable for practi-
cal distributed networks, we structure the distance function
dist(i, j) according to a hierarchical model. This hierarchy
may be understood as a multilevel cluster or a cluster tree as
shown in Fig 1. Such an organization of machines naturally
reflects the way wide area network topologies are structured.
For example in a collection of universities each machine be-
longs to the department cluster, which in turn belongs to
the university cluster, and so on.

A depth-0 hierarchy is a singleton set containing one ma-
chine. A depth-d hierarchy H is a virtual node H plus a set
of hierarchies Hi, H,... ,H}, each of depth smaller than
d, and at least one of which has depth exactly d — 1. The
hierarchies Hi,... , Hy are referred to as the children of H
and H itself as the parent of Hi,...,Hy. A hierarchy is
associated with a diameter function diam which is defined
as follows: If H is a singleton hierarchy, diam(H) = 0, else
diam(H) > Adiam(H;), for all children H; of H. (Such a
hierarchy is said to be A — separated.) For any hierarchy H,
machines(i) is defined to be the set of singleton hierarchies
that are descendents of H. The distance function dist(i, 5)
between any two machines ¢ and j belonging to H is defined
as diam(H1) where Hy is the least depth hierarchy such that
1 and j belong to machines(H1).

Thus, a hierarchy is essentially a tree and we use the two
terms interchangeably. It must be remembered that while

understanding a hierarchy as a cluster tree, the caches/machines

are only at the leaf nodes. The intermediate nodes are vir-
tual and only maintain book-keeping information. The dis-
tance function described above ignores small variations in
cost inside a subtree and models a system where each ma-
chine has a set of nearby neighbors, all at approximately the
same distance di1, and then a set of next closest neighbors
all at approximately a distance d2 and so on. Note that the
term hierarchical caches used to describe caching systems
like Harvest [5], Squid [28] etc. is different and the two
models must not be confused. In the latter, the hierarchy
models the actual network topology and interior nodes act

as caches. In our model the hierarchy itself is a logical tree
introduced solely to capture network distances.

The model described above is the same as the ultrametric
model used by Karger et al. [18] Such a hierarchical structure
can be used to capture a wide variety of distributed networks
like intranets or WANs. A local area network for example
is a depth-1 hierarchy. It can also be used to model content
distribution networks - the leaf caches are the geographically
distributed pseudo-servers. A client request originating at
an ISP is directed to one of these caches that may either
serve the object or redirect the request to the closest neigh-
boring cache which stores a copy. If none of the caches store
the object, then the request is directed to the origin server
for the object. It seems reasonable to think that a hierarchal
distance model may serve as a reasonable approximation of
a complex network such as the Internet. In fact recent re-
sults on approximation of general metrics by tree metrics [3,
4, 9] imply that any hierarchal placement algorithm may be
used to obtain a placement algorithm for any arbitrary met-
ric cost model with at most a blow up in the approximation
factor by a polylog factor in the number of nodes.

Cost Modéd

A placement assigns copies of objects to machines in a hi-
erarchy. A copy (i, ) is a pair consisting of a machine 7 in
the hierarchy and an object a. Every object a is associated
with an expiry time denoted by ezpiry(a) that represents
the point of time at which the object will be invalidated.’

For any machine ¢ and object «, let p(i,a) denote the
probability of access of object o at machine ¢ before expiry(a).
For any hierarchy H, the aggregate probability of access of an
ObjeCt o p(H) a) is defined as 1 _HiEmachz’nes(H) (1_p(l’ a))’
i.e. it represents the probability of access of object a at at
least one of the leaf nodes in the tree rooted at H. The
goal of the coordinated placement strategy is to push ob-
jects into the caches such that the overall cost of access to
these objects is minimized.

In order to develop a notion of the overall cost of a place-
ment given the probabilities of access of objects at the ma-
chines, we observe that if there is a request for an object «
in any hierarchy H, none of whose machines have a copy of
a, the incremental cost of leaving H to fetch a copy of the
a is p(H,a) - (diam(parent(H)) — diam(H)). The overall
access cost cost(P, H,y) of a placement P over a hierar-
chy H and a universe of objects v is recursively defined to
be >° cy P(h,) - 6(h, @) - (diam(parent(h)) — diam(h)) +
2 icik €ost(P, Hi,9), where Hy, ... Hy are the immediate
children of H and é(h, ) takes the value 0 if at least one
machine in machines(h) contains a copy of «, else 1. A
formal justification of the cost function defined above may
be arrived at by a straightforward proof of the claim that
for a random series of n object requests in accordance with
the distribution of the given probabilities of accesses, the ex-
pected total latencies encountered by two given placements
are in the ratio of their costs as defined above, as n — oo.

In practice, access probabilities may be known or esti-
mated using application specific benchmarks with knowl-
edge of history based statistical information [7]. Since ob-
jects are associated with lifetimes and probabilities of access

'In practice, expiry(a) may be known or estimated a priori,
e.g. a newspaper website may be updated every night at
2am or past update patterns may be used to predict the
next update.



Fig 1. Model for network distances

are likely to show temporal variation, it seems natural to in-
troduce a fill-time ts; within which the placement has to
be accomplished. Thus, given probabilities of access and
the available bandwidth to push objects into machines, the
goal of the bandwidth constrained placement problem is to
compute the placement with the minimum cost that can be
accomplished within the fill-time.

4. ALGORITHMS

In this section we present some core algorithms to handle
the bandwidth constrained placement problem as defined
above as well as its extensions to more realistic scenarios.
We start with a basic algorithm called the Fized-ts; algo-
rithm that solves the version of the placement problem de-
fined in section 3 , i.e. it assumes that (i) all the caches are
initially empty, (ii) objects do not get modified during ¢,
(iii) all object requests occur after the placement is complete,
(iv) the probabilities of access and the universe of objects
are fixed, and (v) all objects are of equal size. We first de-
scribe a simple greedy strategy that that captures the core
idea of the Fized-ts; algorithm. We then describe an amor-
tized version of this algorithm which adds a small technical
adjustment needed for bounding the algorithm’s worst case
performance with respect to the optimal placement. Sub-
sequently, in section 5 and 6 we proceed to progressively
refine this algorithm to handle (i) non-empty initial place-
ments, (ii) simultaneous placement and accesses to objects,
(iii) object updates and introduction of new objects and (iv)
variable sized objects.

All the algorithms described in this section have been de-
scribed, for simplicity’s sake, under the assumption of a cen-
tralized implementation. However, it is straightforward to
transform the centralized implementation into an efficient
distributed one by a procedure that parallels the approach
outlined in [20].

4.1 The Greedy Fized-ts; Algorithm

The algorithm we present involves a bottom-up pass along
the cluster tree. It starts with a tentative placement in
which the caches at the leaves of the cluster tree pick the
locally most valuable set of objects. Then the algorithm
proceeds up the hierarchy by having each node improve the
corresponding subtree’s placement.

It must be emphasized that the problem of determining
a good placement is conceptually distinct from accomplish-
ing that placement itself. The latter involves routing issues
which we do not address directly in this discussion. These is-
sues are simply abstracted out in terms of an effective band-
width bw(z) available to push objects into machine ¢’s cache.

We first introduce a few definitions. For any H, and

a placement P over it, we define an object a to be P-
missing if no copy of a exists in any of the caches in H.
The benefit of an object o at a machine 7 in a placement
P is defined as the increase in the cost of the placement
over H were o to be dropped from %, and is denoted by
benefit(i, o, P). It follows from the definition that the bene-
fit of a copy is dependent on where other copies of the same
object are distributed among the machines in the hierarchy.
The value of a P-missing object o in a hierarchy H is defined
to be p(H,a) - (diam(parent(H)) — diam(H)). The Fized-
tsn greedy algorithm for bandwidth constrained placement
is given below.

Input: A hierarchy U, the universe of objects 9, a fill time
tfu, available bandwidth bw(¢) for ¢ € machines(U), the ac-
cess probability p(, ) for all objects a and ¢ € machines(U).
Let all objects be of size objectsize.

Initialization: For each i € machines(U), set size(i) =
bw(4) - tsu. For each i € machines(U), select the [0;]‘:0%

objects with the highest local probability of access p(i, )
and call this local placement P;. For each object o that gets
selected at machine 4, initialize AssignedBenefit(i,a) =

p(i,@) - (diam(parent(i)) — diam(z))

Iterative step: step d, 1 < d < depth(U)

1. Compute the level-d placement for each depth d hi-
erarchy H as follows: Let Hjy,...,Hy be the constituting
hierarchies that are the immediate children of the hierar-
chy H. Initialize the placement Py over C' to the union of
the placements already computed at Hi,... ,Hy, i.e. Pg =
Usechitdren(m) Pi-

2. Update benefits: For each object o in H that has one
or more copies in the current placement Py, let (i,ap) be
the primary copy, i.e. the copy with the highest local As-
signedBenefit. The AssignedBenefit of this primary copy
is increased by H’s aggregate access probability times the
cost of leaving hierarchy H, i.e., AssignedBenefit(i, ap) + =
p(H,a)-(diam(parent(H))—diam(H)). All other copies of o
are known as secondary copies and their AssignedBene fits
remain unchanged. Let X denote the set of Pu-missing
objects.

3. Greedy Swap Phase: While there is a P-missing object
f in X, whose value is more than the copy (i,a) with the
least AssignedBenefit in P, remove the copy (i, @) and sub-
stitute a copy of (¢, 3) with its AssignedBenefit initialized to
its value just before the swap.

Object Insertion: After the placement P over the hier-
archy H has been computed, send out the selected copies of



objects into the corresponding machines in the order of their
AssignedBene fits computed at the end of the loop above.

The key idea is that the swapping procedure at every level
continues till there exists a P-missing object with value
greater than the least beneficial copy in the current place-
ment. The greedy swapping procedure stated above uses
AssignedBenefits instead. However, observe that the As-
signedBenefit represents the benefit of a copy just before it
gets swapped out, and that the benefit of a copy is at most
equal to its AssignedBenefit. It follows that the greedy swap-
ping rule is equivalent to one based on swapping out the copy
with the least benefit.

It may be verified that the execution time complexity of
the greedy algorithm given above is O(C - N), where C is
the sum of the cache sizes at all of the leaf nodes and N is
the total number of nodes in the hierarchy.

4.2 The Amortized Fized-tz; Algorithm

Though the greedy algorithm seems simple and promis-
ing, the placement it computes in the worst case could be
arbitrarily far from optimal. The fundamental drawback of
the algorithm is that a single secondary copy of some object
may prevent swapping in of several missing objects. Though
the benefit of the secondary copy may be larger than the
value of each of the missing objects, on the whole it might
be much less than the sum of all these values put together.
Korupolu et al. [20] demonstrate that for the space con-
strained version of the greedy algorithm, this effect can lead
to a placement arbitrarily far from optimal.

In order to overcome this problem, we augment the greedy
algorithm with an amortization step using a potential func-
tion identical to the one used in [20]. The potential function
accumulates the values of all the missing objects, and the
accumulated potential is then used to reduce the benefits of
certain secondary items thereby accelerating their removal
from the placement. The Amortized Fized-tgy; algorithm is
as follows:

Initialization: Same as greedy except that we also set a
potential ¢; for each machine 7 to zero.

Iterative Step: Same as in the greedy algorithm except
that the potential ¢y is set to the sum of the potentials
b1, ... ,¢02 computed by the children of H.
1. Update Benefits: Same as in the greedy algorithm.
2. Greedy Swap Phase: This procedure is similar to the
swapping procedure in the greedy algorithm except that the
potential ¢ is used to reduce the AssignedBenefits of some
copies.
(i) Let y, be the primary copy with the least Assigned-
Benefit and y, the secondary copy with the least Assigned-
Benefit in Py. Let a be the highest-valued object in X,
the set of all Pg-missing objects.
(ii): If value(a) > min(AssignedBenefit(yp), AssignedBe-
nefit(ys) — ¢m), then perform one of the two following
swap operations, and goto step 1.
- If AssignedBenefit(yp) < AssignedBenefit(ys) — ¢m,
swap yp with a. Set X to X — a + a', where o is

the object corresponding to the copy yp. Set value(a’)
to Assignedbenefit(yp).

- Otherwise, remove y, from @ and substitute it with
a. Set X to X —a and reset the potential to maz (0, pr—

Assignedbenefit(ys)).
3. Update Potential: Add the values of all the Pu-missing
objects in X to ¢.

Theorem 1: The cost of the amortized Fized — tsy; algo-
rithm is within a constant factor of the cost of the optimal
placement.

The proof of this theorem has been outlined in the ap-
pendix and closely follows that in [20]. Though the worst-
case constant (about 14) is large for practical purposes,
measurements indicate that the space constrained variation
performs nearly optimally for the workloads examined in
[19], and we expect similar performance for bandwidth con-
strained workloads. In the rest of the paper we just use
the term Fized-ts; algorithm to mean amortized Fized-tsn
algorithm.

5. THE DYNAMIC CASE

In the previous section we introduced a placement algo-
rithm that is a straightforward extension of the space con-
strained amortized placement algorithm in [20]. However,
we made several restrictive assumptions. In a content dis-
tribution network for example, we need to handle object
updates dynamically. New copies of objects have to be con-
tinuously pushed out to the caches to maintain consistency.
The universe of objects itself may change with time and the
objects may have arbitrary sizes. In this section we per-
form a stepwise refinement of the Fized-ts; algorithm that
addresses most of these constraints.

We first present the InitFill algorithm that computes a
placement given an existing set of objects already placed at
the machines. To relate this to a practical scenario, imag-
ine a content distribution network where we have placed a
subset of objects at the caches or content servers over the
course of an hour. At this point a significant number of
objects could possibly change, along with their probabilities
of access. For example, a sudden important news event at
a news website could cause new articles with higher pop-
ularity to appear. Since not all of the objects might have
changed, we would still like to leverage the benefit of the ob-
jects already placed in the network. However, the Fized-tsn
algorithm introduced in section 4, assumes the caches to be
initially empty. The space constrained placement algorithm
on which we based the Fized-tsm; algorithm does not take
into consideration the objects already present in the cache.
In general, the InitFill algorithm is useful for iterative ap-
plication of the placement algorithm.

Next, we discuss the issues that arise when choosing tau
in a dynamic environment where objects could get modi-
fied during the placement, the universe of objects and as-
sociated access probabilities could change, requests for ob-
jects could occur simultaneously with the placement and the
caches could start from a non-empty state. We show exam-
ples for which naive strategies for selection of the fill time,
could lead to arbitrarily poor placements. We then present
the DoublingEpoch algorithm that handles such dynamic ob-
ject updates as well as modification of the access probability
distribution and the universe of objects. We analyze this al-
gorithm and prove that, given a 4X blow-up in bandwidth,
this algorithm computes a placement whose cost is within a
constant factor of the cost of the optimal. The DoublingFE-
poch algorithm is therefore useful for continuous application
of the placement algorithm in a dynamic situation.



5.1 Initial Placement

Assume that we already have an initial placement over a
hierarchy H given to us instead of empty caches. We modify
the Fized-tg; amortized algorithm are as follows. We a) add
sufficient free virtual bandwidth to each cache to store the
already placed objects and b) artificially inflate the access
probabilities of the already placed copies to force the algo-
rithm to include them in the placement. The Following is
the InitFill algorithm, given an initial placement P;:

1. Initialization: For each machine 7, set size(i) to the
sum of the combined size of the objects already present in
the cache and bw(i) - tau. For each copy (i,a) € Pi, set
p(i,) = 1. Prioritize the copies in P; so that, ties while
placing the first | size(s)/objsize] objects at machine ¢ dur-
ing the initialization phase are always broken in favour of
copies in P;. (Note that the greedy/amortized algorithm
allows us to do this.) For each of the already placed copies
(3, ), set AssignedBenefit(i, o) to co.

2. Run the rest of the Fized-ts; as before on this modified
problem instance, resulting in a final placement P.

3. Delete from P, all copies (%,a) € P1. (This is so that the
already placed objects don’t have to be pushed into their cor-
responding caches again during the Object Insertion phase.)

Theorem 2: The placement computed by the InitFill algo-
rithm is within a constant factor of optimal.

Proof: It is clear that none of the initially placed objects
ever get swapped out during the course of the Fized-ts; al-
gorithm, since their Assignedbenefit is set to oo at level 1.
That they get placed at level 1 is ensured by setting their
access probabilities to 1, prioritizing them and ensuring that
sufficient bandwidth is available to place them. Let P’ be
the placement computed by the InitFill algorithm and P;pt
the optimal placement with the already placed objects with
respect to the modified access probabilities. Let P,,: denote
the optimal placement with the already placed objects with
respect to the unmodified access probabilities. Then, by
the result of optimality to within a constant factor c(= 14)

proved in the previous section, ¢ - cost(P') < cost(P;pt).

However, cost(P(:pt) = cost(P,pt) in spite of the modified
access probabilities for the already placed objects because
the terms corresponding to the already placed copies any-
way contribute to zero in either of the costs. It follows that
c- cost(P’) < cost(Popt). O

The InitFill algorithm is attractive since it allows for an
incremental implementation of the static algorithm. We
could start with the cache at each machine being empty
at some initial time ¢op and then onwards at various points
of time, invoke the InitFill algorithm to recompute a place-
ment.

We also point out that the InitFill algorithm may be
used to compute close to optimal placements over a distance
model wherein the servers are located at different distances
from different caches and have varying performance proper-
ties. To accommodate this extension, for each server create
a new dummy cache located in the network topology at the
same place as the server and include each of these dummy
caches in the virtual cluster hierarchy in the same manner
as regular caches. Set the bandwidth of each dummy cache
to be 0 and initialize the contents of each dummy cache to
include the objects served by the corresponding server. The

InitFill algorithm may now be used so that the cost of ac-
cessing an object from a dummy cache matches the miss cost
of fetching it from the server.

5.2 Challengesin choosing ts

The discussion above assumes that a time epoch tg; is
known a priori. However, in real systems, it is potentially
difficult to choose ¢z optimally. First, in some systems it
may be difficult to predict when the universe of objects being
placed (or their probabilities of access) will change. Second,
even for a static set of objects and access probabilities, the
placement algorithms in the previous section optimize the
performance of the placement achieved after ts; time has
elapsed. If placement and client reads proceed in parallel
(which may often be the case in real systems), then reads
during the tg; interval may see substantially sub-optimal
performance during this transient interval. In this section we
investigate the problem of minimizing the transient latency
cost during the course of the placement itself and motivate
the need to select an optimal sequence of epoch times to
achieve the same.

Choosing too long a ¢z interval and then sending out the
selected objects in the order of their AssignedBenefits to the
individual caches may cause the transient access cost of the
placement to be arbitrarily far from optimal. We illustrate
this point using a specific example below. The transient ac-
cess cost of a placement is defined as the average response
time to service a request over the course of the complete
interval.

Claim 1: Let Pr(t),0 < t < T be the placement strategy
that computes a placement at time 0 using the Fized-tsn
algorithm with a fill time T, and thereafter sends out the
selected objects to the individual caches over the entire in-
terval T in the order of their AssignedBenefits so that at
any time ¢, |t - bw(¢)/objsize] objects have been placed at
cache i. Throughout the epoch of length T, requests are
served by the system according to the probability distribu-
tion specified. There exist topologies and access probability
distributions for which the transient access cost of Pr(t)
could be arbitrarily far from the optimal achievable.

Example: Consider a topology consisting of a single level
hierarchy with n machines numbered 1 to n, diameter 1
and miss penalty n. Assume that there exist n data ob-
jects ai,a2,...,a, and that the access probability distri-
bution is as follows: p(l,a;) = P, 1 <i < n and p(j,a) =
0, 2<j7<mn,1<i<n Wedefine a time-step as a small
value of ¢su, say dfiu, such that for each of the leaf nodes 3,
bw(i)-dfu > objsize. Let the probability of access of object
§ at machine 1 in any time-step be p 2. Further, assume that
T=mn-0su

The T epoch placement algorithm places one copy of all
the n objects on machine 1. The cost of this final placement
is 0. However, this placement takes n time-steps to complete
and the cost of the transient placement® at step 7 for object
Jj is given by 0, if j < i (because object j would have already
been placed at the j’th time-step), and (1—p)*-p-n otherwise.
The term (1—p)*- p represents the probability that there is a

?In practice p could be related to P as 1 — (1 — p)" = P,
where 7 is the number of time-steps in the object’s lifetime
3a demand placement that happens to satisfy a request for
an unavailable object.



request for object j at machine 1 for the first time in step 3.
Therefore, the average response time to service a request for
object j is given by 3>,y - (1—p)*-p = n-(1—(1—p)’*1).
The transient access cost of Pr(t) is thus:

AccessCosty = %Ejeu,n] n-(1—(1=p)*t) =0(n)

A better strategy is to place a copy of object ¢ at machine %
during step 1, and then to place a copy of object 7 at machine
1 during step i. For this placement, the cost to service a
request for object j in step 1 is p-n and is bounded by p-1
in subsequent steps. The average response cost for a request
for to object j is at most 2(p-n+n-p-1) = p+ 1. Thus,
it follows that the transient access cost of this placement
strategy is

AccessCosta = %Eje[l’n](p +1)=0(1)

Thus, from the above it is clear that the transient access
cost of Pr(t) to could be arbitrarily far from the optimal.
O.

From the above example, it is clear that choosing ts; to
be too long may lead the system to defer placing impor-
tant objects because a more valuable location will later be-
come available, resulting in a higher transient miss rate and
therefore a higher average response time per request. This
suggests that even if objects are static, i.e. they do not
change, the naive strategy of computing a placement for a
huge epoch and then pushing out objects in the order of
their final benefits may not be efficient with respect to the
time-averaged access cost of the placement.

Conversely, choosing tgn to be too short can cause the
system to waste work by placing a copy at a sub-optimal
location before placing it at the right place at a later time.
The system therefore may end up taking more overall band-
width or time (number of epochs) to complete a placement
that is as good as the optimal placement for a larger epoch.
We show this formally below again with an example:

Claim 2: Let P be the placement computed by the Fized-tsn
algorithm for a given fill time T'. Let §; denote a tiny epoch
such that for all machines 3, §5 - bw(i) > objsize. Then
the number of iterations of the InitFill algorithm required
to compute a placement that is at least as good as P could
be as many T'/d5 - log(n), where n is the total number of
machines in the hierarchy.

Example: Consider a topology consisting of a single level
hierarchy with n machines numbered 1,... ,n, diameter d
and miss penalty A. Assume that the set of objects and
the distribution of probabilities of access to objects are as
follows: (i) every object is accessed at exactly one ma-
chine, there are k distinct objects accessed at every machine.
(ii) the probability of access of any object a at machine 3,
p(i,a) > % -p(i+1, B), where 8 is any object accessed at ma-
chine i+ 1. Assume further that all machines have the same
bandwidth and every iteration of the d; epoch algorithm
allows at most one object to be inserted into any machine.
Assume T'/§ to be k, so that the cost of the T epoch place-
ment is 0 (every object gets placed where it is accessed). At
the end of the first iteration of the §; epoch InitFill algo-
rithm, machine i possesses a copy of the object with the i'th
highest probability of access. Thus, the first k/n iterations
place objects accessed at machine 1 at all the machines. The

next k/(n — 1) iterations place copies of objects accessed at
machine 2 at machines 2,3,... ,n, and so on, without dis-
placing the secondary copies of objects accessed at machine
1 because of the above constraint on the probabilities of
accesses. Thus, the number of iterations of the §; epoch
algorithm before machine n can place a copy of an object it
accesses is k/n+k/(n—1)+k/(n—2), ... ,k/1 = Q(k-log(n)).
Thus, the time taken by an iterative small epoch algorithm
could be a factor of log(n) more than the corresponding long
epoch version for the cost of a placement computed by the
former to match that computed by the latter. O

5.3 TheDoubling Epoch Algorithm

Based on the intuition gathered by the discussion above
we present here an algorithm that does not assume knowl-
edge of a fill time a priori and that varies the epoch times
in a manner such that the overall placement at any time is
close to optimal, i.e. the placement sampled at any time
t can be proved to be within a constant factor of the opti-
mal achievable with 1/4’th the bandwidth available to fill
the caches. We first present the algorithm, perform a worst
case analysis and then proceed to explain why the bound is
reasonable.

Input: A hierarchy H, a set of objsize sized objects 1,
and probabilities of access p(i,) of objects ¢ € ¥ at ¢ €
machines(H), and an initial placement Py

Algorithm:

(i) Initialize epoch length To = &1, where 054y is the mini-
mum value such that for all ¢ € machines(H), bw(i) s >
objsize.

(ii) for(i =0,Tp = (Sfiu; until done; + + +,T; = Ti—1 * 2)
Run InitFill algorithm for epoch length = Tj, with the
current placement resulting from the previous run.

(iii) Goto (i)

The until done in the above algorithm means that the loop
iteratively executes runs of InitF'ill algorithm until such time
that a change occurs or all objects end up getting placed at
every machine that they are accessed at. A change could
possibly be an object update, a demand placement, intro-
duction of a new object or a change in its probability of
access at a particular machine. Theorem 3 below bounds
the worst case performance of this algorithm.

Theorem 3: Assume that the bandwidth to the caches is
B[ ]. At time ¢ seconds after a change, the doubling epoch
algorithm creates a placement that is within a constant fac-
tor of the optimal placement that can be achieved by a sys-
tem with bandwidth B[ ]/4 in time ¢ with the same initial
conditions. i.e., the doubling epoch algorithm computes a
placement that is within a constant factor of optimal at any
instant between changes with a 4X blow-up in bandwidth.

To prove theorem 3, we first introduce the following lemma:
Lemma 1: For any two given initial placement I; and I,
such that I is a superset of I1, the InitFill algorithm start-
ing with the initial placement I with a fill time 7', computes
a placement P that is within a constant factor of the optimal
placement P,,; obtained by starting with the placement I3
and the same fill time 7.



Proof: By the proof of optimality to within a constant fac-
tor of the InitFill algorithm, we assert that for any given
epoch time, the placement P computed by the InitFill al-
gorithm starting with the initial placement I is within a
constant factor of the optimal placement starting with the
initial placement I,. However, it is also trivially true that
cost of the optimal placement starting with I is at most
the cost of the optimal placement obtained by starting with
I, (given the same fill epochs), since Iz is given to be a
superset of I1. It follows that P is within a constant factor
of the optimal placement starting with I;. O

Proof of Theorem 3: Starting from an initial placement
I;, at any time t the doubling epoch algorithm has com-
pleted epochs of length ¢/4,t/8,... (and has partially com-
pleted the epoch of length ¢/2). Denote the placement at the
beginning of the epoch of length ¢/4 by I>. It is clear that I»
is a superset of I;. Since the doubling epoch algorithm has
completed an epoch of length ¢/4, the resultant placement
is at least as good as the placement we would have obtained
in time ¢ with 1/4’th the bandwidth and starting with I;.
This follows from lemma 1 above. O

Note that the bandwidth blow up of 4 is a loose worst case
estimate. The proof relies only on the fact that at time ¢,
we have completed a sub-epoch of length ¢/4. However, we
also will have completed sub-epochs of length ¢/8,¢/16,....
During the short epochs the system will place high-benefit
objects into machines that are typically close to their opti-
mal locations. The quadrupling result of bandwidth gives
no credit for this. Thus, in practice, the epoch doubling al-
gorithm will give much better performance than a 4X blow
up in bandwidth.

It must also be emphasized that a 4X increase in band-
width may not very damaging to the hit rate. Web caches
typically exhibit a log-linear relationship between cache size
and hit rate. Doubling a cache’s size normally increases hit
rate by less than 5% (e.g. for web caches) [15, 27], so a
4X blow-up in bandwidth often will not hurt the hit rate
much. The epoch doubling algorithm handles the problem
of choosing the optimal epoch, since we no longer have to
pick an epoch a priori, whatever arbitrary changes occur in
the set of objects or the access pattern. Between changes
we are assured to be within a constant factor of the opti-
mal. Observe that this property implies that for a static set
of objects and access probabilities, the transient access cost
of the DoublingEpoch algorithm with a bandwidth blow-up
of four is also assured to be within a constant factor of the
optimal achievable.

5.4 Dynamic Continuous Placement

The InitFill and the DoublingEpoch algorithms provide a
basis for coping with systems that may be changing almost
continuously because of (i) object updates causing previ-
ously placed copies to be invalidated, (ii) creation of new
objects to be placed, (iii) a demand-read of an object by a
cache resulting in an extra copy of an object, (iv) changes
in the system’s estimates of object-access probabilities, (v)
changes in the system’s estimate of network performance
(e.g., fill bandwidths or inter-machine distances).

With the DoublingEpoch algorithm, whenever a change oc-
curs, the system begins a new placement epoch with ¢5; =1
and with the updated situation as input. Unfortunately, the
optimality result to within a constant factor with a 4X blow-
up in bandwidth holds for the DoublingEpoch algorithm be-

tween changes, but not across changes. On one hand, if
a change is large, resetting ts; = 1 and starting over may
be appropriate. On the other hand, if a change is small,
a less radical adjustment to the schedule seems in order.
Determining how to update a placement schedule so that
the disruption to the original schedule is proportional to the
scale of the change event is an interesting topic for future
work. Some heuristics worth exploring are (i) periodic resets
based on diurnal patterns of object updates, (ii) resetting
when C(Pnew (k + 1)) — C(Pold(k =+ 1)) >n- C(Pold(k =+ 1)),
where ¢(Prew(k + 1)) and ¢(Poia(k + 1)) are the costs of the
placements at the end of the next epoch, (the current epoch
being the k’th) using the old and new object set and access
probabilities resp. and n < 1 is a constant, (iii) resets based
on monitoring objects updates or number of of new objects
as a percentage of the current total number of objects.

Although the worst-case performance of resetting tg; to a
small value when changes occur may be poor, this approach
may still offer a reasonable heuristic because it is conserva-
tive — using too short a tz; interval causes the system to
place important objects into key subtrees early (at the cost
of not picking the best node within a subtree). In section 5.2
we proved that the d¢ epoch iterative algorithm could be a
factor log(n) worse in the number of epochs. However, it
can be shown that with a factor A blow-up in the number of
epochs, where h is the height of the hierarchy, the §; epoch
iterative algorithm achieves a placement that is within a
constant factor of the optimal achievable. The formal state-
ment and a proof outline are given in the appendix.

6. VARIABLE SIZED OBJECTS

In this section we show that the bandwidth-constrained
placement problem for variable sized objects, even for a
static universe of unchanging objects and access probabil-
ities, is a hard problem. This can be shown by a straight-
forward reduction from the Knapsack problem. However it
is still tempting to look for approximation algorithms by
tweaking the above algorithms appropriately. However, in
the following, we establish that unless P=NP, no polynomial
time algorithm can provide a finite approximation guarentee
to the bandwidth-constrained hierarchical placement prob-
lem.

To establish this, suppose there does exist an approxima-
tion algorithm A that produces a placement of variable sized
objects to within a constant factor ¢ of the optimal, for a
fixed ¢. We show that A can be used to solve the partition
problem (which is known to be NP-complete).

The Partition problem takes as input a finite set S of ob-
jects with positive sizes and partitions them into two subsets
S1 and S» such that the sum of the sizes of objects in Sp is
equal to the sum of the sizes of objects in Ss.

Let S ={a1,a2,... ,an} be an instance of the partition
problem. Let s(a;) € Z1 be the size for each object, and
C = > " ,s(ai). In order to solve the partition problem
using algorithm A, consider a two level hierarchy consisting
of two caches each of size %, connected by a root. Assume
that the diameter of this hierarchy is 1 and the miss penalty
is nc. Set the probability of access of each object at each
cache to be a fixed value, say p. It is now straightforward to
show that a partition of S exists if and only if A can produce
a placement with cost less than n.

Analogous to the value density heuristic for the Knapsack
problem, we can modify the Amortized Fized-ts algorithm’s



swapping phase as follows:

Swapping phase: Swap out the object with the least
AssignedBenefit-density i.e., M%M and replace it
with the P-missing object o with the highest value-density

i.e., ";.Ze that fits into the available cache space.

A theoretical analysis of the above algoritm is complicated.
We intend to measure as part of future work performance of
various heuristics for variable sized objects.

A good algorithm for the placement of variable sized ob-
jects immediately allows us to efficiently solve a restricted
steady-state version of the bandwidth constrained placement
problem, where the universe of objects and their probabili-
ties of access are fixed, the only changes in the system are
object updates, and all objects are of the same size objsize.
Let p(a) denote the frequency of update of object a at the
server(s). Assume that in steady-state all of the bandwidth
to a cache is used for keeping objects stored in the cache
fresh. Thus, the bandwidth B(a) consumed by a copy of a
at any machine is u(a)-objsize. Given the frequency of access
f(i, @) of object a at machine 7, the steady-state bandwidth
constrained problem is to minimize the overall cost of access,
as defined in the frequencies model developed in [19]. Thus,
the steady-state bandwidth constrained placement problem
can be viewed as a direct instance of a space constrained
placement problem with the size of object @ as B(a) and
the space available at machine ¢ as bw(z).

7. CONCLUSION

In this paper we have introduced the bandwidth con-
strained placement problem and presented an amortized Fized-
tfn algorithm that is provably within a constant factor of the
optimal. We have also provided the Doubling Epoch algo-
rithm which generates a sequence of placements that are
continuously within a constant factor of the optimal place-
ment with at most a 4X blow-up in the the bandwidth. As
a part of future work we intend to experimentally verify dif-
ferent heuristic algorithms for varying the epoch time and
to analyze the placement problem for variable size objects.
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Appendix

Theorem 1: The Fired-ts; bandwidth constrained amor-
tized placement algorithm is within a constant factor of the
optimal.

Proof Outline: The proof of optimality of the amortized
bandwidth constrained placement algorithm exactly paral-
lels the proof of its space constrained counterpart introduced
in [20]. The fundamental difference between the cost model
we developed and that used in [20] is that the access quotient
in the former is based on probabilities of access while in the
latter, it is the frequency of access. The cost of a placement
in the former is defined as ) freq(a, ) -diam(closest(a, 1)),
over all ¢ € machines(H) and a € 3, where freg(a,i) de-
notes the frequency of access of object o at machine 7 and
closest(a, ) is the least common ancestor v of ¢ such that
at least one copy of the object a is present in machines(v).
We first claim that both the cost models are identical except

for the definition of the aggregate access quotient at interior
nodes.

Lemma 1: Let f(a,?) denote the frequency of access of
object o at a leaf node 7 in a hierarchy H. Let f(a,v)
at an interior node v denote the aggregate access quotient
as defined in the frequencies model to be the sum of the
frequencies of access of object o over all ¢ € machines(v).
Then,

EMEH’GE‘/} flu,a)-6(a,u) - (diam(parent(u)) — diam(u)),
= Eiemachinss(H),aed) f(u, @) - (dist(closest(a, 1))

The proof of the above lemma is by a straightforward re-
arrangement of terms. Thus, it follows that the amortized
bandwidth constrained algorithm is within a constant factor
of the optimal if the access quotient to an object at an inte-
rior node were defined as the sum of the access quotients to
the same object over all leaf node descendents of that node.

The proof of optimality to within a constant factor in the
frequencies case proceeds by introducing what is known as a
bridging placement. The algorithm to compute the bridging
placement is parameterized by a fixed, but arbitrarily cho-
sen placement, say P. The bridging placement, say B, is an
intermediate placement that is then proved to be at least as
expensive as the corresponding amortized placement and is
also proved to be within a constant factor A.(1+3X\/(A—1))
of P. Since P could be arbitrarily chosen and hence cho-
sen as the optimal placement, it follows that the amortized
placement is within a constant factor of the optimal. All the
properties of the aggregate access quotient as defined in the
frequencies model also extend the probabilities model. In
particular we state below a property that relates the benefit
of a copy to its value just before it gets swapped in. This
property is crucial in deriving the constant factor of approx-
imation A(1+3- 27), and it is straightforward to show that
it holds in the probabilities model as well.

Lemma 2: Let H denote a A — separated hierarchy for
some A > 1, let P denote an H — placement in which
a copy of an object o be placed at a machine 7. Then
benefit(a,i) < A/ (A — 1).value(H, ).

Lemma 3: Let P be the optimal placement computed
by the amortized Fized-ts; algorithm for a given epoch T.
Let 67 denote a tiny epoch such that for all machines 3,
05 - bw(i) > objsize. Then in % - h iterations, the ¢ epoch
iterative algorithm, achieves a placement that is within a
constant factor of P.

Proof Outline: The proof of this algorithm proceeds by
showing that the §; epoch iterative algorithm achieves a
placement whose cost is within a constant factor of that of
the T epoch placement algorithm. The basic argument is
that though the iterative algorithm introduces greedy repli-
cas of copies at non optimal locations, the number of greedy
replicas for every copy in the T epoch algorithm is at most
h, the height of the hierarchy. The formal proof proceeds by
introducing a variant of the InitFill algorithm known as the
Marking algorithm that does not assign infinite benefits to
initially placed copies, but never swaps t}%em out either. It

is shown that the Marking algorithm in 5; h iterations, is

within a ﬁ factor of the T epoch placement. Finally, the
d7 iterative algorithm is shown to be within ﬁ factor of



the Marking algorithm. O



