Copyright
by
Arunkumar Venkataramani

2004

The Dissertation Committee for Arunkumar Venkataramani

certifies that this is the approved version of the following dissertation:

Mechanisms and Algorithms for Large-Scale

Replication Systems

Committee:

Michael D. Dahlin, Supervisor

Lorenzo Alvisi

Sally Floyd

Simon Lam

Charles Gregory Plaxton

Harrick Vin

Mechanisms and Algorithms for Large-Scale
Replication Systems
by

Arunkumar Venkataramani, B.Tech., M.S.

Dissertation
Presented to the Faculty of the Graduate School of
The University of Texas at Austin
in Partial Fulfillment
of the Requirements

for the Degree of

Doctor of Philosophy

The University of Texas at Austin

December 2004

Acknowledgments

This dissertation has been possible thanks to the help and collaborative support of
several colleagues and friends.

I'm extremely happy to have been advised by Mike Dahlin through the course
of my PhD. I’'m thankful to him for being a role-model advisor, for his prudent,
yet patient, and constructive critique of my ideas, for sharing and boosting my
enthusiasm even on ideas further from his core research interests, for employing
his superhuman coding skills before paper deadlines that let us insert yet another
experiment to make the paper inch closer to the unattainable ideal of perfection, for
teaching me the ropes at every stage of my graduate career, for taking and sending
me places, for leading by example at every instance, for investing more hope in me
than I did myself, and for making my PhD a very pleasant experience overall.

I’'m thankful to Lorenzo Alvisi for the innumerable and enjoyable discussions,
both technical and otherwise, that we shared, for taking a deep and active interest
in my graduate and professional career, and for his wonderful course on distributed
computing which was one of the reasons that drew me to this field. I’'m thankful
to Greg Plaxton for nurturing the theoretical face of my research persona, for his
insistence on beautiful and unambiguous proofs, and for the long and rewarding
discussions we shared (the longest was more than 8 hours on phone with a few
minutes off for nourishment and other bodily activities).

I’'m thankful to Harrick Vin for his insightful comments, criticism, questions,

iv

discussions, and support that helped shape the ideas in this dissertation at various
stages, to Sally Floyd for reading through the dissertation, providing helpful com-
ments and criticism, and engaging in discussions that helped refine my ideas, and to
all of the above people and Simon Lam for serving on my dissertation committee.

This dissertation has immensely benefited from the contributions of col-
leagues I have closely collaborated with, namely, Ravi Kokku, Xiaozhou Li, Sadia
Sharif, and Praveen Yalagandula. Ravi and Praveen implemented the NPS Web
prefetching system. Mitul and Xiazhou contributed to many of the ideas in Chapter
7. Ravi Kokku and Amol Nayate happily volunteered as sounding boards for al-
most every idea I have toyed with. I’'m thankful to Lei Gao, Jean-Philippe Martin,
Amol Nayate, Jian Yin, and Jiandan Zheng for their collaboration on other works
not included in this dissertation, to Jairam Mudigonda, Rama Kotla, Jasleen Kaur,
Taylor Riche, Sugat Jain and other member of LASR for discussions and attendance
at practice talks for conferences, to Rama Kotla, Vishv Jeet, Ravi Kokku, Prem
Melville, Srujana Merugu, Joseph Modayil, Aniket Murarka, and Amol Nayate for
collaborative, editorial, moral, and gastronomical support during paper deadlines,
and to Neha Kumar for proof-reading the dissertation, stylistic suggestions, and
more.

I'm thankful to Sara Strandtman, Katherine Utz, and Gloria Ramirez for
their impeccable administrative support, and to Gloria, in particular, for patiently
putting up with and readily suggesting escape strategies out of every administrative

soup that I faithfully landed in.

ARUNKUMAR VENKATARAMANI

The University of Texas at Austin
December 2004

vi

Mechanisms and Algorithms for Large-Scale

Replication Systems

Publication No.

Arunkumar Venkataramani, Ph.D.

The University of Texas at Austin, 2004

Supervisor: Michael D. Dahlin

Replication of data and services is a fundamental building block in the design of
distributed systems. Though replication has several benefits for large-scale systems
distributed across wide-area networks, it also introduces considerable complexity
over a centralized unreplicated system. This thesis contributes mechanisms and
algorithms that enable the design of simpler and more efficient large-scale replicated
systems.

On the mechanism front, we present aggressive speculative replication (ASR)
as a basic primitive in building large-scale replicated systems. ASR refers to aggres-
sively trading-off costs of hardware resources for making replicas of content and
updates in a speculative manner in return for savings in human time and improved
service quality. Today, replicated systems are unable to avail of the benefits of ASR
as current architectures rely on manually-tuned parameters to manage the complex-
ity of large-scale replicated systems. Consequently, such systems are hard to build
and maintain, inefficient in utilizing available resources, and prone to the risk of

overload. As a solution, we present an architecture, Mars, that performs ASR in

vii

a self-tuning manner, i.e. without the need for manual tuning. To enable realiza-
tion of Mars’ architecture in practical systems, we build TCP Nice, an end-to-end
transport protocol for background transfers. We demonstrate the benefits of Mars
through a case study of a Web prefetching system, NPS, and show that the Mars ap-
proach simplifies the design, efficiently uses available resources to give performance
benefits, is robust to the risk of system overload, and is easily deployable without
changing existing infrastructure by using only simple end-to-end mechanisms.

On the algorithmic front, we make three contributions. First, we present a
speculative replication algorithm, namely, long-term prefetching, to minimize av-
erage response times at a large cache constrained by bandwidth and validate its
effectiveness through simulations using Web traces. Next, we develop a specula-
tive replication algorithm for minimizing response times in a set of hierarchically-
organized distributed cooperating caches constrained by bandwidth, and show that
it is constant-competitive. Finally, we study the theoretically intriguing problem of
minimizing average response times in a set of hierarchically-organized distributed co-
operating caches constrained by storage space and show a nonconstant lower bound
on the competitive ratio of any online algorithm that is allowed at most a constant-

factor space advantage.

viii

Contents

Acknowledgments
Abstract

Chapter 1 Introduction
1.1 Wide-area Network Replication
1.2 Aggressive Speculative Replication (ASR)
1.3 Contributions Lo

Chapter 2 ASR: Promise and Challenges
2.1 Speculative Replication Benefits
22 The ASRVision
2.3 Consistency in ASR Systems
2.4 Feasibility of ASR
25 ASR Challenges. L e

Chapter 3 Background Network Transfers
3.1 Design and Implementation
3.1.1 Background: Existing Algorithms.
312 TCPNice« . o e
3.1.3 Prototype Implementation

ix

iv

vii

SN B O R

12
13
14
17
19
22

3.2 Analysis 40

3.2.1 Proofof Theorem 1 44

3.3 ns Controlled Tests L. 50
3.3.1 Methodology 51
3.32 Results s 52

3.4 Internet Microbenchmarks 76
3.4.1 Methodology 76
342 Results e 7

3.5 Case Study Applications L. 81
3.56.1 HTTP Prefetching 81
3.5.2 Tivoli Data Exchange 84

3.6 Relatedwork Lo 87
3.7 Discussionol e e 89
38 Conclusions 91
Chapter 4 Mars: A Self-tuning Replication Architecture 92
4.1 Threshold-based Speculative Replication 92
4.2 Separating Prediction from Scheduling 98
4.2.1 Realizationof Mars, 99

43 NPS:ACaseStudy 101
4.3.1 Requirements and Alternatives 104
4.3.2 Architectural Alternatives oL L. 107
4.3.3 Server Interferenceo oL 109
4.3.4 Network Interference L. 119
4.3.5 Client Interference 121
4.3.6 Prefetching Mechanism 123
4.3.7 Prototype and Evaluation 130
4.3.8 End to End Performance 131

439 Related Work 134

4.4 Providing Consistency Guarantees in Mars. 136
Chapter 5 Bandwidth-Constrained Speculative Relication 141
5.1 Imtroduction. 142
5.2 Background 144
5.2.1 Prefetching Models 144
5.2.2 Popularity Distributions 146
5.2.3 Objectsizes L e 146
5.2.4 Update patterns and lifetimes 147
5.2.5 Spare Prefetch Resources 148
5.2.6 Methodology 148

5.3 Model and algorithms oo 149
5.3.1 Bandwidth Equilibrium 149
5.3.2 Prefetching Algorithms 151
5.3.3 Constant-factor Optimality 156

5.4 Methodology e 157
5.4.1 Analyticmodel oL 158
5.4.2 Analytic model parameters 163
5.4.3 Proxy trace simulationo o000 166

55 Results. L 170
5.5.1 Analytic Evaluation 170
5.5.2 Trace-Based Simulations 171

5.6 Related Work oL s 177
5.7 Discussionol 178

Chapter 6 Bandwidth-Constrained Speculative Replication for Co-

operative Caches 181

xi

6.1 Introduction. 181
6.2 Motivation L 182
6.3 Related Work Lo 185
6.4 System Architecture Lo 187
6.5 Algorithms e 191
6.5.1 The Greedy Fized-tg; Algorithm 192
6.5.2 The Amortized Fized-tg; Algorithm 194

6.6 The Dynamic Case oo 197
6.6.1 Initial Placement 199
6.6.2 Challenges in choosing gy 201
6.6.3 The Doubling Epoch Algorithm 205
6.6.4 Dynamic Continuous Placement 207

6.7 Variable Sized Objects L. 209
Chapter 7 Online Hierarchical Cooperative Caching 212
7.1 Introduction L e 213
7.2 Preliminaries e 216
7.2.1 Ultrametrics and Hierarchical Networks 217
722 The HCCProblem 218

7.3 The Lower Bound, 218
7.3.1 The Adversary Algorithm ADV 220
7.3.2 Correctnessof ADV oo 221

74 Cost Accountingo e 225
7.4.1 Some Propertiesof ADV 225
742 Colorings L e 227
7.4.3 Consistent Placements 228
7.4.4 The Offline Algorithm OFF 228
7.4.5 A Potential Function Argument 231

xii

7.5
7.6

Discussion Lo
An Upper Bound
7.6.1 The HLRU Algorithm
7.6.2 Analysis of the HLRU Algorithm

Chapter 8 Summary

8.1

Ongoing Work L e
8.1.1 Towards a Unified Replication Architecture
8.1.2 Future Work,

Bibliography

Vita

xiii

243
246
246
248

250

270

Chapter 1

Introduction

This dissertation explores how large-scale replicated systems should be designed.
Large-scale replicated systems are systems distributed across wide-area networks
that involve movement of massive amounts of information.

Replication, or making copies, of data and services is a fundamental building
block in the design of distributed systems. The idea of making a copy closer to the
point of access for improving performance or reliability has been used in comput-
ing systems for several decades. Processors employ caching and prefetching tech-
niques in memory hierarchies to mask long disk latencies. Software systems such as
databases, network file systems, and replicated state machines use similar techniques
for improving performance and reliability. Over wide-area networks (WANs), due to
tremendous growth of the Internet in the last decade, replication is manifest in sev-
eral commonly used distributed applications. Examples of such applications include
browser and Web proxy systems that incorporate caching and prefetching, content
distribution networks, replicated server systems, distributed databases, backup or
mirrored systems, file sharing applications, edge-service architectures, web crawlers,

automatic software updates etc.

1.1 Wide-area Network Replication

WANSs are characterized by inherently long latencies and susceptibility to network
partitions that render parts of the system inaccessible. In such an environment,
replicating content has several attractive benefits that include (i) reduced response
times due to proximity of the replica to the point of access, (ii) greater availability
due to increased tolerance to network partitions — a suitably designed replicated
system may continue to operate correctly despite the inaccessibility of a subset of
replicas, (iii) support for ubiquitous access to data and operation in a disconnected
mode for mobile users, (iv) improved throughput and service quality through se-
lection of a good replica, (v) improved load balancing and provisioning of available
resources in tune with the geographic distribution of demand, and (vi) increased
tolerance to faults and malicious attempts to disrupt normal operation of the sys-
tem.

However, replication across WANSs introduces considerable complexity over
a centralized unreplicated system. On one hand, making copies of objects raises
policy questions such as what objects to replicate, where to place replicas, how
to locate good replicas to service requests, and how to optimally replicate over a
wide-area network constrained by bandwidth, or replica locations constrained by
space, computing power and other resource constraints. On the other hand, repli-
cation also introduces mechanism issues such as how to tolerate network partitions
and ensure graceful degradation of performance, how to satisfy application-specific
consistency requirements of replicated content, and how to allocate resources to dif-
ferent forms of replication at different points in the network. Thus, replication is a
complex multi-dimensional problem. Replication system designers seek to optimize
metrics such as availability, response time, cost of replication, (actual) consistency
of replicated data, while respecting constraints such as network connectivity, net-

work bandwidth, storage space at replicas, computing constraints at replicas, and

(minimum) consistency requirements imposed by the application. We refer to this
optimization problem as the general replication problem.

It is inherently difficult to balance the constraints against the metrics. For
example, the CAP dilemma, suggested by Brewer [29] and subsequently formalized
by Gilbert and Lynch [77], states that replicated systems cannot achieve both high
Consistency and high Availability in a network prone to Partitions. Practical sys-
tems attempt to circumvent this reality by offering relaxed consistency guarantees
such as eventual consistency [168, 108], or sacrificing availability when partitioned
and performance when connected. Even for a fixed consistency requirement and
network fault pattern, increasing the number of replicas beyond a point can hurt
availability in certain scenarios [188]. In some implementations of transactional sys-
tems, increasing the scale of replication can lead to considerable human confusion —
a ten-fold increase in the number of replicas can cause a thousand-fold increase in
the number of reconciliations or deadlocks [81]- and possibly system delusion, ren-
dering the database inconsistent with no obvious way of repair. It is of little wonder
that few massive-scale replication systems over WANSs offering strong consistency
exist today .

One technique that can alleviate long latencies and network partitions in
WANSs is that of speculative replication, i.e. moving content to a location before it is
accessed there. Speculative replication, also known as prefetching in the context of
processor caches, database applications, Web content etc., is widely used to improve
the performance of distributed applications. Examples include content distribution
services that replicate content closer to clients before they request it, websites and
browsers that prefetch hyperlinks or related webpages to improve response times
perceived by clients, Bayou’s [145] anti-entropy protocol for proactively exchanging
updates, update propagation in Coda [108], Pangaea [158] and other replicated

file systems, media content players downloading a minimum length of a file before

beginning to play them, proactive reconciliation mechanisms in applications like

Lotus Notes and so on .

1.2 Aggressive Speculative Replication (ASR)

In this dissertation, we propose aggressive speculative replication as a fundamental
design primitive for constructing large-scale replicated systems. Aggressive specu-
lative replication, or ASR, implies that in periods of network connectivity, replicas
are created speculatively on a massive scale at locations in the system where there
is a non-zero probability of accessing the object, that updates to objects are propa-
gated aggressively to all replica locations, and that the system strives to continually
maintain all replicas as close to strong consistency as allowed by available hardware
resources. Relating ASR to the metrics that the general replication problem seeks
to optimize, we find that ASR improves availability because replica locations can
mask network partitions for a longer duration if a sufficiently fresh copy is locally
available, ASR improves response times as the requested content is fetched from
a replica nearby. ASR improves consistency as the system aggressively propagates
updates to replica locations.

Utilizing hardware resources to their fullest in order to perform ASR increases
the cost of replication. However, this increase in cost is justified as we observe the

following technology trends and characteristics of application workloads:

1. Technology trends: Hardware capacities — network bandwidth, computing
power, and storage space — are increasing exponentially, while the correspond-
ing costs are steadily falling. Optical channel capacities are increasing by
around 100% a year [48]. Processing speeds are increasing by around 50%
every year [3]. The cost per megabyte of disk drives has been halving approx-

imately every nine months [153].

2. Value of human time: The value of human time is non-decreasing. Increasing
capacities and decreasing costs of hardware resources make it more attractive
to trade-off such costs in return for savings in human time and enhancing
productivity. Such a trade-off is also advocated by Gray and Shenoy [82], and
Chandra [37] who use a simple economic model that compares the costs and
benefits of replication by converting them to the corresponding dollar values

per unit.

3. Workload characteristics: Large-scale distributed systems often experience
bursts in demand when the load on the system is significantly greater than
the long-term average. For instance, on September 11, 2001, CNN.com expe-
rienced a load that exceeded the expected peak [119] by a factor of 20. On
the same day, Akamai’s servers experienced a load several 100 times the aver-
age [154]. The Zipfian distribution of popularity of Web objects suggests that
as systems scale to larger communities, the ratio of peak to average load on
a server is likely to increase further. Thus, the nature of these applications
dictates that systems will be designed to be considerably over-provisioned in
anticipation of load surges, and consequently have abundant spare capacity
during periods of normal load. This spare capacity can be utilized for ASR in
order to improve metrics like performance, availability, and consistency. Con-
versely, if such systems are designed to incorporate ASR mechanisms, they
will be more tolerant to unusual peaks in load. Over-provisioning of systems
is also in keeping with the above argument of ” wasting” hardware resources for
human time and productivity. A historic example of such a trend is the move
from mainframe computers that use resources efficiently to personal computers

that are inefficient but convenient.

Technology trends, application workloads, and human needs provide a strong

case for incorporating ASR into large-scale replicated systems. However, current

operating systems provide little support for ASR, leaving application designers to

grapple with the following hard challenges:

1. Interference: Interference refers to competition for resources between specula-
tive and regular load in the system. This could have a net effect of degrading
system performance. Interference is also undesirable due to its inherent un-
fairness — speculative load meant to improve one user’s performance could
interfere with regular load initiated by another user causing the latter to ob-
serve long response times. Having to account for interference makes design
policies for speculative replication considerably complex in a large-scale dis-

tributed system.

2. Utilization: A goal conflicting with minimizing interference is that of ensuring
utilization of available system resources for ASR. An ASR mechanism that is
overly conservative may fail to give any performance or availability benefits,

while an overly aggressive one may cause interference.

3. Robustness: Networks, web servers, and operating systems fundamentally be-
have like queueing systems where the response times assume low values when
the system is lightly loaded and sharply start to rise as the load approaches
system capacity. If not done carefully, ASR entails the risk of driving the load
on the system, or parts thereof, beyond capacity and causing severe perfor-

mance degradation to the extent of rendering a service unavailable.

4. Self-tuning Support: Due to inadequate system support for speculative repli-
cation, many application designers attempt to balance the above concerns by
resorting to manual-tuning. In this approach, system parameters are hand-
tuned to allocate resources for speculative and regular load in a non-interfering
manner. For instance, some Web prefetching systems have been known to use

static or workload-specific threshold values to limit the bandwidth consumed

by prefetched traffic [64, 140]. A core tenet of this dissertation is that such
threshold-based approaches to tackle the problem of resource management in
large-scale replicated systems are fundamentally flawed. It is the lack of ad-
equate system support for ASR that forces application developers to employ
short cuts that are complex in the long run, utilize resources inefficiently, and
expose the system to the risk of overload. Hence, a pressing need for large-
scale replicated systems today is self-tuning system support - mechanisms that

render human intervention unnecessary - for aggressive speculative replication.

1.3 Contributions

This dissertation introduces and evaluates, by means of prototype experiments as
well as analytical modeling, mechanisms and algorithms for large-scale replicated
systems.

On the mechanism front, the main contributions of this dissertation are as

follows:

1. We make a case for aggressive speculative replication as a fundamental design

primitive in building large-scale replicated systems.

2. We demonstrate through prototype-based experiments how approaches relying
on manually-tuned thresholds are fundamentally flawed due to their complex-
ity, inefficiency, and the risk of system overload. We make a case for self-tuning
system support for building large-scale distributed applications that involve

massive replication.

3. We develop Mars, an architecture that provides self-tuning system support for
performing ASR in a manner that prevents interference between speculative
and regular load. We demonstrate that the Mars approach simplifies appli-

cation design by not relying on manually-tuned thresholds, more efficiently

utilizes resources for improving performance and availability, and is safe from

the risk of overloading system components.

. We build usable prototypes to instantiate Mars’ architecture in real-world
replicated systems. In particular, to prevent network interference, we develop
the abstraction of a background transfer that does not interfere with existing
regular traffic in the network. Our network transport protocol, TCP Nice,
provides this abstraction in a deployable manner with the modification of
the sender-side congestion control protocol only. In addition, for greater de-
ployablity, we develop a user-level implementation of TCP Nice to obviate a
kernel level installation. TCP Nice effectively provides a two-level network-
wide prioritization without making changes to any routers, and is the first
such protocol to the best of our knowledge. TCP-LP [115], a similar protocol
for low-priority transfers, was developed independently and almost simulta-
neously. The initial design, implementation, and technical results associated
with TCP Nice previously appeared in the paper “TCP Nice: A Mechanism
for Background Transfers”, A. Venkataramani, R. Kokku, M. Dahlin pub-
lished in “Proceedings of the Fifth Symposium on Operating System Design
and Implementation (OSDI ’02)” and were presented at Boston, MA, USA in
December 2002.

. We demonstrate the benefits of Mars’ architecture through a case study of
NPS, a prototype Web prefetching system that is non-interfering and easily
deployable. NPS is free from the vagaries of technology trends, workloads, and
estimation error that static thresholds are subject to, and can still provide
significant reductions in response times commensurate with available spare
capacity. The initial design, implementation, and technical results associated
with NPS previously appeared in the paper “NPS: A Non-Interfering De-
ployable Web Prefetching System” published in “Proceedings of the Fourth

USENIX Symposium on Internet Technologies and Systems (USITS ’03)” and
were presented at Seattle, WA, USA in March 2003.

The goal of the algorithmic half of the dissertation is to augment the mech-
anism contributions with appropriate policies for selection and placement of specu-
latively replicated objects. We study the problems of speculative replication and
caching in bandwidth- and space-constrained environments for cooperative and
stand-alone caches. The methodology relies on simple theoretical models and simulation-
based experiments that abstract away system details in return for results with
stronger guarantees. The main algorithmic contributions of this dissertation are

as follows:

1. We develop long-term prefetching, a strategy for determining which objects to
speculatively replicate at a large cache constrained by bandwidth or storage
space in order to minimize response times. Long-term prefetching and the
associated object selection criterion, Goodfetch, take into account both the
access rate and the update rate of an object to determine its prefetch-worth.
Long-term prefetching is useful for specualatively replicating Web objects at
large proxies and content distribution servers, as is demonstrated by our simu-
lation experiments with real proxy traces. The long-term prefetching strategy
and associated technical results were first published in “Proceedings of the
Sixth International Web Caching and Conten Distribution (WCW ’01)” and
were presented at Boston, MA, USA in July 2001, and subsequently published

in the Computer Communications Journal, Volume 25(4), in 2002.

2. Next, we extend long-term prefetching to a distributed cooperative environ-
ment. We consider the problem of how to speculatively place objects in a set
of distributed cooperative caches in a hierarchical network where bandwidth

to the caches is the constraint and Goodfetch values are known for every ob-

ject at every cache. We develop an object placement algorithm that is shown
to be within a constant factor of the optimal. We then extend this algorithm,
maintaining asymptotic optimality, to more dynamic scenarios where object
access patterns and the universe of objects are not fixed a priori. These re-
sults were previously published in “Proceedings of the Twentieth Symposium
on Principles of Distributed Computing (PODC ’01)” and were presented at
Newport, RI in August 2001.

. Finally, we consider the theoretically intriguing problem of distributed cooper-
ative caching in hierarchical networks in a more traditional space-constrained
environment where no a priori information about access patterns is given. We
show a non-constant lower bound for the competitive ratio of any online hier-
archical cooperative caching algorithm that is given at most a constant factor
space advantage. We then present a simple extension of the LRU algorithm
to hierarchical networks called HLRU, that when given a blowup of a factor
equal to the depth of the hierarchy in the capacity of each cache, lies within
a constant factor of an optimal algorithm that has complete knowledge of the
request sequence. These results were previously published in “Proceedings
of the Sixteenth ACM Symposium on Parallel Algorithms and Architectures
(SPAA °04)” and were presented at Barcelona, Spain in July 2004.

The organization of this dissertation is as follows. Chapters 2-4 develop the

mechanism contributions of the dissertation. Chapter 2 presents the promise and

challenges of ASR. Chapter 3 describes TCP Nice, a mechanism to prevent network

interference by providing a background transfer abstraction. Chapter 4 discusses

Mars, a self-tuning architecture that enables large-scale replicated systems to in-

corporate ASR, and presents a case study of an instantiation of Mars, namely,

NPS, a non-interfering and easily deployable Web prefetching system. Chapters

5-7 present the algorithmic contributions of the dissertation. Chapter 5 presents

10

the long-term prefetching strategy and the associated object selection criterion,
Goodfetch, that determines what objects to speculatively replicate in a bandwidth-
constrained cache. Chapter 6 presents an algorithm for speculative placement of
object replicas in hierarchically-organized distributed cooperative caches that are
bandwidth-constrained and Goodfetch values of each object at each cache is given.
Chapter 7 considers the problem of caching in hierarchically-organized distributed
cooperative caches that are constrained by storage space, and proves a lower bound
for any online cooperative caching algorithm that is allowed a space advantage at
each cache of at most a constant factor over the optimal. We summarize the main

contributions and lessons learnt from this dissertation in Chapter 8.

11

Chapter 2

ASR: Promise and Challenges

This section motivates ASR by presenting the vision of an information world where
massive-scale replication forms the foundation for pushing the limits of performance
and availability and providing richer network services than are offered today. Ideally,
ASR can enable near-instantaneous delivery of content on demand, make access to
content as available as, say, power supply despite typical wide-area network path
connectivity being limited to only 99% of availability (approximately 14 minutes of
downtime per day), provide enhanced guarantees on the quality of network services,
and provide benfits of multicast by leveraging location-independent addressing of
content. All these benefits can be potentially obtained without compromising on
the consistency guarantees required for correct operation of an application. As a
mechanism, ASR takes us closer to an ideal scenario where performance, availability,
and service quality are limited only by available hardware resources and appropriate
policy design in the system.

The need for improving performance, availability and service quality is moti-
vated by network applications in use today. The increasing number of devices in use
to access data and services, and the increasing importance of the data and services

available electronically, both favor “access-anywhere” network-delivered services.

12

Such services place a high premium on high availability and low response times.
Even though end-servers or service-hosting sites advertise an availability of “four
nines” (99.99%) or “five nines” (99.999%), the end-to-end service availability (as
perceived by clients) is typically limited to two nines because of poor wide-area
network availability [38]. Moreover, although network bandwidths are improving
quickly, network latencies are much more difficult to improve in wide-area networks,
which limits performance for access-anywhere services if those services are delivered

from a single location.

2.1 Speculative Replication Benefits

Several large-scale distributed systems already use speculative replication to improve
performance. A number of previous studies have shown that speculative replication
for the Web, or prefetching, can result in significant reductions in end-to-end la-
tency [50, 64, 86, 89, 111, 114, 140, 174]. Padmanabhan and Mogul [140] show that
a 30-50% improvement in the access time to fetch a document can be achieved by
predictive prefetching, using a Markov model to capture dependencies between ac-
cesses. Duchamp obtains a 52% reduction in access time by prefetching hyperlinks
in the page being viewed by a user. Our study for a Web proxy shows that prefetch-
ing could reduce miss rates by as much as 70% by blowing bandwidth usage by a
factor of 2 and disk space by about 25% compared to purely demand-based resource
usage. Roussopoulos [156] shows that a controlled update propagation strategy can
reduce cache miss costs by a factor of 2 to 200 over just caching with expiration
times. Commercial content distribution services like Akamai [5] work by prefetching
content at caches situated closer to the client.

Speculative replication has also been shown to improve availability of WAN
services. Chandra et al. [38] show an order of magnitude reduction in unavailability

for some services by enabling operation in disconnected mode by replicating mo-

13

bile code and data speculatively on clients. Such benefits in availability are not
restricted to web applications with relaxed or no consistency guarantees. Yu [188]
shows similar reductions in unavailability by increasing the scale of replication and
aggressively propagating updates for a wide range of stronger consistency require-
ments. Nayate et al. [135] show that for dissemination services, where writes are
centralized and reads are distributed across replicas, aggressive update propaga-
tion can mask several thousands of seconds of network failures and give a threefold
performance improvement at a modest additional bandwidth expenditure of 40%
while maintaining strict sequential consistency semantics. In a case study of an
e-commerce application, Gao [76] et al. show that a replicated edge-service archi-
tecture can mask network failures that render the central database inaccessible 15%
of the time and also achieve a five to nine fold improvement in performance over
traditional architectures by slightly relaxing consistency within levels acceptable to

such an application.

2.2 The ASR Vision

Equipping large-scale distributed systems with ASR can benefit access-anywhere

services in the following ways:

o Availability: ASR can improve availability by speculatively placing a copy of
the data or service being accessed within a network accessible by the user. Un-
like centrally located services, a service can continue to be available in spite
of unavailability of some routes in the network. Studies on overlay networks
suggest that application-level routing [9, 160] can significantly improve net-
work availability over the underlying Border Gateway Protocol (BGP) that
runs in routers today. The increasing number of devices and networks that
users transition across increases the likelihood that only some parts of a wide-

area network are accessible while others are not. Such a trend suggests that

14

massively replicating important services can significantly increase the proba-
bility that at least one replica is reachable. Even if the network is entirely
unavailable, certain applications may be amenable to operation in a discon-
nected mode [38] if the entire application and associated data are speculatively
replicated locally. Speculative replication is the only way we know to make a

service available despite the “primary” provider being unreachable.

Response Time: Applications with real-time guarantees like streaming video,
stock quotes, online games etc. require low latencies for an acceptable quality
of operation. However, latencies over wide-area networks are fundamentally
limited by barriers imposed by the speed of light. The only way we know
to reduce such latencies is to speculatively replicate the service to a location
near the user before she accesses it. For Web applications, browsers equipped
with ASR can keep frequently used bookmarks always refreshed. With shared
caches across large communities, and algorithms to predict which hyperlinks
will be followed by a user [64], ASR paves a way for finding all content at

near-zero response times.

Service Quality: Several applications require quality of service (QoS) guaran-
tees [176] such as lower bounds on bandwidth and upper bounds on loss rate,
jitter etc. Proposals to provide QoS guarantees have faced significant deploy-
ment barriers as they often require fundamental changes to the architecture of
today’s networks. ASR can provide enhanced QoS guarantees without chang-
ing the already deployed network infrastructure. One could speculatively repli-
cate a service so that it is reachable via a “good” path that meets the required
guarantees with high probability. In fact, recent research on probabilistically
providing QoS guarantess using overlay networks [166] affirms the claim that
such guarantees could also be provided by replicating the service close to the

location of the overlay nodes. In fact, replication and overlay-based tech-

15

niques are complementary and can co-exist to provide QoS guarantees with

high probability in existing wide-area networks.

Location Independence: Recent research on using distributed hash tables [165,
150] for content addressibility [44] and several other studies in the last decade
point to the benefits of making services location-independent [171]. In today’s
networks, a service is identified by a URL (like http://www.cnn.com) that
rigidly couples the service to its host as well as its network location. The dis-
position of the scientific community to move to an architecture where services
are first-class network citizens rather than being tied to a host and IP address
is in keeping with the benefits of moving and replicating services. Replication

and location-independence of services thus go hand-in-hand.

Multicast: Multicast is a mechanism for scalable dissemination of data to a
group of receivers [61]. Massive replication of services coupled with appropriate
service discovery algorithms that locate the “best” replica naturally organize
users at the ends of a multicast tree. For example, in a large organization like
a university, static content need be retrieved over wide-area links exactly once,
for the first user to access it. Subsequent users can retrieve it over a local area
network. With falling costs of storage, it is becoming increasingly feasible
and economically viable to never discard any piece of information retrieved
over a wide-area link [80]. In Bell and Gray’s position paper [83] on digital
immortality, they point out that rerocrding every conversation a person has
ever heard with adequate quality requires less than a terabyte. If one takes into
account the amount of content that is shared between users in a community
constituting a large organization like a university, a few hundred terabytes of
storage, today, is sufficient to cache all digital content accessed, till it expires,

at a cost easily affordable by such an organization.

16

The above claims presenting massive-scale replication as a panacea to today’s
network ills have several limitations. Massive replication of content in a location-
independent manner faces issues related to trust and security. For instance, it
may not be feasible or desirable for an enterprise to replicate sensitive content at
untrusted locations. Guaranteeing acceptable levels of freshness of all replicas be-
comes more complex. Websites have an economic incentive to have a client visit
them to keep track of advertising revenue or maintain client profiles. In practice,
leveraging benefits of multicast, location independence, and smart service discovery
algorithms faces significant deployment hurdles in today’s Internet. These issues lie
beyond the scope of this dissertation and we adopt the stand that enabling mecha-
nisms for ASR to improve response time and availability is the first step towards the
broader vision of using massive-scale replication for near-instantaneous content de-
livery, 100% availability, and enhanced service quality at acceptable hardware costs

of replication.

2.3 Consistency in ASR Systems

It is easy to discern performance and availability benefits of ASR for wide-area net-
work applications that have weak or no consistency requirements. However, ASR
can potentially give significant improvements in response time and availability even
for applications that have strict consistency requirements, including applications
that require strong consistency (also known as linearizability). To understand this
claim, consider the metrics in the general replication problem introduced in sec-
tion 1, namely, response time, availability, consistency, and replication cost. It is
a truism that pervades all instances of the replication problem that aggressively
replicating content and propagating updates to the fullest extent allowed by band-
width, computing, storage, and connectivity constraints improves response time

and availability. An arbitrary level of strict consistency semantics demanded by

17

an application can continue to be maintained as consistency information is essen-
tially meta-information whose propagation is orthogonal to propagation of content
and updates. Separation of consistency information from object updates allows us
to leverage benefits of ASR without compromising on consistency. For example,
consider a replicated system over a WAN that requires linearizability for correct
operation. Whenever there is an update by any node in the system, the replicas can
execute a consensus protocol such as Paxos [118, 35] by exchanging only invalidation
information of a fixed small size and not the actual update itself. Strong consistency
guarantees are maintained by never serving content that has been invalidated at a
replica.

It is indeed conceivable that a replica receives invalidation information for
some content and, before it can receive the corresponding update, the network gets
partitioned in such a manner that no replica possessing the corresponding update
is reachable. In such a case, the replica remains unavailable till the corresponding
update is received. However, recalling the CAP impossibility argument introduced
in section 1, such unavailability is inevitable — a replicated system cannot provide
strict consistency guarantees, high availability, and still tolerate arbitrary network
partitions. Separating consistency or invalidation information from actual updates
combined with ASR mechanisms however allows us to potentially maximize perfor-
mance and availability of replicated systems for a given set of resource constraints
without compromising on consistency. The gap between the level of performance
and availability attainable in practice and the theoretical maximum values is strictly
a policy issue and essentially a function of the accuracy of the prediction algorithms
used.

The arguments presented above are informal. Nayate et al. [135] present a
more rigorous argument that shows that sequential consistency can be provided in

a single-write replicated system by separating consistency and update information;

18

coupled with ASR mechanisms, they show significant improvements in performance
and availability with modest increases in resource usage. The PRACTI replication
work by Dahlin et al., for which the work in this dissertation is one of the geneses,
extends the separation of consistency and update information to the more general
multi-writer scenario while maintaining causal consistency, and discusses ways of

providing stronger levels of consistency guarantees.

2.4 Feasibility of ASR

The core argument for enabling system support for ASR mechanisms is that current
systems are sacrificing significant potential improvements in performance and avail-
ability due to the lack of such support. Tackling the challenges involved in leveraging
benefits of ASR at the policy level without appropriate mechanisms is complex (and
in some cases infeasible), ineffcient, and risky. However, the benefits of ASR do not
come for free; the increased resource usage results in an increased cost of replication.
We argue below that such costs represent a worthwhile trade-off and will be further

mitigated with current technology trends and workload characteristics.

Technology Trends

Hardware capacities, i.e. network bandwidth, storage space, and computing power,
for a given cost are increasing exponentially with time. Moore’s Law for increasing
transistor density with time thus extends to bandwidth, storage, and computing
power, each with a suitably scaled factor. Figure 2.1 shows the exponential increase
of optical channel capacities with time in the last decade. Figure 2.2 shows a similar
historical trend for cost per megabyte of hard drives. The data for both of these
graphs was collated by the author based on reported optical channel capacities and
hard disk costs on the Web [175]. Processor speeds are increasing by around 50%

per year [80]. Though the exponential growth in processor speeds is expected to slow

19

le+06

100000 ¢

10000 £ XK

1000 ¢

Optical Channel Capacity (Mbps)

100
1994 1996 1998 2000 2002 2004 2006 2008

Year

Figure 2.1: Optical channel capacity vs. time

down, Gray [80] suggests that, going by reasonable projections of telecom prices and
Moore’s Law, cost of computing will continue to be significantly dominated by the
cost of network transport. In fact, computing today is essentially free to users as
evidenced by several large online services[91, 183] being supported by advertising
alone. In addition, emerging Grid [96] technologies will provide mechanisms to

further harness massive computing power at low costs.

Human Time

Human time is valuable and its value is inherently non-decreasing in nature. Increas-
ing capacities and decreasing costs of hardware resources make it more attractive
to trade-off such costs for savings in human time. The costs and metrics involved
in the general replication problem are not directly comparable. However, Gray and
Shenoy [82] suggest a methodology for converting all the units of measurement into
their monetary values. They consider the problem of estimating whether caching a
data object is economically justified by comparing the cost of storage against the
cost of network bandwidth and human waiting time. Chandra et al. [37] extend that

methodology to estimate the economic viability of speculatively replicating content

20

100000

10000 P

1000 +

100 ¢

10 ¢

Disk cost per MB ($)

1k

*

0.1
1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000
Year

Figure 2.2: Disk cost per MB vs. time

across a wide-area link. Their back-of-the-envelope calculation, reproduced in sec-
tion 4, suggests that it is economically worthwhile to speculatively replicate content
even if there is a one-in-a-hundred chance of it being accessed. In the context of
Web prefetching over broadband links, these numbers make a case for expending
network and disk resources to prefetch roughly a hundred documents for every doc-
ument actually accessed by a user. Decreasing costs of hardware resources further

strengthen the case for more aggressive prefetching in the future.

Workload Characteristics

While on one hand, arguments based on economic incentives and technology trends
suggest that networks and service providers will be pushed to scale capacities to
much higher levels to accomodate the demand for ASR, on the other, systems are
already provisioned with considerable extra capacity. Such over-provisioning is a
consequence of the burstiness of workloads that can cause spikes in demand much
above the average value. Figure 2.3 shows the request load on an IBM server hosting
a major sporting event during 1998 averaged over 1-second and l-minute intervals

[37]. Server loads are bursty at many different time-scales with significant differences

21

180
160
140
120
100
80
60
40
20

180

One minute intervals

One second intervals

Requests per second

Average requests per second

0 - - - - - 0 - - - - -
0 14400 28800 43200 57600 72000 86400 0 240 480 720 960 1200 1440
Interval Interval

(a) (b)

Figure 2.3: Server loads averaged over (a) 1-second and (b) 1-minute interval

between peak and trough loads. Figure 2.4 taken from [110] shows the fraction
of unused capacity through a one week period in May 2002 in some links of a
commercial cable modem network, the university network Abilene, and a trans-
atlantic network respectively, suggesting the presence of significant amounts of spare
capacity in these networks. Similar patterns have been noted elsewhere for both
servers [42] and networks [1]. The burstiness of workloads and over-provisioning of
systems suggest that spare capacity can often be used to support ASR. Conversely,
systems built with the capacity to support ASR will also benefit from an increased

ability to handle large bursts of load.

2.5 ASR Challenges

In spite of the benefits described above, few engineers today incorporate ASR into
large-scale replicated systems. Web systems seldom use aggressive prefetching to
improve response time. While it is true that network and server capacities are not,
at present, sufficient to start prefetching Web objects even if there is a one-in-a-
hundred chance of accessing it, such systems do not even utilize the abundant spare

capacity already available. The underlying reason is a hidden cost of the complexity

22

1004 1004 1004

80 80 80
2 2 2
: . :
O 60 O 60 O 60
I q, I
8 8 8
& & &
o © o
g 40+ g 40 g 40+
8 g 8
g 2 g
20 20 204
0 T T T T 0 T T T T 0y T T T
s “, “, “, W%, wo, s s s, s
Time Time(May 10- May 15th) Time
(a) Cable Modem (b) Trans-atlantic Link (c) Abilene

Figure 2.4: Large flow transfer performance over time.

of performing resource management in ASR-enabled systems. The resource man-
agement challenges arise from having to balance the following concerns in systems

trying to incorporate ASR:

Interference

Interference refers to competition for resources between speculative load and regular
on-demand load. Such competition could arise for any resource such as computing,
memory, disk, network bandwidth and could happen at any point in the system such
as a server, network, or a client. Interference could result in a net effect of degrading
system performance. To understand this claim, consider the effect of speculative
replication on average response time. Assume that the system consists of exactly
two nodes — a server and a client, where the client requests documents from the server
across a wide-area network. Assume that all documents are of equal size, and let D
represent the average response time for each document (the time it takes to transfer
the entire document) assuming no other traffic in the network and at the server.
Now suppose that this client starts prefetching one document for each document she

requests on-demand for improving response time. If a document has already been

23

0.7

0.6 | ‘: 1

05 | |

04 Prefetch 5X 1
.

0.3 | Prefetch X A

0.2 i ’;’ Demand 1

Avg Demand Response Time(sec)

01} / 1

0 —
0 100 200 300 400 500 600 700 800

Demand Connection Rate(Conns/sec)
Figure 2.5: Effect of prefetching on demand response times for varying levels of
aggressiveness of prefetching

prefetched before she requests it, the corresponding response time to retrieve it from
the local cache, or the hit latency, is negligible. Assume that the prediction algorithm
employed by her browser results in one out of every five prefetched documents
to be actually useful, i.e. a request for them appears before they expire in the
local cache. Without appropriate mechanisms to prevent interference, prefetch and
demand traffic will share the network link equally, resulting in the transfer time of
each document to become 2D); we call this the miss latency. We refer to the fraction
of hit and miss requests as the hit rate and miss rate respectively. The average

response time with prefetching can now be computed as follows:

Average response time = Hit latency X Hit rate + Miss latency x Miss rate

1 4
= 0x-+2Dx -
X5—|- X5

= 1.8D

Even in this simplistic scenario, we see that interference almost doubles the
average response time. In a more realistic setting, consisting of several hundreds

of clients across a large-scale network, such interference can cause unpredictable

24

performance degradation. In a wide-area network, interference can also result in an
unfair allocation of resources — speculative load enhancing one user’s performance
may interfere with and therefore degrade another user’s performance. On the other
hand, a mechanism for speculative replication in a non-interfering manner, i.e. one
that uses network, server, and client resources only when on-demand traffic is not
using it, will not cause miss latencies to increase. Thus, average response times
decrease when the hit rate is high, i.e. when the prediction algorithm is good and

there is sufficient spare capacity, and are protected from increasing otherwise.

Utilization

A related but conflicting challenge is that of ensuring utilization of available re-
sources for procuring benefits through ASR. The bursty nature of workloads dic-
tates that in order to leverage spare capacity for ASR, the mechanism must be
sufficiently responsive at fine time-scales to dynamically increase the aggressiveness
of speculative replication when the demand load on the resource is low and vice-
versa. An overly conservative ASR mechanism may fail to give benefits that justify
the overhead of incorporating ASR mechanisms in the first place, and an overly
aggressive mechanism, or one that is not sufficiently responsive, may end up causing

interference with demand load.

Robustness

Networks, servers, and operating systems behave like a complex queueing system
where the service rate depends on the arrival rate of requests and the system loses
requests beyond a maximum queue size. Initially the service rate increases with the
arrival rate till the arrival rate approaches total system capacity after which point the
service rate starts to degrade with further increase in the arrival rate. Consequently,

in such systems, the response time, as a function of the load, remains low until the

25

load starts to approach system capacity beyond which point the response times start
to rise sharply. It is undesirable for systems to operate in this unstable region of
the load-vs-response-time curve. Examples of such scenarios include (i) extreme
congestion in the network causing TCP’s retransmission timer to keep going off
causing exponential backoff, and (ii) extreme load on a web server, resulting in the
operating system thrashing.

ASR, if not performed carefully, can drive large-scale systems into unstable
regimes. We illustrate this point via two simple experiments. Figure 2.5 shows the
response time of requests on a Web server as a function of demand load competing
with different levels of prefetching; the number labeling each line approximately
represents the number of prefetched requests for each demand request. Increasing
the aggressiveness of prefetching gives improvements in response time (not shown
in the figure) till the demand load exceeds the knee of the curve corresponding
to that level of prefetching, after which point the system becomes unstable. This
experiment is forward-referenced here only for the purposes of illustrating the risks
associated with ASR. A detailed description of the experimental setup appears in
section 4.

In a related experiment, we demonstrate a similar risk-benefit trade-off in
prefetching through a scenario where network link capacity is the bottleneck. The
experiment consists of sixteen clients accessing Web documents across a broad-
band network. Figure 2.6 shows three cases where the clients do no prefetching,
conservative prefetching and aggressive prefetching respectively. The experiment
demonstrates that conservative prefetching can lead to a factor of 3 improvement
in response times. However, aggressive prefetching in the same scenario can lead
to a sixfold increase in average response time. Careful selection of the level of
aggressiveness is thus required to balance the benefits of prefetching with the risk

of overload. The details of the setup for this experiment appear in section 4.

26

~~

2]

©

c

8 100

S 100

R

= —JReno
£ 80 === Nice
(]

()

£ w0

=

O

]

g 40

Q.

0

()

= 20

©

S — Bl
= 0

8 None Conserv Aggress

Figure 2.6: Average demand response time vs. aggressiveness of prefetching

Self-tuning Suport for ASR

Due to inadequate system support for speculative replication, many application de-
signers attempt to balance the above concerns by resorting to manual-tuning. In this
approach, system parameters are hand-tuned to allocate resources for speculative
and regular load in a non-interfering manner. For instance, some Web prefetching
systems have been known to use static or workload-specific threshold values to limit
the bandwidth consumed by prefetched traffic [64, 140]. A core tenet of this dis-
sertation is that such threshold-based approaches to tackle the problem of resource
management in large-scale replicated systems are fundamentally flawed. It is the
lack of adequate system support for ASR that forces application developers to em-
ploy short cuts that are complex in the long run, utilize resources inefficiently, and
expose the system to the risk of overload. Hence, a pressing need for large-scale repli-
cated systems today is self-tuning system support - mechanisms that render human
intervention unnecessary - for ASR. Section 4 elaborates on approaches based on

complexity, inefficiency, and risks associated with manual-tuning of system param-

27

eters, and as an alternative presents Mars, an architecture for self-tuning aggressive

speculative replication .

28

Chapter 3

Background Network Transfers

In this chapter, we present a mechanism to prevent network interference between
speculative and regular traffic. In a large-scale system performing ASR, intereference
can occur for any resource at various points in the system such as the server, client
or in the network. However, tackling the problem of interference in the network
is particularly hard as a WAN is typically a massive, complex system shared by
hundreds of thousands of users and controlled by several different administrative
domains.

We provide a solution to the problem of network interference by developing
a mechanism that provides the abstraction of a background transfer. A background
transfer refers to a non-interactive transfer that human beings are not waiting for.
Such a transfer is typically non-deadline-critical, i.e. there is considerable flexibility
in its completion times. An example is the automatic delivery of software updates
— a typical user does not actively wait for such transfers to complete and continues
to perform other interactive tasks that require greater attention.

Many distributed applications can make use of large background transfers
to improve service quality. For example, a broad range of applications and services

such as data backup [94], prefetching [174], enterprise data distribution [67], Inter-

29

net content distribution [4], and peer-to-peer storage [54, 157] can trade increased
network bandwidth consumption and possibly disk space for improved service la-
tency [50, 64, 86, 114, 140, 174], improved availability [39, 188], increased scalabil-
ity [4], stronger consistency [188], or support for mobility [92, 146, 168]. Many of
these services have potentially unlimited bandwidth demands where incrementally
more bandwidth consumption provides incrementally better service. For example, a
Web prefetching system can improve its hit rate by fetching objects from a virtually
unlimited collection of objects that have non-zero probability of access [28, 38] or
by updating cached copies more frequently as data changes [46, 174, 172].

Current operating systems and networks do not provide good support for
aggressive background transfers. In particular, because background transfers com-
pete with foreground requests, they can hurt overall performance and availability
by increasing network congestion. Applications must therefore carefully balance the
benefits of background transfers against the risk of both self-interference, where
applications hurt their own performance, and cross-interference, where applications
hurt the performance of other applications.

Our goal is for the operating system to manage network resources in order
to provide a simple abstraction of zero-cost background transfers. A self-tuning
background transport layer will enable new classes of applications by (i) simplify-
ing applications, (ii) reducing the risk of being too aggressive, and (iii) making it
easier to reap a large fraction of spare bandwidth to gain the advantages of back-
ground transfers. Self-tuning resource management seems essential for coping with
network conditions that change significantly over periods of seconds (e.g. chang-
ing congestion [192]), hours (e.g. diurnal patterns), and months (e.g. technology
trends [37, 139]). We focus on managing network resources rather than proces-
sors, disks, and memory, both because other work has provided suitable end-station

schedulers for these local resources [38, 79, 124, 143, 161], and because networks

30

are shared across applications, users, and organizations and therefore pose the most
critical resource management challenge to aggressive background transfers.

Our system, TCP Nice, dramatically reduces the interference inflicted by
background flows on foreground flows. It does so by modifying TCP congestion
control to be more sensitive to congestion than traditional protocols such as TCP
Reno [103] or TCP Vegas [27] by detecting congestion earlier, reacting to it more
aggressively, and allowing much smaller effective minimum congestion windows. Al-
though each of these changes is simple, the combination is carefully constructed to
provably bound the interference of background flows on foreground flows while still
achieving reasonable throughput in practice. Our Linux implementation of Nice
allows senders to select Nice or standard Reno congestion control on a connection-
by-connection basis, and it requires no modifications at the receiver .

Our goals are to minimize damage to foreground flows while reaping a sig-
nificant fraction of available spare network capacity. We evaluate Nice against these
goals using theory, microbenchmarks, and application case studies.

Because our first goal is to avoid interference regardless of network conditions
or application aggressiveness, our protocol must rest on a sound theoretical basis. In
Section 3.2, we argue that our protocol is always less aggressive than Reno, and we
prove under a simplified network model that Nice flows interfere with Reno flows’
bandwidth by a factor that falls exponentially with the size of the buffer at the
bottleneck router independent of the number of Nice flows in the network. Our
analysis shows that all three features described above are essential for bounding
interference.

Our microbenchmarks comprise both ns [138] simulations to stress-test the
protocol and Internet measurements to examine the system’s behavior under re-
alistic conditions. Qur simulation results in Section 3.3 indicate that Nice avoids

interference with Reno or Vegas flows across a wide range of background transfer

31

loads and spare network capacity situations. For example, in one microbenchmark,
16 Nice background flows slow down the average demand document transfer time
by less than 10% and reap over 70% of the spare network bandwidth. But in the
same situation, 16 backlogged Reno (or Vegas) flows slow demand requests by more
than an order of magnitude.

Our Internet microbenchmarks in Section 3.4 measure the performance of
simultaneous foreground and background transfers across a variety of Internet links.
We find that background flows cause little interference to foreground traffic: the
foreground flows’ average latency and bandwidth are little changed between when
foreground flows compete with background flows and when they do not. Further-
more, we find that there is sufficient spare capacity that background flows reap
significant amounts of bandwidth throughout the day. For example, during most
hours Nice flows between London, England and Austin, Texas averaged more than
80% of the bandwidth achieved by Reno flows; during the worst hour observed they
still saw more than 30% of the Reno flows’ bandwidth.

Finally, our case study applications seek to examine the end-to-end effective-
ness, the simplicity, and the usefulness of Nice. We examine two services. First, we
implement a HTTP prefetching client and server and use Nice to regulate the ag-
gressiveness of prefetching. Second, we study a simplified version of the Tivoli Data
Exchange [67] system for replicating data across large numbers of hosts. In both
cases, Nice allows us to (i) simplify the application by eliminating magic numbers,
(ii) reduce the risk of interfering with demand transfers, and (iii) improve the effec-
tiveness of background transfers by using significant amounts of bandwidth when
spare capacity exists. For example, in our prefetching case study, when applications
prefetch aggressively, they can improve their performance by a factor of 3 when they
use Nice, but if they prefetch using TCP-Reno instead, they overwhelm the network

and increase total demand response times by more than a factor of six .

32

The primary limitation of our analysis is that we evaluate our system when
competing against Reno and Vegas TCP flows, but we do not systematically eval-
uate it against other congestion control protocols such as equation-based [74] or
rate-based [151]. Our protocol is strictly less aggressive than Reno, and we ex-
pect that it causes little interference with other demand flows, but future work is
needed to provide evidence to support this assertion. A second concern is incentive
compatibility: will users use low priority flows for background traffic when they
could use high priority flows instead? We observe that most of the “aggressive
replication” applications cited above do, in fact, voluntarily limit their aggressive-
ness by, for instance, prefetching only those objects whose priority of use exceeds
a threshold [64, 174]. Two factors may account for this phenomenon. First, good
engineers may consider the social costs of background transfers and therefore be
conservative in their demands. Second, most users have an incentive to at least
avoid self-interference where a user’s background traffic interferes with that user’s
foreground traffic from the same or different application. We thus believe that Nice
is a useful tool for both responsible and selfish engineers and users.

The rest of this chapter proceeds as follows. Section 3.1 describes the Nice
congestion control algorithm. Sections 3.2, 3.3, and 3.4 present our analytic results,
NS microbenchmark results, and Internet measurement results respectively. Our
experience with case study applications follows in Section 3.5. Finally, Section 3.6

puts this work in context with related work, followed by conclusions in Section 3.8.

3.1 Design and Implementation

In designing our system, we seek to balance two conflicting goals. An ideal sys-
tem would (i) cause no interference to demand transfers and (ii) consume 100%
of available spare bandwidth. In order to provide a simple and safe abstraction

to applications, we emphasize the former goal and will be satisfied if our protocol

33

makes use of a significant fraction of spare bandwidth. Although it is easy for an
adversary to construct scenarios where Nice does not get any throughput in spite of
there being sufficient spare capacity in the network, our experiments confirm that
in practice, Nice obtains a significant fraction of the throughput of Reno or Vegas

when there is spare capacity in the network.

3.1.1 Background: Existing Algorithms

Congestion control mechanisms in existing transmission protocols are composed of a
congestion signal and a reaction policy. The congestion control algorithms in popular
variants of TCP (Reno, NewReno, Tahoe, SACK) use packet loss as a congestion
signal. In steady state, the reaction policy uses additive increase and multiplicative
decrease (AIMD) in which the sending rate is controlled by a congestion window
that is multiplicatively decreased by a factor of two upon a packet drop and is
increased by 1 per window of data acknowledged. The AIMD framework is believed
to be fundamental to the robustness of the Internet [45, 103].

However, with respect to our goal of minimizing interference, this congestion
signal — a packet loss — arrives too late to avoid damaging other flows. In particular,
overflowing a buffer (or filling a RED router enough to cause it to start dropping
packets) may trigger losses in other flows, forcing them to back off multiplicatively
and lose throughput.

In order to detect incipient congestion due to interference, we monitor round-
trip delays of packets and use increasing round-trip delays as a signal of congestion.
In this respect, we draw inspiration from TCP Vegas [27], a protocol that differs from
TCP-Reno in its congestion avoidance phase. By monitoring round-trip delays, each
Vegas flow tries to keep between a (typically 1) and (3 (typically 3) packets buffered
at the bottleneck router. If fewer than o packets are queued, Vegas increases the

window by 1 per window of data acknowledged. If more than 3 packets are queued,

34

Throughput

—1‘;_‘

Window Size

W e

Figure 3.1: TCP Vegas congestion avoidance

the algorithm decreases the window by 1 per window of data acknowledged. Vegas
adjusts the window W once every round as follows (minRT'T is the minimum value
of all measured round-trip delays and observed RT'T is the round-trip delay experi-

enced by a distinguished packet in the previous round):

E + % // Expected throughput
A+ W // Actual throughput

Diff ¢ (E — A) - minRTT

if (Diff <)

W+W+1
else if (Diff > 3)
W+W-1

As figure 3.1 shows, bounding the difference between the actual and expected

throughput translates to maintaining between o and (3 packets in the bottleneck

35

router. Although Vegas seems a promising candidate protocol for background flows,
it has some drawbacks: (i) Vegas has been designed to compete for throughput
approximately fairly with Reno, (ii) Vegas backs off when the number of queued
packets from its flow increases, but it does not necessarily back off when the num-
ber of packets enqueued by other flows increase, and (iii) each Vegas flow tries to
keep 1 to 3 packets in the bottleneck queue, hence a collection of background flows

could cause significant interference.

Note that even setting a and § to very small values does not prevent Vegas
from interfering with cross traffic. The linear decrease on the “Diff > (3”7 trigger
is not responsive enough to keep from interfering with other flows. We confirm
this intuition using simulations and Internet experiments, and it also follows as a

conclusion from the theoretical analysis.

3.1.2 TCP Nice

The Nice extension adds three components to Vegas: first, a more sensitive conges-
tion detector; second, multiplicative reduction in response to increasing round-trip
times; and third, the ability to reduce the congestion window below 1. These addi-
tions are simple, but our analysis and experiments demonstrate that the omission
of any of them would fundamentally increase the interference caused by background
flows.

A Nice flow monitors round-trip delays, estimates the total queue size at the
bottleneck router, and signals congestion when this total queue size exceeds a frac-
tion of the estimated maximum queue capacity. Nice uses minRTT, the minimum
observed round-trip time, as the estimate of the round-trip delay when queues are
empty, and it uses mazRTT as an estimate of the round-trip time when the bot-

tleneck queue is full. If more than fraction of the packets Nice sends during a RTT

36

window encounter delays exceeding minRT'T + (maxzRTT — minRTT) - threshold,
our detector signals congestion. Round-trip delays of packets are indicative of the
current bottleneck queue size and the threshold represents the fraction of the to-
tal queue capacity that starts to trigger congestion. The Nice congestion avoidance
mechanism incorporating the interference trigger with threshold ¢ and fraction f can

be written as follows (cur RTT is the round-trip delay experienced by each packet):

per ack operation:
if (curRTT > (1 —t)- minRTT +t- maxzRTT)
numCong++;
per round operation:
if (numCong > f- W)
W« W/2
else {

// Vegas congestion avoidance follows

If the congestion condition does not trigger, Nice falls back on Vegas’ congestion
avoidance rules. If a packet is lost, Nice falls back on Reno’s rules. The final change
to congestion control is to allow the window sizes to multiplicatively decrease below
1, if so dictated by the congestion trigger and response. In order to affect window
sizes less than 1, we send a packet out after waiting for the appropriate number of
smoothed round-trip delays.

Maintaining a window of less than 1 causes us to lose ack-clocking, but the
flow continues to send at most as many packets into the network as it gets out. In
this phase the packets act as network probes waiting for congestion to dissipate.
By allowing the window to go below 1, Nice retains the non-interference property

even for a large number of flows. Both our analysis and our experiments confirm

37

the importance of this feature: this optimization significantly reduces interference,
particularly when testing against several background flows. A similar optimization
has been suggested even for regular flows to handle cases when the number of flows
starts to approach the bottleneck router buffer size [131].

When a Nice flow signals congestion, it halves its current congestion window.
In contrast Vegas reduces its window by one packet each round that encounters long
round-trip times and only halves its window if packets are lost (falling back on Reno-
like behavior.) The combination of more aggressive detection and more aggressive
reaction may make it more difficult for Nice to maximize utilization of spare capacity,
but our design goals lead us to minimize interference even at the potential cost of
utilization. OQur experimental results show that even with these aggressively timid
policies, we achieve reasonable levels of utilization in practice.

As in TCP Vegas, maintaining running measures of minRT'T and maxzRTT
have their limitations - for example, if the network is in a state of persistent con-
gestion, a bad estimate of minRTT is likely to be obtained. However, past studies
[2, 159] have indicated that a good estimate of the minimum round-trip delay can
typically be obtained in a short time; our experience supports this claim. The use
of minimum and maximum values makes the prototype sensitive to outliers. Us-
ing the first and ninety-ninth percentile values could improve the robustness of this
algorithm, but we have not tested this optimization. Route changes during a trans-
fer can also contribute to inaccuracies in RTT estimates. However such changes
are uncommon [144] and we speculate that they can be handled by maintaining

exponentially decaying averages for minRTT and maxzRTT estimates.

3.1.3 Prototype Implementation

We implement a prototype Nice system by extending an existing version of the Linux

kernel that supports Vegas congestion avoidance. Like Vegas, we use microsecond

38

resolution timers to monitor round-trip delays of packets to implement a congestion
detector. In our implementation of Nice, we set the corresponding Vegas parameters
a and @ to 1 and 3 respectively. After the first round-trip delay estimate, maxRTT
is initialized to 2 - minRT'T.

The Linux TCP implementation maintains a minimum window size of two
in order to avoid delayed acknowledgements by receivers that attempt to send one
acknowledgment every two packets. In order to allow the congestion window to
go to 1 or below 1, we add a new timer that runs on a per-socket basis when the
congestion window for the particular socket is below two. When in this phase, the
flow waits for the appropriate number of RT'Ts before sending two packets into the
network. Thus, a window of 1/16 means that the flow sends out two packets after
waiting for 32 smoothed round-trip times. We limit the minimum window size to
1/48 in our prototype.

Our congestion detector signals congestion when more than fraction = 0.5
packets during an RT'T encounter delays exceeding threshold = 0.2. We discuss the
sensitivity to threshold in more detail in Section 3.2. The fraction does not enter
directly into our analysis; our experimental studies in Section 3.3 indicate that the
interference is relatively insensitive to the fraction parameter chosen. Since packets
are sent in bursts, most packets in a round observe similar round-trip times. In
the future we plan to study pacing packets across a round in order to obtain better
samples of prevailing round-trip delays.

Our prototype provides a simple API to designate a flow as a background flow
through an option in the setsockopt system call. By default, flows are foreground

flows.

39

3.2 Analysis

Experimental evidence alone is insufficient to allow us to make strong statements
about Nice’s non-interference properties for general network topologies, background
flow workloads, and foreground flow workloads. We therefore analyze it formally
to bound the reduction in throughput that Nice imposes on foreground flows. Our
primary result is that under a simplified network model, for long transfers, the
reduction in the throughput of Reno flows is asymptotically bounded by a factor
that falls exponentially with the maximum queue length of the bottleneck router
irrespective of the number of Nice flows present.

Theoretical analysis of network protocols, of course, has limits. In general,
as one abstracts away details to gain tractability or generality, one risks omitting
important behaviors. Most significantly, our formal analysis assumes a simplified
fluid approximation and synchronous network model, as described below. Also, our
formal analysis holds for long background flows, which are the target workload of our
abstraction. But it also assumes long foreground Reno flows, which are clearly not
the only cross-traffic of interest. Finally, in our analysis, we abstract detection by
assuming that at the end of each RTT epoch, a Nice sender accurately estimates the
queue length during the previous epoch. Although these assumptions are restrictive,
the insights gained in the analysis lead us to expect the protocol to work well under
more general circumstances. The analysis has also guided our design, allowing us
to include features that are necessary for noninterference while excluding those that
are not. Our experience with the prototype has supported the benefit of using
theoretical analysis to guide our design: we encountered few surprises and required
no topology or workload-dependent tuning during our experimental effort.

We use a simplified fluid approximation model of the network to help us
model the interaction of multiple flows using separate congestion control algorithms.

This model assumes infinitely small packets. We simplify the network itself to a

40

Additive :Linear Multiplicative
Increase Decrease Decrease

qftB

%® .

minRTT= T maxRTT= T+B/u

Figure 3.2: Nice Queue Dynamics

source, destination, and a single bottleneck, namely a router that performs drop-
tail queuing as shown in Figure 3.2. Let u denote the service rate of the queue
and B the buffer capacity at the queue. Let 7 be the round-trip delay of packets
between the source and destination excluding all queuing delays. We consider a fixed
number of connections, m following Reno and [following Nice, each of which has one
continuously backlogged flow between a source and a destination. Let ¢ be the Nice
threshold and g; = ¢ - B be the corresponding queue size that triggers multiplicative
backoff for Nice flows. The connections are homogeneous, i.e. they experience the
same propagation delay 7. Moreover, the connections are synchronized so that in
the case of buffer overflow, all connections simultaneously detect a loss and multiply
their window sizes by . Models assuming flow synchronization have been used in
previous analyses [23]. We model only the congestion avoidance phase to analyze
the steady-state behavior.

We obtain a bound on the reduction in the throughput of Reno flows due to
the presence of Nice flows by analyzing the dynamics of the bottleneck queue. We
achieve this goal by dividing the duration of the flows into periods. In each period
we bound the decrease in the number of Reno packets processed by the router due
to interfering Nice packets. In the following we give an outline of this analysis.

Let W,(t) and W,(t) denote respectively the total number of outstanding

41

Reno and Nice packets in the network at time ¢. W(t), the total window size, is
Wi (t) + Wy,(t). We trace these window sizes across periods. The end of a period
and the beginning of the next is marked by a packet loss, at which time each flow
reduces its window size by a factor of v. W(t) = ur + B just before a loss and
W(t) = (ut + B) -y just after. Let ¢y be the beginning of one such period after
a loss. Consider the case when W (ty) = (u7 + B)y < ur and m > [. For ease of
analysis we assume that the “Vegas 3” parameter for the Nice flows is 0, ¢.e. the
Nice flows additively decrease upon observing round-trip times greater than 7. The

window dynamics in any period can be split into three intervals as described below.

I1 - Additive Increase, Additive Increase: In this interval [tg,%1] both Reno and
Nice flows increase linearly. W (t) increases from W (ty) to W (t;) = p7, at which

point the queue starts building.

I2 - Additive Increase, Additive Decrease: This interval [¢1,%2] is marked by ad-
ditive increase of W, but additive decrease of W,, as the “Diff > (” rule triggers
the underlying Vegas controls for the Nice flows. The end of this interval is marked

by W (t2) = put + g

I3 - Additive Increase, Multiplicative Decrease: In this interval [to, 3], Wp(t) mul-
tiplicatively decreases, by a factor 'y' say, in response to observing queue lengths
above g;. However, the rate of decrease of W, (t) is bounded by the rate of increase
of W,(t), as any faster a decrease will cause the queue size to drop below g;. At the
end of this interval W (t3) = u7 + B. At this point, each flow decreases its window
size by a factor of 7, thereby entering into the next period.

In order to quantify the interference experienced by Reno flows because of

the presence of Nice flows, we formulate differential equations to represent the vari-

42

ation of the queue size in a period. We then show that the values of W, and W,, at
the beginning of periods stabilize after several losses, so that the length of a period
converges to a fixed value. It is then straightforward to compute the total amount
of Reno flow sent out in a period. We then show that the interference I, defined as
the fractional loss in throughput experienced by Reno flows because of the presence

of Nice flows, can be bounded as follows.

Theorem 1: The interference I is bounded as

4m - = B(ln;th)

(ut + B)y

(3.1)

The expression for I indicates that all three design features of Nice are fundamentally
important for reducing interference. The interference falls exponentially with B(1 —
t) or B — g4, which reflects the time that Nice has to multiplicatively back off before
packet losses occur. Intuitively, multiplicative decrease allows any number of Nice
flows to get out of the way of additively increasing demand flows. The dependence on
the ratio % suggests that as the number of demand flows approaches the maximum
queue size the non-interference property starts to break down. This breakdown is
not surprising as each flow barely gets to maintain one packet in the queue and
TCP Reno is known to behave anomalously under such circumstances [131]. In a
well designed network, when B > m, it can be seen that the dependence on the
threshold ¢ is weak, i.e. interference is small when ¢ is, and careful tuning of the
exact value of ¢ in this region is unnecessary. The full analysis below shows that
the above bound on I holds even for the case when m < I. Allowing window sizes
to multiplicatively decrease below one is crucial in this proof. Observe that when
(ur + B)y > ur, Nice flows do not get any throughput. However, this condition

implies that the network is already saturated and does not have any spare capacity.

43

3.2.1 Proof of Theorem 1

In this section we derive the upper bound on interference stated in Theorem 3.1.
We first consider the case when the number of Reno flows m > [and then show that
the derivation also holds true for the case when the m < [. We formulate differential
equations to describe the dynamics of the queue size as explained in the previous

section.

I1 - Additive Increase, Additive Increase [to,t1] :

AW, (t)

- m
dt - T
(3.2)
dWe(t) _ 1
dt - T
I2 - Additive Increase, Additive Decrease [tg,t;] :
awr(t) _ mp
@ = @
(3.3)
du;’;(t) = —uﬁi(t) if Wp(t)>1, else 0
I3 - Additive Increase, Multiplicative Decrease [to,t1] :
aw,(t) _ M
@ = 6)
(3.4)
AW, (t) o Wt
T = —min(W(t())”’ W)

Next we introduce three lemmas that make it easier to calculate the reduction
in the total amount of Reno flow that gets sent out in a period due to interference
from Nice flows, without actually having to solve equations (3.2), (3.3) and (3.4)

completely.

Lemma 1: The total amount of flow sent by the Reno flows in a period depends

only on the initial and final values of W, in the period.

44

Proof: The total amount of flow sent out by the Reno flows is given by integrating
the instantaneous sending rate over the duration of the period. The instantaneous
sending rate at time ¢ is obtained by dividing the current window size W, (t) by the
current value of the round-trip delay W (¢)/u. Thus, the total amount of Reno flow

R sent out in a period beginning at ¢y is given by:

to+T Wiy (t

From (3.12),(3.13) and (3.14) we observe that the rate of increase of W, throughout

a period is given by:

aw,(t) _ mpu
From (3.5) and (3.6) we get:
- W; (to+T)
R = 1L wito) | Wr(t)dW,(t)
(3.7)
I () |t0+T
- 2m to

Hence proved.

Lemma 2: The length of a period T in a system with m Reno flows and a non-zero
number of Nice flows is shorter than that of a system consisting of only the Reno

flows.

Proof: The proof of this lemma follows straighforwardly from the dynamics of W, (t)

alone. Let T" denote the length of a period when only m Reno flows (and no Nice

45

flows) are present, and W, (t) denote the total number of outstanding (Reno) packets
at time ¢. Rewriting (3.6) for W, (t):

W, (t)dW,(t) = mpudt (3.8)

Assume that a period begins at time ¢y. Integrating both sides of (3.8) and swapping
sides we get:

! t T’ ! !
T = L [T Wh(t)dW(¢)

mpy

(3.9)

(uTt+B) ' J
s wiaw,

Similarly, using (3.6) we obtain for 7"

T = [2TTW()dW, ()

— LZO+T W(t)dW(t)% (3.10)

_ [(um+B) dw,
- f(ur—kB)’y Wdw. aw

Notice that the multiplicative term (fzvv[ll; < 1 throughout the period, as W = W, +

W,,. Therefore T < T'.
Lemma 3: The residual number of total outstanding Nice packets just before a

. . . ! _(2(B—q4)
packet loss in any period is at most % e)

Proof Let ty mark the beginning of a period just after a packet loss so that
W(ty) = (uT + B)y < pr. Let t1,ta,t3 mark respectively the end of the three
intervals constituing the current period. The beginning of the interval [t2, t3] initi-
ates multiplicative decrease on part of the Nice flows. The dynamics are given by
equation (3.4).

If Wy,(t2) > %, W,, multiplicatively decreases at a rate just enough to counter the

46

rate of increase of W,, thereby keeping W fixed at u7 + ¢; till time t'2 such that
Wi(ty) = 2m. For the rest of the period [t,, 3] the system dynamics are given by:

aw,(t) _ my
dt = 0)
(3.11)
AWn(t) _ o Wa(u
dt W(t)

If Wp(t2) < 7—77, (3.11) completely describes the dynamics throughout the interval
[ta, t3]. With the initial boundary conditions Wi, (t,) = 7ﬂ" W (ty) = pr+qs, and the
final boundary condition W(t3) = u7m + B, equation (3.11) yields a unique solution
to Wy (t3) — the number of residual Nice packets in the queue just before a loss —

which we also denote by 4.. To compute this value, divide the second differential

equation by the first to obtain O
dWa(t) _ 4 Walt)
aw,(t) — m
AWa(t) 4 dWe(t)
= W) T m

Integrating both sides we obtain:

6 dw, _7’ pur+B—6
%’ Wn m Jpur+qi—2m dw,
7,_6 7[
= log(L>) < —L - [B—¢q]
! B
= s < m. (T
¥
Hence lemma, 3. O

Proof of Theorem 1

Interference is calculated as the fractional loss in throughput obtained by Reno flows

due to the presence of Nice flows. The throughput obtained by Reno flows in the

47

presence of Nice flows is the total Reno flow sent out in a period divided by the
length of a period T'. We first consider the case m > [.

Case 1: m >1

By Lemma 2, the total flow sent out by the Reno flows is a period depends only on
the initial and final values of W,.(t) in a period. Thus, the throughput P obtained

by Reno flows is computed using (3.7) as:

7+B—8)2—((ur+B—0)7)?
P = % [(p) 2(151”)7)°]

The throughput obtained by the Reno flows in the absence of any Nice flows is given
by:

r 201 2
Q = %_(lﬁ-i-Bz)m(l 7?)

The interference I defined as the fractional loss in throughput is given by %. By
Lemma 3, T' > T, which yields:

[(ur+B—6)>—(ur+B)?]
< ® (uT+B)l;

20

(ut+B)

IN

'
zm_e(_W)

- (uT+B)yy'
Substituting v = 2 to represent multiplicative halving of window, we obtain

B(1—t
I < 4m.e~ (2m))

Case 2: m <

In this case we simply give the differential equations governing the dynamics of

48

the window sizes claim that Lemmas 1 to 3 hold in this case as well. The verifica-

tion of the same is left as an exercise to the reader.

In interval [to,t1] W (t) increases from W (to) to pu7, at which point the queue starts
building up. Both Reno and Nice flows increase linearly and their dynamics can be

represented as:

daw,(t) _ m

dt - T
(3.12)

dWn(t) _ 1

dt - T

The next interval [t1,?2] is marked by additive increase of W,., but additive decrease
of W,, as the “Diff > (3” rule triggers the underlying Vegas controls for the Nice
flows. However, the rate of decrease of W, (t) is bounded by the rate of increase
of W,(t). The two therefore exactly balance each other and the total window size
W (t) remains constant at u7. Moreover, in the additive decrease phase, each Nice
flow maintains a minimum window of 1, which implies that W, (¢) > [in this phase.
The round-trip time experienced by each packet when the queue is non-empty is

given by W(t)/u. Thus, the window dynamics during interval [t1,t2] are as follows:

(dW,.(t)

- _my
7 4 ()
< (3.13)
Wl = g, i Wa(t) >
| = 0 otherwise

The end of this interval is the time ¢2 when W (t2) = u7 + ¢+, where ¢ is
the threshold queue size that begins multiplicative backoff for Nice flows. However,
again the rate of decrease of W,,(t) is bounded by the rate of increase of increase of

W,(t). Thus, the dynamics of interval [ty,t3] are governed by:

49

aw,(t) _ mp
dt - ()
(3.14)
AWy (t) in(e m
dt() — —mm(vl_vg,zf)’ W—(”t))

The end of the above interval marks the completion of the period. At this point
W (ts) = ut + B, and right after, each flow decreases its window size by a factor of

v, thereby entering into the next period.

Using Lemmas 1 to 3, it can be shown, exactly as in case 1, that the interfer-

ence bound given in (3.1) holds for this case as well.

Hence Theorem 1 follows. O

3.3 ns Controlled Tests

The goal of our simulations is to validate our hypotheses in a controlled environ-
ment. In particular, we wish to i) test the non-interference property of Nice and
ii) determine if Nice gets any useful bandwidth for the workloads considered. By
using controlled ns [138] simulations in this phase of the study we can stress test the
system by varying network configurations and load to extreme values. We can also
systematically compare the Nice algorithm against others. Overall, the experiments

support our theses:
e Nice flows cause almost no interference irrespective of the number of flows.
e Nice gets a significant fraction of the available spare bandwidth.

o Nice performs better than other existing protocols, including Reno, Vegas, and

Vegas with reduced a and 3 parameters.

50

3.3.1 Methodology

We use ns 2.1b8a for our simulation experiments. The topology used is a bar-bell
in which N TCP senders transmit through a shared bottleneck link L to an equal
number of receivers. The router connecting the senders to L becomes the bottleneck
queue. Routers perform drop-tail FIFO queueing except in experiments with RED
turned on. The buffer size is set to the bandwidth delay product. Packets are 512
bytes in size and the propagation delay is set to 50ms. We vary the capacity of the
link in order to simulate different amounts of spare capacity.

We use a 15 minute section of a Squid proxy trace logged at UC Berkeley
as the foreground traffic over L. The number of flows fluctuates as clients enter and
leave the system as specified by the trace. On average there are about 12 active
clients. In addition to this foreground load, we introduce permanently backlogged
background flows. For the initial set of experiments we fix the bandwidth of the
link to twice the average demand bandwidth of the trace. The primary metric we
use to measure interference is the average transfer latency of a document i.e., the
time between its first packet being sent and the receipt of the ack corresponding to
the last packet. We use the total number of bytes transferred by the background
flows as the measure of its utilization of spare capacity.

Unless otherwise specified, the values of the threshold and fraction for Nice
are set to 0.1 and 0.5 respectively. We compare the performance of Nice to several
other strategies for sending background flows. First, we compare with router prior-
itization that services a background packet only if there are no queued foreground
packets. Router prioritization is the ideal strategy for background flow transmission,
as background flows never interfere with foreground flows. In addition, we compare

to Reno, Vegas(a = 1,8 = 3), Vegas(a = 0,5 = 0).

51

1000

@ 100 f e X ;
@
>
[8)
c
9
© i
—
1<
)
IS
>
o \
o i
D - Xeo
P S~ EEC——— B S
Router Prio
0.1 ‘
1 10 100

Spare Capacity
Figure 3.3: Spare capacity vs Latency

3.3.2 Results

Experiment 1: In this experiment we fix the number of background flows to 16
and vary the spare capacity, S. To achieve a spare capacity S, we set the bottleneck
link bandwidth L = (1 + S) - averageDemandBW, where averageDemandBW is the
total number of bytes transferred in the trace divided by the duration of the trace.
Figure 3.3 plots the average document transfer latency for foreground traffic as a
function of the spare capacity in the network. Different lines represent different
runs of the experiments using different protocols for background flows. It can be
seen that Nice is hardly distinguishable from router prioritization whereas, the other
protocols cause a significant increase in foreground latency. Note that the Y-axis is
on a log scale, which means that in some cases Reno and Vegas increase foreground

document transfer latencies by over an order of magnitude.

52

1000

® 100

@

>

[8)

c

9

<10

1<

)

&

3

o 1%

)

Router Prio
0.1 ‘
1 10 100

Num BG flows

Figure 3.4: Number of BG flows vs Latency

Experiment 2: Sensitivity to number of BG flows In this experiment we
fix the spare capacity S of the network to 1 and vary the number of background
flows. Figure 3.4 plots the latency of foreground document transfers against the
number of background flows. Even with 100 background Nice flows, the latency of
foreground documents is hardly distinguishable from the ideal case when routers
provide strict prioritization. On the other hand, Reno and Vegas background flows
can cause foreground latencies to increase by orders of magnitude. Figure 3.5 plots
the number of bytes the background flows manage to transfer. A single background
flow reaps about half the spare bandwidth available under router prioritization; this
background throughput improves with increasing number of background flows but
remains below router prioritization. The difference is the price we pay for ensuring
non-interference with an end-to-end algorithm. Note that although Reno and Vegas

obtain better throughput, even for a small number of flows they go beyond the

53

router prioritization line, which means they steal bandwidth from foreground traffic.
Figure 3.6 shows the number of bytes transferred by the foreground traffic. While
Nice hardly hurts the foreground throughput, Reno and Vegas end up decreasing it
by upto 60%.

80000

70000

60000

50000 F T -
a0000 i - B

30000 | T T 1

BG Throughput (KB)

20000 | b

10000 b

1 10 100
Num BG flows

Figure 3.5: Number of BG flows vs BG throughput

The three components of Nice that make it non-interfering are - i) early
congestion detection, ii) aggressive multiplicative backoff, and iii) allowing window
sizes below 1 relative to regular TCP. We examined experiments where we do not
allow Nice’s congestion window to fall below 1, i.e. (iii) is absent. In this case, when
the number of background flows exceeds about 10, the latency of foreground flows
begins to increase noticeably; the increase is about a factor of two when the number
of background flows is 64. If (ii) is removed from Nice, its behavior is similar to
TCP Vegas. In fact, Vegas already decreases its window size linearly when it detects
a certain number of packets queued at the bottleneck router. If (i) is removed from

Nice, it behaves similar to regular TCP. Increasing the aggressiveness of backoff

54

45000

40000 L e “ -
D“ \‘\\\
35000 e : . i
m R
< 30000 f N -
5 o N
2 25000 f ~» 1
g . ~x\::
S 20000 | '~ AR 1
= E e T
LL .
10000 | Vegas-Nice —— |
Router Prio ----x---
| Reno - i
5000 Vegas
0 Vegas-0 —-=—- ‘
1 10 100

Num BG flows
Figure 3.6: Number of BG flows vs FG throughput

without an early congestion detection mechanism like in GAIMD [184] or binomial
congestion control [15] is not sufficient to provide the non-interfering property as

the congestion signal, a packet drop, arrives too late.

Experiment 3: Sensitivity to parameters In this experiment we trace the
effect of the threshold and trigger fraction parameters described in Section 3.1.2.
Figure 3.7 shows the document transfer latencies as a function of the threshold for
the same trace as above, with § = 1 and 16 background flows. As expected, as the
threshold value increases, the interference caused by Nice increases until the protocol
finally reverts to Vegas behavior as the threshold approaches 1. It is interesting to
note that there is large range of threshold values yielding low interference, which
suggests that its value need not be manually tuned for each network. As explained
in section 3.2, in a well designed network, this phenomenon is to be expected from

the expression for the bound obtained for interference in Theorem 1. We examine

55

the trigger fraction in the same way, and find little change in foreground latency as
we vary this fraction from 0.1 to 0.9 as shown in Figure 3.8. This phenomenon is
because of packets getting sent out in bursts and therefore observing similar round-

trip delays.

N~)
A O © O
T T T

Iy
N
T

FG Latency
=
o

o N »] [ee]
T
I

0 0.2 0.4 0.6 0.8 1
Threshold

Figure 3.7: Threshold vs FG latency

56

FG Latency

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

Fraction vs. FG Latency

0.2 0.4 0.6
Fraction

Figure 3.8: Fraction vs FG latency

57

0.8

Experiment 4: Nice with RED queueing We repeat experiments 1 and 2,
but with routers performing RED queueing. The purpose of this experiment is
to evaluate the performance of Nice if co-deployed with router-assisted congestion
control mechanisms. The RED parameters are set as recommended in [75] with
the “gentle” mode on. The minimum and maximum RED thresholds are set to
one-third and two-third of the buffer size. Packets are probabilistically marked with
ECN support from the senders. Figure 3.9 plots the foreground document transfer
latency against the spare capacity with 16 background flows. Though Nice still
performs as much as an order of magnitude better than other protocols, it causes
up to a factor of 2 increase in document transfer latencies for large spare capacities.
As figure 3.10 indicates, under RED, Nice closely approximates router prioritization
regardless of the number of flows when the spare capacity is one, i.e. the demand
workload consumes half of the network capacity.

The relatively poor performance of Nice under RED when spare capacities
are large appears to reflect the sensitivity of Nice’s interference I to bottleneck queue
length (Equation 1). Whereas Nice flows damage foreground flows when drop-tail
queues are completely full, under RED, interference can begin when the bottleneck
queue occupancy reaches RED’s minimum threshold min,. One solution may be to
reduce Nice’s threshold parameter. The Nice-0.03 lines in Figures 6 and 7 plot Nice’s
interference under RED when threshold = 0.03 instead of the default value of 0.10.
Figure 3.11 shows the variation of interference with the reduced value of threshold
and Figure 3.12 shows the corresponding reduction in the throughput obtained by
background flows. Figure 3.11 shows that there is a small range of values of threshold
for which Nice causes low interference. Intuitively, RED is similar to Nice in causing
multiplicative backoff on a threshold queue build up. Nice’s threshold thus needs to
be much smaller than RED’s to provide the effect of prioritized flows. Future work

is needed to better understand Nice’s interaction with RED queuing and develop

58

techniques to automatically adapt to any value of the RED threshold.

Document Latency (sec)

100

TRouter Prio

0.1

Nice-0.03

10
Spare Capacity

100

Figure 3.9: Spare capacity vs Latency with RED queueing

59

1000

Reno

100

Document Latency (sec)
5

T) Nice-0.03
Router Prio

0.1 :
1 10 100

Num BG flows

Figure 3.10: Number of BG flows vs Latency with RED queueing

25

[N
[é;] o

Document Latency (sec)
=
o

O Il Il Il Il
0 0.2 0.4 0.6 0.8 1

Threshold

Figure 3.11: Threshold vs Latency with RED queueing

60

BG Throughput (KB)

Figure 3.12: Number of BG flows vs BG throughput with RED queueing

80000

70000

60000

50000

40000

30000

20000

10000

Nice —+—]
Router Prio -
Reno -
Vegas @
Nice-red ---#--

10
Num BG flows

61

100

Experiment 5: Comparision with rate limiting In this experiment we com-
pare Nice to simple rate-limited Reno flows. The foreground traffic is again modeled
by the Squid trace and the experiment performed is identical to experiment 1.

Fig 3.13 plots the average latency of foreground packets as a function of the
spare capacity in the network. The various lines represent rate-limited background
flows with the limits corresponding to a window size of 1,2,4 and 16. It can be seen
that even a flow with a rate limit of 1 inflicts slightly greater interference than Nice
This result is not surprising as Nice is equipped to reduce its window size below
one when it deems necessary to minimize interference. All other flows with higher
rates perform much worse and result in upto two orders of magnitude of increase in
latency.

Next, we fix the capacity of the network to S = 1 (L twice the bandwidth
needed by demand flows), and we vary the number of background flows. Figure 3.13
plots of the latency of foreground packets against the number of background flows.
We observe that even flows limited to a window size of 1 inflict upto two orders of
magnitude of increase in latency when there are 64 background flows present. Nice
on the other hand is hardly distinguishable from the router prioritization line even
for a 100 background flows (Figure 3.14). Figure 3.15 and 3.16 plots the number
of bytes the background flows manage to transfer. We observe that a single Nice
background flow gets more throughput than a flow rate limited to a window size
of 8. This single Nice flow obtains about 10 times as much throughput as a flow
rate-limited to a window of one but still causes lower intereference as was seen in
the previous graph. With increasing number of flows, the rate-limited flows show a
linear (X-axis is on a log-scale) increase in throughput while the throughput obtained
by Nice increases much slower. However, all the rate-limited flows, sooner or later
cross the router prioritization line, which means that they steal bandwidth from the

foreground flows (figure 3.16). Nice on the other hand remains below the router

62

prioritization line always and gets between 60-80% of the spare bandwidth.

100 g——— 5 _
B Vegas-Nice ——
e Router Prio -
oo 8 Rate-limit 1 -
Tel N Rate-limit2 o
el Rate-limit 4 --=--
Lo Rate-limit 8 - o--
10 P W NN Rate-limit 16 -~
@ .
&L
>
(&)
c
9
3
1r i
0.1 .
1 10 100

Spare Capacity

Figure 3.13: Spare capacity vs Latency

63

Latency (sec)

BG Throughput (KB)

1000

Vegas-Nice ——
Router Prio -
Rate-limit 1 -
Rate-limit 2 —=

Rate-limit 4 --—-=—-

00 F Ratelimitg o R
Rate-limit 16 - Ao
7’/"/ e
10 | o .]
,/—"""/ *
1 st e S — —
0.1 ‘
1 10
Num BG flows
Figure 3.14: Number of BG flows vs Latency
90000
80000
70000
60000
50000
40000
30000 Vegas-Nice —+—
RouterPrio -
20000 Rate-limit 1 -
e Rate-limit2 &
- : Rate-limit 4 --=-- |
10000 Rate-limit 8 --o--
oL ‘ Rate-limit 16 o~
1 10

100

Num BG flows

Figure 3.15: Number of BG flows vs BG throughput

64

100

FG Throughput (KB)

45000

40000

35000

30000

25000

20000

15000

10000

5000

Figure 3.16: Number of BG flows vs FG throughput

Vegas-Nice ——
RouterPrio ----»---
Rate-limit 1 - *oos

Rate-limit 2

=)

Rate-limit 4 ---=--
Rate-limit 8 --o--
Rate-limit 16 ---e---

10
Num BG flows

65

100

Experiment 6: Nice with random on/off UDP traffic In this experiment
we model the foreground traffic as a set of UDP sources transmitting in an on/off
manner in accordance with a Pareto distribution. The burst time and idle time were
each set to 250ms, and the value of the shape parameter set to 1.5 . The experiments
performed were identical to the ones involving trace-based traffic i.e. spare capacity
and the number of background flows were varied.

Fig 3.17 plots the average latency of foreground packets as a function of the
spare capacity in the network. We observe that though the Nice flows cause less
latency overhead than Reno or Vegas, the numbers are not as impressive as in the
case when the foreground traffic was a trace following TCP. These numbers suggest
that Nice is not well-suited to environments where the traffic is unpredictable. They
also support our thesis that Nice works by using round-trip delay estimates in the
current round to predict the state of the network in the next. As expected it doesn’t
work well when the traffic is unpredictable.

Next, we fix the capacity of the network to S = 2 (L has four time the
bandwidth needed by demand flows), and we vary the number of background flows.
Fig 3.18 plots the latency of foreground packets against the number of background
flows. We observe that though Nice outperforms Reno and Vegas, it doesn’t match
router prioritization as closely. However, Nice continues to show relatively graceful
degradation with the number of background flows because of it’s ability to decrease
its window size below one. As in the case of TCP flows, Figure 3.20 shows that Nice
hardly affects the throughput obtained by the on/off UDP cross traffic. Figure 3.19
plots the number of bytes the background flows manage to transfer. We observe
that a single Nice flow obtains about 70% of the spare bandwidth available under
router prioritization; this background throughput improves with increasing number
of background flows but remains below router prioritization. Thus, Nice reaps a

significant fraction of the spare capacity (at the cost of increased interference) when

66

the foreground traffic is unpredicatble. Nice has been designed to cause low interfer-
ence with well-behaved TCP flows. Hence, the relatively unimpressive performance

of Nice in the midst of random on/off UDP traffic is not surprising.

0.01 ‘
Vegas-Nice ——
NN Router Prio
NN Reno -
SN Vegas -8
S Vegas-0 --=--
w
X 0.001 E
>
o
c
2
©
—
o) . Shnge
& 0.0001 E
o
le-05 : :
0.1 1 10 100

Spare Capacity

Figure 3.17: Spare capacity vs Latency with on/off UDP cross traffic

67

0.001

=) ,,,,,,,_,1,,A{F:~,-,—,:-,~,..—,.t.f.a,j,f,.,,,,.‘._

)
<
>
(8]
o
% 0.0001 | 7
-
o)
X
(&)
o]
o
Vegas-Nice —+—
Router Prio -------
Reno -
Vegas @
1e-05 Vegas-0 —-#--
e- Il
' 10 100

Num BG flows

Figure 3.18: Number of BG flows vs Latency with on/off UDP cross traffic

80000
70000
. 60000
m
<
— 50000 T |
=}
o
ey
© 40000 - |
o
£ 30000 | |
O]
@ 20000 |
Vegas-Nice —+—
Router Prio -------
10000 1 Reno %
Vegas @
0) VegaS-O e
' 10 100

Num BG flows

Figure 3.19: Number of BG flows vs BG throughput with on/off UDP cross traffic

68

25000

,,,,,,,,,,,,,,,,,,,,,,, i ’
[S
20000 | e
%) "
< ‘
5 15000 |
o
ey
(=]
>
o
< 10000 |
|_
]
s
Vegas-Nice ——
5000 | Router Prio —x— |
Reno -
Vegas @&
; | Vegas-0 —-=--
! 10 100

Num BG flows

Figure 3.20: Number of BG flows vs FG throughput with on/off UDP cross traffic

69

100 \

Reno ——
Vegas -
Vegas-0 -
Nice ~-®
— Router Prio ——=--
(%
[}
L 10t E
>
o
<
<]
©
- ﬁ
€
3]
£
3 1 ;
o
a)
0.1 Il Il Il Il Il Il
0 5 10 15 20 25 30 35

Spare Capacity

Figure 3.21: Spare capacity vs Latency with a Nice’s RTT four times that of fore-
ground traffic

Effect of RTT Bias TCP is known to be unfair biased towards flows with shorter
round-trip times that share a common bottleneck; flows receive throughout inversely
proportional to their RT'T. In this experiment we study the effect of dissimilar RT'T's
on Nice’s non-interference property. In particular, we seek to understand if Nice
flows with short RT'Ts end up inflicting an unacceptably high amount of interference
on TCP flows with much higher RT'Ts. To this end, we repeat experiments 1 and
2 with foreground traffic having an RTT four times higher than the background
flows. The queue capacity was set to bandwidth-delay product where the delay
used was the average of the two RTT values. Figures 3.21-3.24 show the results
of this experiment. As can be seen, Nice continues to maintain its strong non-
interference property, while other candidate background protocols cause more than

an order of magnitude of increase in document transfer times.

70

1000

< 100

7}

L2

>

%)

c

L

“ 10

1<

7}

IS

=]

o

o

o 1F i
0'1 Il Il Il Il Il Il Il Il Il

0 10 20 30 40 50 60 70 80 90 100
Num BG flows

Figure 3.22: Number of BG flows vs Latency with Nice’s RTT four times that of
foreground traffic

We note that if the queue capacity were left unchanged in this experiment,
i.e. if it were set to the bandwidth-delay product using the lower of the two RTTs,
Nice’s interference increases slightly causing up to a 30-40% increase in average
document transfer latency beyond 32 Nice flows given a spare capacity of 1 at the
bottleneck router. This increased interference is expected as Nice flows do not have
sufficient time to back off before packet drops occue if queue capacities are small.

Our theoretical analysis also supports this observation.

Reverse Path Traffic In the above experiments, all of the traffic flowed in only
one direction. Traffic in the reverse direction along the same path can affect conges-
tion control in the forward direction. For example, if acknowledgements are delayed
because of traffic on the reverse path, then the throughput achieved by a flow on the

forward path can get reduced. Traffic on the reverse path can affect the robustness

71

80000

70000

60000

50000 |
40000 |-

30000 [’

BG Throughput (KB)

20000

10000 Vegas-0 -
Router Prio a

Njce S

0 Il Il Il Il Il Il
0 10 20 30 40 &S50 60 70 80 90 100

Num BG flows

Figure 3.23: Number of BG flows vs BG throughput with Nice’s RTT four times
that of foreground traffic

of delay-based congestion control protocolss [147]. For example, reverse path traffic
can add noise to RTT measurements done by a delay-based congestion controlled
flow. If the sending rate of such a flow is small, reverse path traffic, and cross traffic
in general, can lead to undersampling of network state by the flow.

To determine the effect of reverse-path traffic on Nice’s interference property,
we introduce two long-lived FTP transfers in the reverse path and repeat experi-
ments 1 and 2. Figures 3.25-3.28 show the corresponding results. We observe that
though Nice’s interference continues to be low, it is somewhat higher than in ex-
periments 1 and 2 without reverse path traffic. For example, 100 background flows
cause a 22% increase in average document transfer latency given a spare capacity
(with respect to the forward path traffic as before) of 1 as opposed to a 14% increase
when there is no reverse path traffic. This increased interference is because of the

small probing overhead of TCP Nice in an environment with very little spare capac-

72

45000

40000 [y " . 1
35000 | I
€ 30000 . " e
§_ 25000 | * \\\ e . . . 4
3 20000 | Cwe -
|-E ""“'\fff‘:l ffffffffffffffffffff
© 15000 | L E
L
10000 Nice —— i
Router Prio ——x—
i Reng - i
5000 Vegas o
0 1 Vega\s-o 77\{77 1 1 1 1 1 1

0 10 20 30 40 50 60 70 80 90 100
Num BG flows

Figure 3.24: Number of BG flows vs FG throughput with Nice’s RTT four times
that of foreground traffic

ity. Unlike the traffic on the forward path that is intermittent in nature, the FTP
transfers always attempt to use up all of the capacity at the bottleneck router leav-
ing little spare capacity to be reaped by background flows as shown in Figure 3.28.
We do note, however, that Nice’s interference does not increase significantly with
increasing number of background flows and continues to be an order of magnitude
less than other candidate background protocols when the number of background

flows is large.

73

100

Vegas
Vegas-0 -
Nice --a

Router Prio -—-=--

< \
Q T\
L 10, E
> S
[S)
<
Q
IS
—
=
Q
IS
3 1 .
o
o
0.1 Il Il Il Il Il Il
0 5 10 15 20 25 30 35

Spare Capacity

Figure 3.25: Spare capacity vs Latency with traffic on the reverse path

1000

< 100 E
)
)
>
%)
<
2
g 10 E
% e
£ X
§ Beogo g 5 g
a] 1+ i
0'1 Il Il Il Il Il Il
0 10 20 30 40 50 60 70

Num BG flows

Figure 3.26: Number of BG flows vs Latency with traffic on the reverse path

74

80000

70000 i
60000 |
g
< 50000 |
>
£
S 40000 |
o
<
= 30000 i
o
m 1
20000 | | rens |
i Vegas —x—
10000 |} Vegas-0 x|
Router Prio -
0 : ‘ - ‘ e ___Nice ——4--
0 10 20 30 40 50 60 70

Num BG flows

Figure 3.27: Number of BG flows vs BG throughput with traffic on the reverse path

45000
40000 [* TR B]
35000]
g 30000 | % -
2 25000 | e N]
=) el
> Tl
S 20000 | W el 1
< ~—
== AR ,‘j::g
© 15000 - 1
LL
10000 | Nice —— |
Router Prio ——-—
| Reno - i
5000 Vogas o
0 \/\egas-o 7\7 - Il Il Il Il
0 10 20 30 40 50 60 70

Num BG flows

Figure 3.28: Number of BG flows vs FG throughput with traffic on the reverse path

75

3.4 Internet Microbenchmarks

In this section we evaluate our Nice implementation over a variety of Internet links.
We seek to answer three questions. First, in a less controlled environment than
our NS simulations, does Nice still avoid interference? Second, are there enough
reasonably long periods of spare capacity on real links for Nice to reap reasonable
throughput? Third, are any such periods of spare capacity spread throughout the
day, or is the usefulness of background transfers restricted to nights and weekends?

Our experiments suggest that Nice works for a range of networks, including
a modem, a cable modem, a transatlantic link, and a fast WAN. In particular, on
these networks it appears that Nice avoids interfering with other flows and that it
can achieve throughput that are significant fractions of the throughput that would

be achieved by Reno throughout the day.

3.4.1 Methodology

Our measurement client program connects to a measurement server program at
exponentially-distributed random intervals. At each connection time, the client
chooses one of six actions: Reno/NULL, Nice/NULL, Reno/Reno, Reno/Nice, Reno/Reno8,
Reno/Nice8 (We also tested standard Vegas in place of Reno for the large-transfer
experiments and find that standard Vegas behaves essentially like Reno). Each ac-
tion consists of a “primary transfer” (denoted by the term left of the /) and zero
or more “secondary transfers” (denoted by the term right of the /). Reno terms
indicate flows using standard TCP-Reno congestion control. Nice terms indicate
flows using Nice congestion control. For secondary transfers, NULL indicates ac-
tions that initiate no secondary transfers to compete with the primary transfer, and
8 indicates actions that initiate 8 (rather than the default 1) secondary transfers.
The transfers are of large files whose sizes are chosen to require approximately 10

seconds for a single Reno flow to compete on the network under study.

76

We position a server that supports Nice at UT Austin. We position clients
(1) in Austin connected to the Internet via a University of Texas 56.6K dial in
modem bank (modem), (2) in Austin connected via a commercial ISP cable modem
(cable modem), (3) in a commercial hosting center in London, England connected to
multiple backbones including an OC12 and an OC3 to New York (London), and (4)
at the University of Delaware, which connects to UT via an Abilene OC3 (Delaware).
All machines run Linux. The server is a 450MHz Pentium IT with 256 MB of memory.
The clients range from 450-1000MHz and all have at least 256 MB of memory. The
experiment ran from Saturday May 11 2002 to Wednesday May 15 2002; we gathered

approximately 50 probes per client/workload pair.

3.4.2 Results

Figure 3.29 summarizes the results of our large-transfer experiments. On each of
the networks, the throughput of Nice/NULL is a significant fraction of that of
Reno/NULL, suggesting that periods of spare capacity are often long enough for
Nice to detect and make use of them. Second, we note that during Reno/Nice
and Reno/Nice8 actions, the primary (Reno) flow achieves similar throughput to
the throughput seen during the control Reno/NULL sessions. In particular, on a
modem network, when Reno flows compete with a single Nice flow, they receive
on average 97% of the average bandwidth they receive when there is no competing
Nice flow. On a cable modem network, when Reno flows compete with eight Nice
flows, they receive 97% of the bandwidth they would receive alone. Conversely,
Reno/Reno and Reno/Reno8 show the expected fair sharing of bandwidth among
Reno flows, which reduces the bandwidth achieved by the primary flow.

Figures 3.4.2(a),3.4.2(b), and 3.4.2(c) show the hourly average bandwidth
achieved by the primary flow for the different combinations listed above. Our hy-

pothesis is that Nice can achieve useful amounts of throughput throughout the day,

7

and the data appear to support this statement.

78

== Nice flow
— Reno flow

— 300
wn
=
| e
o
(&)
D
w
£ 200
w)
D
E
<5 .
= 100
©
'_
(@]
> > & S
S oS (\QQ&Z' é)‘é
ng\ ¥ <& <@
(a) modem
80 — = Nice flow
. — Reno flow
3]
| e
S 60
D
(2]
= 1
1]
£ 40 —
S 1
2
< 20 —
) m J_
o
é\)\/\/ %o\y Qg’,\\o < §o® QS’QO% é\g&
Q}\o é\o‘zn ‘Z’,\\o Qgc © Q}\<>~
<« < <@ <
(c) London

Transfer times (in seconds)

Transfer times (in seconds)

Figure 3.29: Large flow transfer performance.
transfer time observed for the specified combination of primary /secondary transfers.
Empty bars represent the average time for a Reno flow. Solid bars represent the
average time for a Nice flow. The narrow lines depict the minimum and maximum
values observed during multiple runs of each combination.

79

{ == Nice flow
80 — Reno flow
60—-
40—-
20—-

> o© v Sl 2
S o I s
&7 é\("v &° Q_Qyo oo?‘ IS
E* < < W&

(b) cable modem

20 —
] = Nice flow
E — Reno flow
15 — 1‘
10 —
|
5 —_
o
- =3 ooy
& eo\yo?é\o S &
Q}\o é\o‘z ES Qgc © Q}\o
< << <@ <

(d) Delaware

Each bar represents the average

] —— Reno flow
— .) .
g2z |/ ---- Nice flow n
= n
o 1 I
(&) I
8_)) 100 — I
4 [N}
E | '
[
B - ,R‘ I
E A
— I
a 507 '\»I ! '
[72)] ' i 1
= 7\) I
8_ 1 TN / [!
o b // L7 N / \ !
[g:.) 1 , ARV ‘\V_«’_,\,,I
o T T T
MAY 13 MAY 14 MAY 15 MAY 16
Time of day
(a) Cable modem network
25 —
n 1 —— Reno flow i’
= 26 ---- Nice flow S
o] 7 1
n] A // Vo, [}
E 15 \ / LA "
=] N L TN PN
w] i, tpah, I
D - | U 1 v ‘// 1|,\\ k \\/I
g 10 -] w,/ | [ON =
<5}]
72!]
: -
S 5
2 -
fB]
[a's]
° MAY 10 T MAY 11 T MAY 12 T MAY 13 T MAY 14 T MAY 15
Time of day
(b) Austin to London
‘o 104 — Reno flow
=] -
= ---- Nice flow
S
O
D
v 30
=
=
w)
D |
= =20 |
£ f
f<F) |
o !
8_10 J—--k«.«\v\’v-xd-——./t——\\x‘f‘,'v/‘l\
)
<5}
[a's

"™MAY 10 'MAY 11 "MAY 12" MAY 13" MAY 14 TMAY 15

Time of day
(c) U.T. Austin to U. Delaware

Figure 3.30: Large flow transfer performance over time

80

3.5 Case Study Applications

3.5.1 HTTP Prefetching

Many studies have published promising results that suggest that prefetching (or
pushing) content could significantly improve web cache hit rates by reducing com-
pulsory and consistency misses [50, 64, 86, 89, 114, 140, 174].

Typically, prefetching algorithms are tuned with a threshold parameter to bal-
ance the potential benefits of prefetching data against the bandwidth costs of fetch-
ing it and the storage cost of keeping it until its next use. An object is prefetched if
the estimated probability that the object will be referenced before it is modified ex-
ceeds the threshold. Extending Gray and Shenoy’s analysis of demand caching [82],
Chandra calculates reasonable thresholds given network costs, disk costs, and hu-
man waiting time values and concludes that most algorithms in the literature have
been far too conservative in setting their thresholds [37]. Furthermore, the 80-100%
per year improvements in network [37, 139] and disk [55] capacity/cost mean that
a value that is correct today may be off by an order of magnitude in 3-4 years.

In this case study, we build a prefetching protocol similar to the one proposed
by Padmanabhan and Mogul [140]: when serving requests, servers piggy back lists
of suggested objects in a new HTTP reply header. Clients receiving a prediction
list discard old predictions and then issue prefetch requests of objects from the new
list. This division of labor allows servers to use global information and application-
specific knowledge to predict access patterns, and it allows clients to filter requests
through their caches to avoid repeatedly fetching an object.

To evaluate prefetching performance, we implement a standalone client that
reads a trace of HT'TP requests, simulates a local cache, and issues demand and
prefetch requests. Our client is written in Java and pipelines requests across HTTTP /1.1
persistent connections [72]. To ensure that demand and prefetch requests use sepa-

rate TCP connections, our server directs prefetch requests to a different port than

81

demand requests. The disadvantage of this approach is that it does not fit with the
standard HT'TP caching model. We discuss how to deploy such a protocol without
modifying HTTP in a separate study [109].

We use Squid proxy traces from 9 regional proxies collected during January
2001 [179]. We study network interference near the server by examining subsets of
the trace corresponding to a popular groups of related servers — cnn (e.g., cnn.com,
www.cnn.com, cnnfn.com, etc.). This study compares relative performance for dif-
ferent resource management algorithms for a given set of prefetching algorithms.
It does not try to identify optimal prefetching algorithms; nor does it attempt to
precisely quantify the absolute improvements available from prefetching.

We use a simple prediction by partial matching algorithm [47] PPM-n/w
that uses a client’s n most recent requests to the server group for non-image data to
predict cachable (i.e., non-dynamically-generated) URLs that will appear during a
subsequent window that ends after the w’th non-image request to the server group.
We use two variations of our PPM-n/w algorithm. The conservative variation uses
parameters similar to those found in the literature for HTTP prefetching. It uses
n = 2, w = 5 and sets the prefetch threshold to 0.25 [64]. To prevent prefetch
requests from interfering with demand requests, it pauses 1 second after a demand
reply is received before issuing requests. The aggressive variation uses n = 2, w = 10,
and truncates prefetch proposal lists with a threshold probability of 0.00001. It
issues prefetches immediately after receiving them.

We use 2 client machines connected to a server machine via a cable modem.
On each client machine, we run 8 virtual clients, each with a separate cache and
separate HTTP/1.1 demand and prefetch connections to the server. In order for
the demand traffic to consume about 10% of the cable modem bandwidth, we select
the 6 busiest hours from the 30-Jan-2001 trace and divide trace clients from each

hour randomly across 4 of the virtual clients. In each of our seven trials, all the

82

16 virtual clients run the same prefetching algorithm: none, conservative-Reno,

aggressive-Reno, conservative-Nice, aggressive-Nice.

0 @

= =

o N S —

O 100 o

o o)

2 (%]

= C—1Reno = 3000

E - === Nice £ C—IReno

2 2 === Nice

g 60| é 2000]

Q (o]

oy 2 1000

o I

5 2 kel

g 3

£ I:l [£

8 None Conserv Aggress 8 None Conserv Aggress
(a) cable modem (b) dial-up modem

Figure 3.31: Average demand transfer time for prefetching for the cnn server-group.

Figure 3.31(a) shows the average demand response times perceived by the
clients. We note that when clients do conservative prefetching using either protocol
— Nice or Reno — the latency reductions are comparable. However, when they start
aggressively prefetching using Reno, the latency blows up by an order of magnitude.
Clients using aggressive Nice prefetching, however, continue to see further latency
reductions. The figure shows that Nice is effective in using spare bandwidth for
prefetching without affecting the demand requests.

Figure 3.31(b) represents the effect of prefetching over a modem (the setup is
same as above except with the cable modem replaced by a modem), an environment
where the amount of spare bandwidth available is minimal. This figure shows that
while the Reno and Nice protocols are comparable in benefits when doing conser-
vative prefetching, aggressive prefetching using Reno hurts the clients significantly
by increasing the latencies three-fold. Nice on the other hand, does not worsen the
latency even though it does not gain much.

We conclude that Nice simplifies the design of prefetching applications. Ap-

plications can aggressively prefetch data that might be accessed in the future. Nice

83

prevents interference if the network does not have spare bandwidth and improves

application performance if it does.

3.5.2 Tivoli Data Exchange

We study a simplified version of the Tivoli Data Exchange [67] system for replicating
data across large numbers of hosts. This system distributes data and programs
across thousands of client machines using a hierarchy of replication servers. Both
non-interference and good throughput are important metrics. In particular, these
data transfers should not interfere with interactive use of target machines. And
because transfers may be large, may be time critical, and must go to a large number
of clients using a modest number of simultaneous connections, each data transfer
should complete as quickly as possible. The system currently uses two parameters at
each replication server to tune the balance between non-interference and throughput.
One parameter throttles the maximum rate that the server will send a single client;
the other throttles the maximum total rate across all clients.

Choosing these rate limiting parameters requires some knowledge of network
topology and may have to choose between overwhelming slow clients and slowing
fast clients (e.g., distributing a 300MB Office application suite would nearly a day
if throttled to use less than half a 56.6Kb/s modem). One could imagine a more
complex system that allows the maximum bandwidth to be specified on a per-client
basis, but such a system would be complex to configure and maintain.

Nice can provide an attractive self-tuning abstraction. Using it, a sender can
just send at the maximum speed allowed by the connection. We report preliminary
results using a standalone server and client. The server and clients are the same as in
the Internet measurements described in Section 3.4. We initiate large transfers from
the server and during that transfer measure the ping round trip time between the

client and the server. When running Reno, we vary the client throttle parameter and

84

leave the total server bandwidth limit to an effectively infinite value. When running
Nice, we set both the client and server bandwidth limits to effectively infinite values.

Figure 3.32 shows a plot of ping latencies (representative of interference) as
a function of the completion time of transfers to clients over different networks.
With Reno, completion times decrease with increasing throttle rates but increase
ping latencies as well. Furthermore, the optimal rates vary widely across different
networks. However Nice picks sending rates for each connection without the need for
manual tuning that achieve minimum transfer times while maintaining acceptable

ping latencies in all cases.

85

6000

Ping latency (in millisecs)

5000 1

4000

3000 r

2000 r

1000 r

Manual tu‘ning‘ —
Nice point ~ *

_

‘ ‘ ‘ ‘ ‘ ‘ ‘ L X

50 100 150 200 250 300 350 400 450

Completion time(in seconds)
(a) Phone line

350

Ping latency (in millisecs)

300 1
250 1
200
150 ¢
100 ¢
50

‘Manual tL‘ming‘ —
Nice point ~ *

20 40 60 80 100 120 140 160 180

Completion time(in seconds)
(a) Transcontinental link

Ping latency (in millisecs)

Ping latency (in millisecs)

160

140 ¢
120 ¢
100 ¢
80 r
60 r
40
20 r

160

140 ¢
120 ¢
100 ¢
80 r Bﬁ

20 r

60
40

Manual iunihg T
Nice point ~ *

10 20 30 40 50 60 70 80 90 100110
Completion time(in seconds)
(b) Cable modem

" Manual tuning —
Nice point ~ *

50 100 150 200 250 300 350

Completion time(in seconds)
(b) University network

Figure 3.32: Each continuous line represents completion times and corresponding
ping latencies with varying send rates. The single point is the send rate chosen by

Nice.

86

3.6 Related work

TCP congestion control has seen an enormous body of work since Jacobson’s sem-
inal paper on the topic [103]. This work seeks to maximize utilization of network
capacity, to share the network fairly among flows, and to prevent pathological sce-
narios like congestion collapse. In contrast, our primary goal is to ensure minimal
interference with regular network traffic; though high utilization is important, it is
a distinctly subordinate goal in our algorithm. Our algorithm is always less aggres-
sive than AIMD TCP: it reacts the same way to losses and in addition, it reacts
to increasing delays. Therefore, the work to ensure network stability under AIMD
TCP applies to Nice as well.

The work on TCP-LP, a transport protocol for low priority tranfers, is clos-
est to our work on TCP Nice. Though the core features of Nice and TCP-LP are
similar, the context of our work on Nice is broader with a focus on designing large-
scale replicated systems. Qur case studies using Nice for building a data distribution
system and a Web prefetching system demonstrate end-to-end benefits in real ap-
plications. A technical difference between Nice and TCP-LP is that in Nice, being
based on TCP Vegas, the window size does not fluctuate under unchanging network
conditions whereas in TCP-LP, similar to standard TCP, the window continues to
oscillate in a small range.

The GAIMD [184] and binomial [15] frameworks provide generalized families of
AIMD congestion control algorithms to allow protocols to trade smoothness for
responsiveness in a TCP-friendly manner. The parameters can also be tuned to
make a protocol less aggressive than TCP. We considered using these frameworks
for constructing a background flow algorithm, but we were unable to develop the
types of strong non-interference guarantees we seek using these frameworks. One
area for future work is developing similar generalizations of Nice in order to allow

different background flows to be more or less aggressive compared to one another

87

while all remain completely timid with respect to competing foreground flows.
Prioritizing packet flows would be easier with router support. As noted in Sec-
tion 3.3, router prioritization queues such as those proposed for DiffServ [21] service
differentiation architectures are capable of completely isolating foreground flows
from background flows while allowing background flows to consume nearly the en-
tire available spare bandwidth. Unfortunately, these solutions are of limited use for
someone trying to deploy a background replication service today because few appli-
cations are deployed solely in environments where router prioritization is installed
or activated. A key conclusion of this study is that an end-to-end strategy need
not rely on router support to make use of available network bandwidth without
interfering with foreground flows.

RFC 3662 [22] describes a lower than best-effort per-domain behavior for Dif-
ferentiated Services that can be used for background transfers or transfers of a ”low
value” for which delivery is optional. The intended application of this proposal is
similar in spirit to that of TCP Nice. TCP Nice provides lower than best-effort ser-
vice without modifying routers, whereas proposals based on Differentiated Services
require modifications to routers.

Applications can limit the network interference they cause in various ways:
(a) Coarse-grain scheduling: Background transfers can be scheduled during hours
where there is little foreground traffic. Studies [66, 128] show that prefetching data
during off-peak hours can reduce latency and peak bandwidth usage.

(b) Rate limiting: Spring et al. [163] discuss prioritizing flows by controlling the
receive window sizes of clients. Crovella et al. [50] propose a combination of window-
based rate control and pacing to spread out prefetched traffic to limit interference.
They show that such shaping of traffic leads to less bursty traffic and smaller queue
lengths.

(c) Application tuning: Applications can limit the amount of data they send by

88

varying application-level parameters. For example, many prefetching algorithms
estimate the probability that an object will be referenced and only prefetch that
object if its probability exceeds some threshold [64, 86, 140, 174].

It is not clear how an engineer should go about setting such application-
specific parameters. We believe that self-tuning support for background transfers has
at least three advantages over existing application-level approaches. Nice operates
over fine time-scales, so it can provide lower interference (by reacting to spikes
in load) as well as higher average throughput (by using a large fraction of spare
bandwidth) than static hand-tuned parameters. This property reduces the risk and
increases the benefits available to background transfers while simplifying application
design. Our experiments also demonstrate that Nice provides useful bandwidth
throughout the day in many environments.

Existing transport layer solutions can be used to tackle the problem of
self-interference between a single sender/receiver’s flows. The congestion manager
CM [8] provides an interface between the transport and the application layers to
share information across connections and for handling applications using different
transport protocols. Microsoft XP’s Background Intelligent Transfer Service (BITS)
provides support for transfers of lower priority to minimize interference with the
user’s interactive sessions by using a rate throttling approach. In contrast to these
approaches, Nice handles both self- as well as cross-interference by modifying the

sender side alone.

3.7 Discussion

Fairness in TCP Nice We do not explicitly quantify fairness among Nice flows
in our experiments. However, we remark that we expect TCP Nice to have fairness
properties similar to regular TCP. The AIMD property lets flows sharing the same

bottleneck router and same round-trip times to converge to an equal distribution of

89

the bottleneck bandwidth amongst them as shown in by Chiu and Jain [45]. Since
TCP Nice essentially behaves like TCP with a reduced queue size, it continues to
uphold TCP’s fairness property and the analysis by Chiu and Jain can be straight-
forwardly extended to show the same. TCP itself has a round-trip time bias in the
way it distributes capacity across flows with different round-trip times. At a bot-
tleneck router, flows with longer round-trip times receive a proportionately smaller
fraction of throughput. TCP Nice will also exhibit such a bias in favour of flows

with shorter round-trip times.

Highly Congested Networks In practice, TCP Nice can quickly obtain rea-
sonable values of minRTT and mazRTT essential for the non-interference property.
However, it is conceivable that in an extremely congested network, a Nice flow never
observes the minimum round-trip time. A high estimate of minRTT can inflict in-
terference on regular TCP flows in an already congested network. TCP Nice may be
augmented to use loss rates as well as a signal of congestion, in addition to increasing
round-trip times, to handle situations of extreme congestion. On observing a high
loss rate, a Nice flow can determine that its estimate of network conditions based on
round-trip time measurements is inaccurate and accordingly take more aggressive

backoff measures or stop transmitting packets altogether for some time.

Multiple Levels of Priority TCP Nice effectively provides a two-level prioritiza-
tion of network services. Can the design features of Nice be extended to incorporate
multiple levels of priority? Theoretically, if routers are equipped with very large
buffer capacities, then TCP Nice could use different values of the threshold param-
eter that are reasonably spaced apart to obtain multiple levels of priority. A large
buffer capacity at a bottleneck router gives each one of the different kinds of Nice
flows sufficient time to back off without interfering with Nice flows at the next pri-

ority level. However, in practice, and as also affirmed by preliminary simulation

90

experiments, the non-interference property does not scale well to multiple levels of
priority for practical values of buffer capacities. Providing multiple levels of priority
in an end-to-end manner so that each level is non-interfering with respect to higher

levels is an open problem and an avenue for future work.

3.8 Conclusions

In this chapter, we presented an end-to-end congestion control algorithm optimized
to support background transfers. Surprisingly, an end-to-end protocol can nearly
approximate the ideal router-prioritization strategy by (i) almost eliminating inter-
ference with demand flows and (ii) reaping significant fractions of available spare
network bandwidth.

Our Internet experiments suggest that there is a significant amount of spare
capacity on a wide variety of Internet links. Nice provides a mechanism to improve
application performance by harnessing this capacity in a non-interfering manner.
Our case studies demonstrate that Nice can simplify application design by elimi-
nating the need to hand-tune parameters to balance utilization and interference.
Inspired by the results in this paper, we have built a self-tuning prefetching sys-
tem [109] based on Nice that avoids interference at the server and in the network,
and is deployable with simple modifications to a web server.

One application of Nice is to support massive replication of data and ser-
vices, where spare resources (e.g. bandwidth, disk space, and processor cycles) are
consumed to help humans be more productive. Massive replication systems should
be designed as if bandwidth were essentially free. TCP Nice provides a reasonable

approximation of such an abstraction.

91

Chapter 4

Mars: A Self-tuning Replication

Architecture

In this section, we present Mars, an architecture for constructing self-tuning large-
scale replication systems. We motivate the need for such a solution by illustrating
the limitations and risks of alternative approaches for speculative replication, based
on manual tuning of system parameters, that are employed by engineers today. In
particular, we perform a case study of this problem in the context of Web prefetching
systems and show that the manual-tuning or threshold-based approach is complex,
inefficient, and exposes systems to the risk of overload. We then show how Mars’ ar-
chitecture can be instantiated to construct a deployable self-tuning Web prefetching

system, NPS, that is simple, efficient, and safe.

4.1 Threshold-based Speculative Replication

Manually-tuned thresholds in speculative replication systems attempt to balance
issues of policy as well as mechanism using magic numbers. For instance, some

Web prefetching systems [64, 102] prefetch a file if its value, i.e. the probability of

92

1.8 - - - - — 08

0.7 |

EEE
N
££E
F AT

o6+ {
o5+
04]
03 |
0.2}

0.1}

Average Access Time (seconds
n
Fractional Increase in Network Traffic

il oL e " -
0.4 06 o8 1
Prefetch Threshold

.8 1 0 0.2
Padmanabhan & Mogul 1996

02 04 06 0
Prefeich Threshold

Figure 4.1: Response Time and Fractional Increase in Network Traffic as a function
of the Prefetch Threshold

access before it expires, exceeds a certain threshold. The mechanism challenges that
prefetching systems seek to address are those of interference at various points in the
system, effective utilization of available resources, and maintaining robustness to
the risk of system overload. The policy challenges that prefetching systems seek to
address include optimizing response time, availability, and freshness of content while
respecting bandwidth, storage and computing constraints at the server, network,
and client. The threshold-based approach attempts to address both policy and
mechanism challenges with a single number that determines the prefetch-worth of
files.

One of the seminal papers that introduced the idea of predictive prefetching
for the Web [140] by Padmanabhan et al. suggests such a threshold-based approach.
They use a history-based Markov model to predict what files will be accessed next,
based on the knowledge of the previous few files requested. A file is prefetched if
its probability of access exceeds a certain threshold that is a fixed value. The two

plots in Figure 4.1 taken from that paper show the average response time and the

93

fractional increase in network traffic as a function of the prefetch threshold used.
As expected, increasing the aggressiveness of prefetching (by using smaller values of
the threshold) improves response time and increases the overhead of network traffic,
and vice-versa. On a cursory glance, it appears natural to tune the value of the
threshold to balance the cost (network bandwidth) against the benefit (response
time). Values in the vicinity of 0.25 are common [64, 140, 102] as they correspond
to the “knee” of the cost curve. Such an approach, or variations thereof, have been
widely suggested and shown to work well in simplistic laboratory simulations.
However, the threshold-based approach has some problems. The knee of
the cost curve in the Padmanabhan study is strictly a function of the particular
workload they considered. Moreover, the real hidden cost is that of interference
and the associated risk of overload, not just additional bandwidth consumption.

Attempting to use thresholds in the above manner presents the following problems

Problem 1 : It is unclear what choice of threshold will work correctly for a given
scenario. The benefits, including improvements in latency and availability, and
costs, including interference, bandwidth, storage, computing, and risk of overload,
are hard to quantify. An economic analysis of costs akin to the approach used by
Gray and Shenoy [82] reveals the limitations of intuitive approaches. We reproduce
below the analysis for prefetching done by Chandra et al. [37].

Let p denote the threshold. Let NW Costyrefetcn, StorageCost, WaitCost,
NW Costgemana denote the dollar costs of prefetching a byte over a wide-area link
(80.1 per MB), storing a byte on disk ($0.80 per GB per month), human wait time
($40 per hour), and the network cost of demand-fetching a byte over a wide-area link
(0.1 per MB) respectively. These numbers correspond to approximate valuations

of the above in 2001. The values are related to each other through the threshold as

94

follows:
NW Costpre fetch + StorageCost =~ p x (WaitCost + NW Cost gemand)

The left hand side represents the network and storage costs of prefetching
a typical Web object while the second term in the product on the right hand side
represents the cost of fetching the object on demand. It is useful to prefetch an
object if the probability of accessing it is greater than the ratio of the prefetch
and demand costs. If we assume that a typical Web document has size 10KB and
that prefetching a file saves one second of human time over demand-fetching it, we
obtain a value of approximately 0.01 for p. Note that this value is roughly two
orders of magnitude smaller than typical thresholds used by prefetching systems.
Moreover, falling costs of hardware resources will cause the threshold value to be

further reduced by about 50% per year.

Problem 2 : The value of the threshold varies with time. It varies over months
and years with changing technology trends. It varies over hours with changes in
network topology — for example, prefetching a file over a wireless network is more
expensive than prefetching it over a local-area wired network, and diurnal load
patterns. It also varies over seconds with fluctuations in network and server load
over fine time-scales. The cost of interference is continuously changing and is a

function of the demand load in the system.

Problem 3 : Erring in choosing the value of the threshold can prove expensive.
We demonstrated this risk earlier in Section 2.5 by means of an experiment involving
prefetching on a Web server. Prefetching using static thresholds shifts the point
where the system gets overloaded and effectively reduces available system capacity
for demand load.

In summary, threshold-based approaches involve complex trade-offs across

several factors that change over time. Thresholds in current prefetching systems are

95

A Hand-tuned
Threshold

Aggressive Replication
with
Self-tuning Architecture

Response Time

-

\

Overload Region----=
Aggressiveness of Replication
A
Miss
Time

Miss Time
Miss Rate

Miss Rate

iOverIoad Region----=
Aggressiveness of Replication

Figure 4.2: Utilization without risk

used only to limit bandwidth consumed by prefetch traffic. The key problem is to
deal with system-wide interference at the server, network, and client in a self-tuning
manner. Self-tuning support for speculative replication is conceptually captured
by Figure 4.1. The diagram shows variation of response times (or unavailability
or staleness) with the aggressiveness of speculative replication. An approach based
on static thresholds gives benefits for conservative values on the x-axis. However,
more aggressive values of the threshold result in overloading the system, leading to
severe degradation of performance. The degradation due to static thresholds can be

explained as follows. Speculative replication, at any level of aggressiveness, reduces

96

the miss rate observed by the application compared to one that does not support
speculative replication. Typically, miss rates decreases rapidly initially by using up
available spare capacity. Once the system is loaded to capacity, the reduction in
miss rates taper off. Miss times, however, strictly increase throughout because of
the extra load imposed by speculative replication. When the total load on the sys-
tem is below capacity, the increase in miss times is gradual. The small increase in
miss times combined with the rapid decrease in miss rate yields overall reductions
in average response time in this region. When the aggressiveness of speculative
replication drives the system beyond capacity, miss times start to sharply increase.
The miss rate, however, does not decrease further in this region and may even start
to increase due to inefficient utilization of system resources in regions of overload.
The sharp increase in miss times in the overload region, due to interference between
speculative and regular load, is what causes response times to drastically shoot up in
this region. Thus, an incorrect choice of a static threshold to tune aggressiveness of
speculative replication incurs a high cost that is a non-linear function of the ”error”.
Consequently, application programmmers relying on manually tuned thresholds are
forced to choose between being overly conservative and underutilizing available re-
sources and being overly aggressive and incurring the risk of severe performance
degradation.

In contrast, a self-tuning architecture for ASR relieves application program-
mers of the need to tune any thresholds. The system automatically reduces ag-
gressiveness when demand load is high, and vice-versa, without manual interven-
tion. Self-tuning support for ASR thus simplifies application design, gives increased
benefits when there is spare capacity in the system, and maintains the system’s

robustness to the risk of overload.

97

Global Popularity
)

i\ Manual Tuning
| |
vy
Prediction

Policy Disk Memory CPU Routerl Router2 . . .
S g S EEES g B S S S

Demand
Requests

Demand Policy
=
I
I
]

, Priority
] L»

Lo oo —

Requests SR Policy

= Z---- Policy
””” Composition

|
il
[)

Figure 4.3: Separating Prediction from Scheduling
4.2 Separating Prediction from Scheduling

Mars achieves this self-tuning property by separating prediction in speculative repli-
cation systems from scheduling, i.e. separating what to replicate from how to allo-
cate resources. Separation of concerns of policy and mechanism in computer sys-
tems is a well-aged wisdom that we continue to advocate in the context of ASR.
Figure 4.2(b) illustrates this separation where a priority scheduler for resources sep-
arates demand requests from speculative replication. A replication policy predicts
a current list of objects to push, and prioritizes more valuable objects. The list of
prioritized objects that the predictor generates could be arbitrarily large and include
objects with extremely low probabilities of access. The priority scheduler ensures
that speculative requests are processed only if there are no outstanding demand
requests to be processed, thereby ensuring non-interference as well as utilization of
available resources.

For sake of comparision, Figure 4.2 illustrates the traditional threshold-based

approach that is unable to prevent interference between speculative and regular load

98

Pradiction
Paliy

Demand N

Figure 4.4: Traditional threshold-based replication system

because of the tight coupling of the prediction policy with the scheduling mechanism.
The threshold, being a fixed value, is insufficient to adaptively prevent interference
between speculative and regular load at each resource in the path of a request. As
explained in the previous section, adjusting the threshold dynamically is complex,
inefficient, and risk-prone. Instead, the Mars approach renders thresholds unneces-
sary by isolating speculative load from regular load at each resource in the system.
Speculatively replicated objects are simply sorted in order of priority as decided by
a policy appropriate for the system under consideration, and the scheduler at each
resource automatically processes only as much speculative load as allowed by the

spare capacity at that resource.

4.2.1 Realization of Mars

In order to achieve end-to-end isolation of speculative and demand traffic in Mars,
the separation and prioritization must be done at every resource that could be a
potential bottleneck, i.e. computing and storage at the server, replica and client,
and network resources throughout the path from the server to the client.

In practical systems, such separation may be achieved in two ways described

as follows. One could, as shown in Figure 4.2, augment each resource wth a low-

99

level scheduler that performs the separation. Several known solutions [38, 79, 124,
143, 161] exist for low-level CPU scheduling as well as disk scheduling that could be
employed to achieve this separation at end-stations. For prioritization of network
resources, solutions proposed in the literature such as Differentiated Services [21]
could be employed at each router along the path. The advantage of using low-level
per-resource schedulers is complete and clean isolation of speculative load from reg-
ular load. However, low-level solutions present significant deployability hurdles. It is
hard to modify the internal of complex enterprise servers to accomodate schedulers
for each resource. It is impractical to modify the large numbers of deployed routers
to activate prioritized services.

Alternatively, one could realize Mars’ conceptual architecture in a simpler
and more practical manner at the cost of slightly imprecise separation of speculative
and regular load. Such a realization can be achieved using end-to-end schedulers that
abstract out components of the system at a coarser granularity and treat them as a
black-box. For example, servers, networks, and clients can be treated as black-boxes
to avoid modifying already deployed infrastructure and associated protocols. These
system components can be monitored externally to guage the amount of regular load
so that speculative load can be issued only when the system is determined to have
sufficient spare capacity. An example of such an end-to-end scheduler is TCP Nice,
introduced in the previous section, whose background abstraction can be used to
prevent speculative traffic from interfering with regular traffic in the network without
modifying individual routers. In the rest of this chapter, we focus on providing
simple, deployable, and end-to-end solutions to realize Mars’ architecture in practical
systems. In particular, through the case study of NPS, a Web prefetching system,
we show how a deployable realization of Mars is achieved without modifying servers,

networks, clients, and existing protocols.

100

4.3 NPS : A Case Study

In order to validate the feasibility, benefits, and ease of deployability of Mars’ ar-
chitecture, we perform a case study of a Web prefetching system. Towards this end,
we build NPS, a novel non-intrusive web prefetching system that (1) utilizes only
spare resources to avoid interference between prefetch and demand requests at the
server as well as in the network , and (2) is deployable without any modifications
to servers, browsers, network or the HTTP protocol. NPS’s self-tuning architecture
eliminates the need for traditional “thresholds” or magic numbers typically used to
limit interference caused by prefetching, thereby allowing applications to improve
benefits and reduce the risk of aggressive prefetching.

A number of studies have demonstrated the benefits of web prefetching
[50, 64, 86, 89, 111, 114, 140, 174]. And the attractiveness of prefetching appears
likely to rise in the future as the falling prices of disk storage [55] and network
bandwidth [139] make it increasingly attractive to trade increased consumption of
these resources to improve response time and availability and thus reduce human
wait time [37]. Despite these benefits, prefetching systems have not been widely de-
ployed because of two concerns: interference and deployability. First, if a prefetching
system is too aggressive, it may interfere with demand requests to the same service
(self-interference) or to other services (cross-interference) and hurt overall system
performance. Such interference may occur at the server, in the communication net-
work or at the client. Second, if a system requires modifications to the existing
HTTP protocol [72] , it may be impractical to deploy. The large number of de-
ployed clients and networks in the Internet makes it difficult to change clients, and
the increasing complexity of servers [85, 97, 99, 152, 189] [97] makes it difficult to
change servers. What we therefore need is a prefetching system that (a) avoids
interference at clients, networks, and servers and (b) does not require changes to

the HTTP protocol and the existing infrastructure (client browsers, networks and

101

servers).

Through this case study, we make three contributions. First, we present
NPS, a novel non-interfering prefetching system for the web that — (1) avoids inter-
ference by effectively utilizing only spare resources on the servers and the network
and (2) is deployable with no modifications to the HTTP protocol and existing in-
frastructure. at the server, restricts the prefetch load imposed on it accordingly.
To avoid interference in the underlying network, NPS uses TCP-Nice low-priority
network transfers [173]. Finally, it uses a set of heuristics client. To work with
existing infrastructure, NPS modifies HTML pages to include JavaScript™ code
to issue prefetch requests, and wraps the server infrastructure with simple external
modules that require no knowledge of, or no modifications to the internals of exist-
ing servers. Our measurements of the prototype under real web load trace indicate
that NPS is both non-interfering and efficient under different network and server
load conditions. For example, in our experiments on a heavily loaded network with
little spare capacity, we observe that a threshold-based prefetching scheme causes
response times to increase by a factor of 7 due to interference, whereas prefetching
using NPS contains this increase to less than 30%.

Second, and on a broader note, we show that the self-tuning architecture of
Mars eliminates the need for traditional “threshold” magic numbers that are typi-
cally used to limit the interference between speculative and regular requests. More-
over, the architecture is realizable for building practical replication systems through
simple end-to-end mechanisms that require minimal changes to existing components
of the system. In keeping with Mars’ architecture, NPS divides prefetching into two
separates tasks — (i) prediction and (ii) resource management. The predictor pro-
poses prioritized lists of high-valued documents to prefetch. The resource manager
limits the number of documents to prefetch and schedules the prefetch requests to

avoid interference with demand requests and other applications. This separation

102

of concerns has three advantages — (i) it simplifies the design and deployment of
prefetching systems by eliminating the need to choose appropriate thresholds for an
environment and update them with changing conditions, (ii) it reduces the risk of
interference caused by prefetching that relies on manually set thresholds, especially
during periods of unanticipated high load, (iii) it increases the benefits of prefetching
by prefetching more aggressively than would otherwise be safe during periods of low
or moderate load. We believe that these advantages would also apply to speculative
replication systems in many environments beyond the Web.

Third, we explore the design space for building a Web prefetching system,
given the requirement of avoiding or minimizing changes to existing infrastructure.
We find that it is straightforward to deploy prefetching that ignores the problem
of interference, and it is not much more difficult to augment such a system to
avoid server interference. Extending the system to also avoid network interference
is more involved, but doing so appears feasible even under the constraint of not
modifying current infrastructure. Unfortunately, we were unable to devise a method
to completely eliminate prefetching’s interference at existing clients: in our system
prefetched data may displace more valuable data in a client cache. It appears that
a complete solution may eventually require modifications at the client [34, 38, 143].
For now, we develop simple heuristics that reduce this interference.

The rest of this section is organized as follows. Section 4.3.1 discusses
the requirements and architecture of a prefetching system. Sections 4.3.3, 4.3.4
and 4.3.5 present the building blocks for reducing interference at servers, networks
and clients. Section 4.3.6 presents the prefetch mechanisms that we develop to real-
ize the prefetching architecture. Section 4.3.7 discusses the details of our prototype

and evaluation. Section 5.6 presents some related work and section 7.5 concludes.

103

4.3.1 Requirements and Alternatives

There appears to be a consensus among researchers on a high level architecture for
prefetching in which a server sends a list of objects to a client and the client issues
prefetch requests for the objects on the list [43, 129, 140] . This division of labor
allows servers to use global object access patterns and service-specific knowledge to
determine what should be prefetched, and it allows clients to filter requests through
their caches to avoid repeatedly fetching objects. In this paper, we develop a frame-
work for prefetching that follows this organization and that seeks to meet two other
important requirements: self tuning resource management and deployability without

modifying existing protocols, clients, proxies, or servers.

Resource Management

Services that prefetch should balance the benefits against the risk of interference.
Interference can take the form of self-interference, where a prefetching service hurts
its own performance by interfering with its demand requests, and cross-interference,
where the service hurts the performance of other applications on the prefetching
client, other clients, or both.

Limiting interference is essential because many prefetching services have po-
tentially unlimited bandwidth demand, where incrementally more bandwidth con-
sumption provides incrementally better service. For example, a prefetching system
can improve hit rate and hence response times by fetching objects from a virtually
unlimited collection of objects that have non-zero probabilities of access [28, 38], or
by updating cached copies more frequently [46, 172, 174]. Interference can occur at

any of the critical resources in the system.

e Server: Prefetching consumes extra resources on the server such as processing

time, memory space and disk.

104

o Network: Prefetching causes extra data packets to be transmitted over the
network, potentially increasing queuing delays and packet drops.
e Client: Prefetching results in extra processing at clients. Furthermore, ag-

gressive prefetching can pollute a browser’s memory and disk caches.

A common way of achieving balance between the benefits and costs of prefetch-
ing is to select a threshold and prefetch objects whose estimated probability of use
before modification or eviction from the cache exceeds that threshold [64, 102, 140,
174]. There are at least two problems with such “magic number”-based approaches.
First, it is difficult for even an expert to set thresholds to optimum values to balance
costs and benefits—although thresholds relate closely to the benefits of prefetching,
they have little obvious relationship to the costs of prefetching [37, 82]. Second,
appropriate thresholds to balance costs and benefits may vary over time as client,
network, and server load conditions change over seconds (e.g., changing workloads
or network congestion [192]), hours (e.g., diurnal patterns), and months (e.g., tech-
nology trends [37, 139]).

Our goal is to construct a self-tuning resource module that prevents prefetch
requests from interfering with demand requests. Such an architecture will sim-
plify the design of prefetching systems by separating the tasks of prediction and
resource management. Prediction algorithms may specify arbitrarily long lists of
the most beneficial objects to prefetch sorted by benefit, and the resource manage-
ment module issues requests for these objects and ensures that these requests do
not interfere with demand requests or other system activities. In addition to simpli-
fying system design, such an architecture could have two performance advantages
over statically set prefetch thresholds. First, such a system can reduce interference
— when resources are scarce, it would reduce prefetching aggressiveness. Second,
such a system may increase the benefits of prefetching when resources are plentiful

by allowing more aggressive prefetching than would otherwise be considered safe.

105

Deployability

Many proposed prefetching mechanisms suggest modifying the HTTP/1.1 proto-
col [24, 59, 64, 140], to create a new request type for prefetching. An advantage
of extending the protocol is that clients, proxies, and servers could then distin-
guish prefetch requests from demand requests and potentially schedule them sep-
arately to prevent prefetch requests from interfering with demand requests [59].
However, such mechanisms are not easily deployable because modifying the proto-
col implies modifying the widely-deployed infrastructure that supports the current
protocol including existing clients, proxies, and servers. As web servers evolve and
increase in their complexity, requests may traverse not only a highly optimized web
server [141, 167, 178, 189] but also a number of other complex modules such as com-
mercial databases, application servers or virtual machines for assembling dynamic
content (e.g., Apache tomcat for executing Java Servlets and JavaServer pages), dis-
tributed cluster services [12, 85], and content delivery networks. Modifying servers
to separate prefetch requests from demand requests maybe complex or infeasible
under such circumstances.

If interference were not a concern, a simple prefetching system could easily be
built with the present infrastructure, where clients can be made to prefetch without
any modifications to the protocol. For example, servers can embed JavaScript code
or a Java applet [73], to fetch specified objects over the network and load them into
the browser cache. An alternative way is to add invisible frames to the demand
content that include and thereby preload the prefetch content.

In this paper, we adapt such techniques to avoid interference while maintain-

ing deployability.

106

4.3.2 Architectural Alternatives

In this subsection, we present an overview of two alternative architectures to build
a prefetching system. The high-level description in this section is intended only to
provide a framework for discussing resource management strategies at the server,
network, and client in sections 4.3.3 through 4.3.5. These architectures and re-
source management strategies are pertinent regardless of whether prefetching is
implemented using a new protocol or by exploiting existing infrastructure. In Sec-
tion 4.3.6, we describe how our implementation realizes one of these architectures
in an easily deployable way.

We begin by making the following assumptions about client browsers:

e For easy deployability of the prefetching system, browsers should be unmodi-
fied.

e Browsers match requests to documents in their caches based on (among other
parameters) the server name and the file name of the object on the server.
Thus files of the same name served from different servers are considered to be
different.

e Browsers may multiplex multiple client requests to a given server on one or

more persistent connections [72].

Figure 4.5 illustrates what we call the one-connection and two-connection
architectures respectively. In both architectures, clients send their access histories
to the hint server and get a list of documents to prefetch. The hint server uses
either online or offline prediction algorithms to compute the hint lists consisting of

the most probable documents that the users might request in the future.

107

Demand Demand
Requests
Demand/Prefetch q/ Server

Requests prefetch
reretc
Comerty | (avem = Bofi,
V! \ Prefetch
i Lo Server
. Access History Hint L'SAccess History
Hint Lists @

(a) One Connection (b) Two Connection

Figure 4.5: Design Alternatives for a Prefetching System
One Connection

In the one connection architecture (Figure 4.5(a)), a client fetches both demand and
prefetch requests from the same content server. Since browsers multiplex requests
over established connections to servers, and since browsers do not differentiate be-
tween demand and prefetch requests, each TCP connection may interleave prefetch
and demand requests and responses.

Sharing connections can cause prefetch requests to interfere with demand
requests for network and server resources. If interference can be avoided, this system
is easily deployable. In particular, objects fetched from the same server share the
domain name of the server. So, unmodified client browsers can use cached prefetched

objects to service demand requests.

Two Connection

In the two connection architecture(Figure 4.5(b)), a client fetches demand and
prefetch requests from different servers or from different ports on the same server.
This architecture thus segregates demand and prefetch requests on separate network
connections.

Although the two connection architecture simplifies the mechanisms for re-
ducing interference at the server by segregation, this solution appears to complicate
the deployability of the system. Objects with the same names fetched from different

servers are considered different by the browsers. So, browsers can not directly use

108

the prefetched objects to service demand requests.

Comparison

In the following sections, we show how to address the limitations of both architec-

tures.

e Some of the techniques we develop for avoiding interference are useful for the
one connection architecture, but some are less so. In particular, our strategy
for reducing interference at servers is based on end-to-end performance and is
equally applicable to the one and two connection architectures. Conversely,
the techniques we use to avoid network interference appear much easier to
apply to the two-connection than the one-connection architecture.

e Despite the apparent deployability challenges to the two connection architec-
ture discussed above, we find that the same basic technique we use to make
unmodified browsers prefetch data for the one connection architecture can be

adapted to support the two connection architecture as well.

We conclude that both architectures are tenable in some circumstances. If
server load is the primary concern and if network load is known not to be a major
issue, then the one connection prototype may be simpler than the two connection
prototype. At the same time, the two connection prototype is feasible and deployable
and manages both network and server interference. Given that networks are a
globally shared resource, we recommend the use of two connection architecture in

most circumstances.

4.3.3 Server Interference

An ideal system for avoiding server interference would cause no delay to demand
requests in the system and utilize significant amounts of any spare resources on

servers for prefetching. Such a system needs to cope with, and take advantage of,

109

One second intervals

One minute intervals

100
80
60
40

0
0 14400 28800 43200 57600 72000 86400 0 240 480 720 960 1200 1440

Requests per second

Average requests per second

Interval Interval

(a) (b)

Figure 4.6: Server loads averaged over (a) 1-second and (b) 1-minute intervals for
the IBM sporting event workload.

changing workload patterns over various time scales. HT'TP request traffic arriving
at a server often is bursty with the burstiness being observable at several scales of
observation [51] and with peak rates exceeding the average rate by factors of 8 to
10 [130]. For example, Figure 4.6 shows the request load on an IBM server hosting
a major sporting event during 1998 averaged over 1-second and 1-minute intervals.
It is crucial for the prefetching system to be responsive to such bursts to balance
utilization and risk of interference. There are a variety of ways to prevent prefetch

requests from interfering with demand requests at servers.

Local scheduling Server scheduling can help use the spare capacity of exist-
ing infrastructure for prefetching in a non-interfering manner. In principle, exist-
ing schedulers for processor, memory [102, 107, 143], and disk [125] could prevent
low-priority prefetch requests from interfering with high-priority demand requests.
Furthermore, as these schedulers are intimately tied to the operating system, they
should be highly efficient in delivering whatever spare capacity exists to prefetch
requests even over fine time scales. Note that local scheduling is equally applicable
to both one- and two-connection architectures.

For many services, however, server scheduling may not be easily deployable

for two reasons. First, although several modern operating systems support process

110

schedulers that can provide strict priority scheduling, few provide memory, cache or
disk schedulers that isolate prefetch requests from demand requests. Second, even
if an operating system provides the needed support, existing servers would have to
be modified to differentiate between prefetch and demand requests with scheduling
priorities as they are serviced [14]. This second requirement appears particularly
challenging given the increasing complexity of servers, in which requests may tra-
verse not only a highly-tuned web server [141, 167, 178, 189] but also a number of
other complex modules such as commercial databases, application servers or virtual
machines for assembling dynamic content (e.g., Apache tomcat for executing Java
Servlets and JavaServer pages), distributed cluster services [12, 85], and content

delivery networks.

Separate prefetch infrastructure An intuitively simple way of avoiding server
interference is to use separate servers to achieve complete isolation of prefetch and
demand requests. In addition to the obvious strategy of providing separate de-
mand and prefetch machines in a centralized cluster, a natural use of this strategy
might be for a third-party “prefetch distribution network” to supply geographically
distributed prefetch servers in a manner analogous to existing content distribution
networks. Note that this alternative is not available to the one-connection architec-
ture.

However, separate infrastructure needs extra hardware and hence may not

be an economically viable solution for many web sites.

End-to-end monitoring A technique based on end-to-end monitoring estimates
the overall load (or spare capacity) on the server by periodically probing the server
with representative requests and measuring the response times of the replies. Low
response times indicate that the server has spare capacity and high response times

indicate that the server is loaded. Based on such an estimate, the monitor utilizes

111

the spare capacity on the server by controlling the number and aggressiveness of
prefetching clients.

An advantage of end-to-end monitoring is that it requires no modifications
to existing servers. Furthermore, it can be used by both one- and two- connection
prefetching architectures. The disadvantage of such an approach is that its schedul-
ing precision is likely to be less than that of a local scheduler that has access to the
internal state of the server and operating system. Moreover, an end-to-end monitor
may not be responsive enough to bursts in load over fine time scales.

In the following subsubsections, we discuss issues involved in designing an
end-to-end monitor in greater detail, present our simple monitor design, and evaluate

its efficacy in comparison to server scheduling.

End-to-end Monitor Design

Figure 4.7 illustrates the architecture of our monitor-controlled prefetching system.
The monitor estimates the server’s spare capacity and sets a budget of prefetch
requests permitted for an interval. The hint server adjusts the load imposed by
prefetching on the server by ensuring that the sum across the hint lists returned to
clients does not exceed the budget. Our monitor design must adress two issues: (i)

budget estimation and (ii) budget distribution across clients.

Demand/Prefetch
Requests
<>
Server
T
Request for .| Request
Hint Lists y | Samples

Figure 4.7: A Monitored Prefetching System

112

Budget estimation The monitor periodically probes the server with HTTP re-
quests to representative objects and measures the response times. The monitor
increases the budget when the response times are below the objects’ threshold val-
ues and decreases the budget otherwise.

As probing is an intrusive technique, choosing an appropriate rate of probing
is a challenge. A high rate makes the monitor more reactive to load on the server,
but also adds extra load on the server. On the other hand, a low rate makes the
monitor react slowly, and can potentially lead to interference to the demand requests.
Similarly, the exact policy for increasing and decreasing the budget must balance

the risk of causing interference against underutilization of spare capacity.

Budget distribution The goal of this task is to distribute the budget among the
clients such that (i) the load due to prefetching on the server is contained within the
budget for that epoch and is distributed uniformly over the interval, (ii) a significant
fraction of the budget is utilized over the interval, and (iii) clients are responsive
to changing load patterns at the server. The two knobs that the hint server can
manipulate to achieve these goals are (i) the size of the hint list returned to the
clients and (ii) the subset of clients that are given permission to prefetch. This

flexibility provides a freedom to choose from many policies.

Monitor Prototype

Our prototype uses simple, minimally tuned policies for budget estimation and
budget distribution. Future work may improve the performance of our monitor.
The monitor probes the server in epochs, each approximately 100 ms long.
In each epoch, the monitor collects a response time sample for a representative
request. In the interest of being conservative — choosing non-interference even at
the potential cost of reduced utilization — we use an additive increase(increase by 1),

multiplicative decrease (reduce by half) policy. AIMD is commonly used in network

113

congestion control [103] to conservatively estimate spare capacity in the network
and be responsive to congestion. If in five consecutive epochs, the five response
time samples lie below a threshold, the monitor increases the budget by 1. While
taking the five samples, if any sample exceeds the threshold, the monitor sends
another probe immediately to check if the sample was an outlier. If even the new
sample exceeds the threshold, indicating a loaded server, the monitor decreases the
budget by half and restarts collecting the next five samples.

In our simple prototype, we manually supply the representative objects’s
threshold response times. However, it is straightforward because of the predictable
pattern in which response times vary with load on server systems — a nearly constant
value of response time for low load followed by a sharp rise beyond the “knee” for
high load. As part of our future work, we intend to make the monitor automatically
pick thresholds in a self-tuning manner.

The hint server distributes the current budget among client requests that
arrive in that epoch. We choose to set the hint list size to the size of one document
(a document corresponds to a HTML page and all embedded objects). Our policy
lets clients to return quickly for more hints and thus be more responsive to changing
load patterns on the server. Note that returning larger hint lists would reduce the
load on the hint server, but it would reduce the system’s responsiveness and its
ability to avoid interference. We control the number of simultaneously prefetching
clients, and thus the load on the server, by returning to some clients a hint list of
zero size and a directive to wait until the next epoch to fetch the next hint list. For
example, if B denotes the budget in the current epoch, and N the expected number

of clients in that epoch, D the number of files in a document, and 7 the epoch length,

BT

the hint server accepts a fraction p = min(1, 75

) of requests to prefetch on part
of clients in that epoch and returns hintlists of zero length for other requests. Note

that other designs are possible. For example, the monitor can integrate with the

114

prefetch prediction algorithm to favor prefetching by clients for which the predictor
can identify high-probability items and defer prefetching by clients for which the
predictor identifies few high-value targets.

Since the hint server does not a priori know the number of client requests
that will come in an epoch, it estimates that value with the number of requests that
come in the previous epoch. If more than the estimated number of requests arrive
in a epoch, the hint server replies with list of size zero and a directive to retry in
the next epoch to those extra requests. If fewer clients arrive, some of the budget
can get wasted. However, in the interest of avoiding interference, we choose to allow
such wastage of budget.

In the following Section 4.3.3, we evaluate the performance of our proto-
type with respect to the goals of reducing interference and reaping significant spare

bandwidth and compare it with the other resource management alternatives.

Server Interference Experiments

In evaluating resource management algorithms, we are mainly concerned with in-
terference that prefetching could cause and less with the benefits obtained. We
therefore abstract away prediction policies used by services by prefetching sets of
dummy data from arbitrary URLs at the server. The goal of the experiments is to
compare the effectiveness of different resource management alternatives in avoiding
server interference against the ideal case (when no prefetching is done) with respect
to the following metrics: (i) cost: the amount of interference in terms of demand
response times and (ii) benefit: the prefetch bandwidth.

We consider the following resource management algorithms for this set of

experiments:

1. No-Prefetching: Ideal case, when no prefetching is done or when we use a

separate prefetching infrastructure.

115

2. No-Avoidance: Prefetching with no interference avoidance with fixed aggres-
siveness. We set the aggressiveness by setting pfrate, which is the number of
documents prefetched for each demand document. For a given service, a given
prefetch threshold will correspond to some average pfrate. We use fixed pfrate
values of 1 and 5.

3. Scheduler: As a simple local server scheduling policy, we choose nice, the
process scheduling utility in Unix. We again use fixed pfrate values of 1 and
5. This simple server scheduling algorithm is only intended as a comparison;
more sophisticated local schedulers may better approximate the ideal case.

4. Monitor: We perform experiments for two threshold values of 3ms and 10ms.

For evaluating algorithms 2 and 4, we set up one server serving both demand
and prefetch requests. These algorithms are applicable in both one connection
and two connection architectures. Our prototype implementation of algorithm 3
requires that the demand and prefetch requests be serviced by different processes
and thus is applicable only to the two connection architecture. We use two different
servers listening on two ports on the same machine, with one server run at a lower
priority using the Linux nice. Note that the general local scheduling approach is
equally applicable to the one-connection architecture with more intrusive server
modifications.

Our experimental setup includes Apache HTTP server [11] running on a
450MHz Pentium II, with 128MB of memory. To generate the client load, we use
httperf [132] running on four different Pentium ITT 930MHz machines. All machines
run the Linux operating system.

We use two workloads in our experiments. OQur first workload generates
demand requests to the server at a constant rate. The second workload is a one
hour subset of the IBM sporting event server trace, whose characteristics are shown

in Figure 4.6. We scale up the trace in time by a factor of two, so that requests are

116

generated at twice the original rate, as the original trace barely loads our server.

0.7

06 i 1
05]

04 No-Prefetching

e

¥

Monitor, thres=3ms 4‘»!%‘/

i ;
Monitor, thres=10ms ———F—
02t A/

Avg Demand Response Time(sec)

i No-Avoidance, ﬁ;"]

pfrate=1 /! Scheduler, pfrate=1———=/
3 / i
0.1 : , ! Scheduler, pfrate=5 ——=/
i No-Avoidance, / i
pfrate=5 /

¥

/
0 e P P
0 100 200 300 400 500 600 700 800

Demand Connection Rate(Conns/sec)

Figure 4.8: Effect of prefetching on demand throughput and response times with
various resource management policies

Constant workload Figure 4.8 shows the demand response times with varying
demand request arrival rate. The graph shows that both Monitor and Scheduler
algorithms closely approximate the behavior of No-Prefetching in not affecting the
demand response times. Whereas, the No-Avoidance algorithm with fixed pfrate
values significantly damages both the demand response times and the maximum
demand throughput.

Figure 4.9 shows the bandwidth achieved by the prefetch requests and their
effect on the demand bandwidth. The figure shows that No-Avoidance adversely
affects the demand bandwidth. Conversely, both Scheduler and Monitor reap spare
bandwidth for prefetching without much decrease in the demand bandwidth. Fur-
ther, at low demand loads, a fixed pfrate prevents No-Avoidance from utilizing the
full available spare bandwidth. The problem of too little prefetching when demand
load is low and too much prefetching when demand load is high illustrates the
problem with existing threshold strategies. As hoped, the Monitor tunes prefetch

aggressiveness of the clients such that essentially all of the spare bandwidth is uti-

117

100

80 - A
No-Prefetching
Demand:Monitor, thres=3ms

Prefetch:Monitor, thres=10ms 3
Demand:Monitor, thres=10ms

@
o
T

Demand:Scheduler, pfrate=1

Bandwidth (Mbps)
S
o
T

20

~ . \'\\ .. Prefetch:No-Avoidance
T frate=1
Prefetch:Scheduler, ®~-.. "= . P
pfrate=1 Trell Ml Tea
0 L L L L e g g
0 100 200 300 400 500 600 700 800

Rate(conns/sec)

Figure 4.9: Prefetch and demand bandwidths achieved by various algorithms

lized.

IBM server trace In this set of experiments, we compare the performance of the
four algorithms for the IBM server trace. Figure 4.10 shows the demand response
times and prefetch bandwidth in each case. The graph shows that the No-Avoidance
case affects the demand response times significantly as pfrate increases. The Sched-
uler and Monitor cases have less adverse effects on the demand response times.
These experiments show that resource management is an important compo-
nent of a prefetching system because overly aggressive prefetching can significantly
hurt demand response time and throughput while timid prefetching gives up sig-
nificant bandwidth. They also illustrate a key problem with constant non-adaptive
magic numbers in prefetching such as the threshold approach that is commonly pro-
posed. The experiments also provide evidence of the effectiveness of the monitor in
tuning prefetch aggressiveness of clients to reap significant spare bandwidth while

keeping interference at a minimum.

118

0.030 r 80

o Avg Response Time
= Prefetch BW (in Mbps)

60

(0.145 sec)

0.020

0.010+

S
o
(sdagn) yipimpueg yoejeld

Avg Demand Response Time (seconds)

X NP
5O NN
\Qﬂ Q Q \'b’ \'b’
& TE S <
O No-Avoidance Scheduler Monitor

Figure 4.10: Performance of No-Avoidance, Scheduler and Monitor schemes on the
IBM server trace

4.3.4 Network Interference

Mechanisms to reduce network interference could, in principle, be deployed at clients,
intermediate routers, or servers. For example, clients can reduce the rate at which
they receive data from the servers using TCP flow control mechanisms [163]. How-
ever, it is not clear how to set the parameters to such mechanisms or how to deploy
them given existing infrastructure. Prioritization in routers that provide differenti-
ated service to prefetch and demand packets can avoid interference effectively [21].
However, router prioritization is not easily deployable in the near future. We focus
on server based control because of the relative ease of deployability of server based
mechanisms and their effectiveness in avoiding both self- and cross-interference.

In particular, we use TCP-Nice at the server. TCP-Nice, introduced in the
previous chapter, uses a congestion control mechanism at the sender that is specifi-
cally designed to support background transfers. Background connections using Nice

operate by utilizing only spare bandwidth in the network. They react more sensi-

119

tively to congestion and backoff when a possibility of congestion is detected, giving
way to foreground connections. In the previous chapter, we showed a small upper
bound on the network interference caused by Nice under a simple network model.
Furthermore, the experimental evidence under wide range of conditions and work-
loads showed that Nice causes little or no interference and at the same time reaps a
large fraction of the spare capacity in the network.

Nice is deployable in the two connection context without modifying the in-
ternals of servers by configuring systems to use Nice for all connections made to
the prefetch server. A prototype of Nice runs on Linux currently. We also built a
user-level version of Nice, that can be easily installed without requiring any kernel
modifications and has comparable performance to the kernel version. Though both
the kernel and user-level versions currently run on Linux, we believe it should be
straightforward to port them to other operating systems. An alternative to writing
and maintaining different versions of Nice for different operating systems is to place
a Linux machine running Nice in front of the prefetch server and make the Linux
machine serve as a reverse proxy or a gateway.

It appears to be more challenging to use Nice in the one connection case. In
principle, the Nice implementation allows flipping a connection’s congestion control
algorithm between standard TCP (when serving demand requests) and Nice (when
serving prefetch requests). However, using this approach for prefetching faces a
number of challenges: (1) Flipping modes causes packets already queued in the
TCP socket buffer to inherit the new mode. Thus, demand packets queued in
the socket buffer may be sent at low-priority while prefetch packets may be sent
at normal-priority, thus causing network interference. Ensuring that demand and
prefetch packets are sent in the appropriate modes would require an extension to Nice
and a fine-grained coordination between the application and the congestion control

implementation. (2) Nice is designed for long network flows. It is not clear if flipping

120

back and forth between congestion control algorithms will still avoid interference and
gain significant spare bandwidth. (3) HTTP/1.1 pipelining requires replies to be
sent in the order requests were received, so demand requests may be queued behind
prefetch requests, causing demand requests to perceive increased latencies. One
way to avoid such interference may be to quash all the prefetch requests queued in
front of the demand request. For example, we could send a small error message (eg.
HTTP response code 307 — “Temporary Redirect” with a redirection to the original
URL) as a response to the quashed prefetch requests.

Based on these challenges, it appears simpler to use the two connection
architecture when the network is a potential bottleneck. A topic for future work is to
explore these challenges and determine if a deployable one connection architecture

that avoids network interference can be devised.

4.3.5 Client Interference

Prefetching may interfere with the performance of a client in at least two ways. First,
prefetch requests consume processing cycles and may, for instance, delay rendering
of demand pages. Second, prefetched data may displace demand data from the cache
and thus hurt demand hit rates for the prefetching service or other services.

As with the interference at the server discussed above, interference between
client processes could, in principle, be addressed by modifying the client browser
(and, perhaps, the client operating system) to use a local processor scheduler to
ensure that processing of prefetch requests never interferes with processing of de-
mand requests. Lacking that option, we resort to a simpler approach: as described
in Section 4.3.6, we structure our prefetch mechanism to ensure that processing
prefetch requests does not begin until after the loading and rendering of the de-
mand page, including all inline images and recursive frames. Although this approach

will not help reduce cross-interference with other applications at the client, it may

121

avoid a potentially common case of self-interference of the prefetches triggered by
a page delaying the rendering of that page. Similarly, a number of storage schedul-
ing algorithms exist that balance caching prefetched data against caching demand
data [34, 38, 107, 143]. Unfortunately, all of these algorithms require modifications
to the cache replacement algorithm.

Because we assume that the client cannot be modified, we resort to two
heuristics to limit cache pollution caused by prefetching. First, in our system,
services place a limit on the ratio of prefetched bytes to demand bytes sent to
a client. Second, services can set the Expires HTTP header to a value in the
relatively near future (e.g., one day in the future) to encourage clients to evict
prefetched document earlier than they may otherwise have done. These heuristics
have an obvious disadvantage: they resort to magic numbers similar to those in
current use, and they suffer from the same potential problems: if the magic numbers
are too aggressive, prefetching services will interfere with other services, and if they
are too timid, prefetching services will not gain the benefits they might otherwise
gain. Fortunately, there is reason to hope that performance will not be too sensitive
to this parameter. First, disks are large and growing larger at about 100% per
year [55] and relatively modest-sized disks are effectively infinite for many client
web cache workloads [174]. So, disk caches may absorb relatively large amounts
of prefetch data with little interference. Second, hit rates fall relatively slowly as
disk capacities shrink [28, 174], which would suggest that relatively large amounts
of polluting prefetch data will have relatively small effects on demand hit rate.

Figure 4.11 illustrates the extent to which our heuristics can limit the inter-
ference of prefetching on hit rates. We use the 28-day UCB trace of 8000 unique
clients from 1996 [84] and simulate the hit rates of 1 MB, 10 MB and 30 MB per-
client caches. Note that these cache sizes are small given, for example, Internet

Explorer’s defaults of using 3% of a disk’s capacity (e.g., 300 MB of a 10 GB disk)

122

0.35

IdeaTI LRU 30MB LRU-24hr 30MB | RU 30MB
03y
0.25 | Ideal LRU 10MB |
LRU-24hr 10MB 3 100
’—-=======
o 02f i
I
o
T 015} Ideal LRU 1MB 8
LRU IMB LRU-24hr 1MB
01f i
005 | 8
0 s
1 10

Prefetch Aggressiveness

Figure 4.11: Effect of prefetching on demand hit rate

for web caching. On the x-axis, we vary the number of bytes of dummy prefetch
data per byte of demand data that are fetched after each demand request. In this
experiment, 20% of services use prefetching at the specified aggressiveness and the
remainder do not, and we plot the demand hit rate of the non-prefetching services.
Ideally, these hit rates should be unaffected by prefetching. As the graph shows,
hit rates fall gradually as prefetching increases, and the effect shrinks as cache sizes
get larger. For example, if a client cache is 30 MB and 20% of services prefetch
aggressively enough that each prefetches ten times as much prefetch data as the

client references demand data, demand hit rates fall from 29.9% to 28.7%.

4.3.6 Prefetching Mechanism

Figures 4.12 and 4.13 illustrate the key components of the one and two connection
architectures. The one-connection mechanism consists of an unmodified client, a
content server that serves both demand and prefetch requests, a munger that mod-
ifies content on the content server to activate prefetching and a hint server that
gives out hint lists to the client to prefetch. The hint server also includes a monitor

that probes the content server and estimates the spare capacity at the server and

123

© Server

Unmodified:.
cllent " prefen | .
. Requess’ ontent
Client =<— X /" Demand - Modifier
\ ,; Demand Server Files
. Reguests
/l\\ a] \\ ,’7
Hint ™. “ . Performance
Lists

7. Probes

Figure 4.12: Prefetching mechanism for the one connection architecture

accordingly controls the number of prefetching clients.

The two-connection prototype, along with the components above, also con-
sists of a prefetch server that is a copy of the demand server (running either on a
separate machine or on a different port on the same machine) and a front-end that
intercepts certain requests to the demand server and returns appropriate redirec-
tion objects as described later, thereby obviating any need to modify the original
demand server.

In the following subsubsections, we describe the prefetching mechanisms for

the one and two connection architectures.

One-connection

Content modification The munger augments each HTML document with pieces

of JavaScript and HTML code that cause the client to prefetch.

On demand fetch

124

{Unmodified
| Server

Unmodified. 1.
Client N, Prefetch | -7
. Requests -~

//l’\ N \\\\\ 7’ /7
Hint . . Peformance
Lists e Probes

Figure 4.13: Prefetching mechanism for the two connection architecture

. Client requests an augmented HTML document.

. When an augmented HTML document (Figure 4.14) finishes loading into the
browser, the pageOnLoad () function is called. This function calls getPfList (),
a function defined in pfalways.html (Figure 4.15). The file pfalways.html is
loaded within every augmented HTML document. pfalways.html is cacheable
and hence does not need to be fetched everytime a document gets loaded.

. getPfList () sends a request for pflist.html to the hint server with the name
of the enclosing document, the name of the previous document in history (the
enclosing document’s referer) and TURN=1 as extra information embedded
in the URL.

. The hint server receives the request for pflist.html. Since the client fetches a
pflist.html for each HTML document (even if the HTML document is found
in the cache), the client provides the hint server with a history of accesses to
aid in predicting hint lists. In Figure 4.15, PFCOOKIE contains the present

access (document .referrer) and the last access (prevref) by the client. The

125

hint updates the history and predicts a list of documents to be prefetched by
the client based on that client’s history and the global access patterns. It puts
these predictions into the response pf1ist.html such as shown in 4.16, which
it returns to the client.

5. pflist.html replaces pfalways.html on the client. After pflist.html loads,
the preload() function in its body preloads the documents to be prefetched
from the prefetch server (which is same as the demand server in the one con-
nection case).

6. After all the prefetch documents are preloaded, the myOnLoad () function calls
getMore () that replaces the current pflist.html by fetching a new version

with TURN=TURN+1.

Steps 5 and 6 repeat until the hint server has sent everything it wants, at
which point the hint server returns a pflist.html with no getMore() call. When
there is not enough budget left at the server, the hint server sends a pflist.html
with no files to prefetch and a delay, after which the getMore () function gets called.
The information TURN breaks the (possibly) long list of prefetch suggestions into

a “chain” of short lists.

On demand fetch of a prefetched document

1. The client browser simply fetches it from the cache as if it is a cache hit.

Two-connection

The two-connection prototype employs the same basic mechanism for prefetching as
the one-connection prototype. However, since browsers identify cached documents
using both the server name and document name, documents fetched from prefetch
server are not directly usable to serve demand requests. In order to fix this problem,

we modify step 6 such that before calling getMore (),

126

<HTML> <HEAD> <! -- existing header goes here -- >
<SCRIPT LANGUAGE="JavaScript">

function pageOnLoad() {

myiframe.getPFlist (document.referrer);

} </SCRIPT> </HEAD> <BODY>

<! -- existing body goes here —- >

if (null == window.onload) {

window.onload = pageOnLoad();}

else {

var origfn = window.onload;

window.onload = function(){origfn();pageOnLoad();};}

<IFRAME SRC="pfalways.html" name="myiframe"
width=0 height=0 frameborder=0>
</IFRAME> </BODY> </HTML>

Figure 4.14: Augmentation of HTML pages

<HTML> <HEAD> <SCRIPT LANGUAGE="JavaScript">

function getPFList(var prevref) {

document.1ocation="HINT—SERVER/pf1ist.html+PCOOKIE="
+ document.referrer + "+" + prevref + TURN=1;

document.close();

} </SCRIPT> </HEAD> </HTML>

Figure 4.15: pfalways.html

6.a The myOnLoad () function (Figure 4.16) requests a wrapper (redirection object)

from the demand server for the document that was prefetched.

6.b The frontend intercepts the request (based on the referer field) and responds
with the wrapper (Figure 4.17) that loads the prefetched document in response

to a client’s demand request.

The prefetch server serves a modified copy of the content on the demand
server. Note that the relative links in a webpage on the demand server point to
pages on demand server. Hence, all relative links in the prefetch server’s content

are changed to absolute links, such that when client clicks on a link in the prefethed

127

<HTML> <HEAD> <SCRIPT LANGUAGE="JavaScript">

function myOnLoad() { //exeutes after body loads

preload("DEMAND-SERVER/c.html"); //For two-conn only

getMore() ;

}

function getMore() {

document.location="HINT—SERVER/pf1ist.html +
PCOOKIE=" + document.referrer +
"+" + prevref + "+" + "TURN=2";

document.close();

}

var myfiles=new Array()

function preload(){

for (i=0;i<preload.arguments.length;i++){
myfiles[il=new Image() ;
myfiles[i] .src=preload.arguments[i] ;

}

} </SCRIPT> </HEAD>

<BODY onload="myOnLoad()">
<SCRIPT LANGUAGE="JavaScript">
preload ("PREFETCH-SERVER/a. jpg",
"PREFETCH-SERVER/b. jpg",
"PREFETCH-SERVER/c.html") ;
</SCRIPT> </BODY> </HTML>

web page, the request is sent to the demand server.

Figure 4.16: An example pflist.html returned by the hint server

inline objects in the page are changed to be absolute links to the prefetch server,
so that prefetched inline objects are used. Since prefetch and demand servers are
considered as different domains by the client browser, JavaScript security mod-
els [137] prevent scripts in prefetched documents to access private information of
the demand documents and vice versa. However, to fix this problem, JavaScript
allows us to explicitly set the document.domain property of each HTML docu-
ment to a common suffix of prefetch and demand servers. For example, for servers

demand.cs.utexas.edu and prefetch.cs.utexas.edu, all the HTML documents

can set their document .domain property to cs.utexas.edu.

128

Also, all absolute links to

<HTML> <SCRIPT LANGUAGE="JavaScript">

if (document.referrer.index0f ("pflist") < 0)
document.location="PREFETCH-SERVER/c.html";

document.close();

</SCRIPT> </HTML>

Figure 4.17: Wrapper for c.html, stored in cache as DEMAND-SERVER/c.html

On demand fetch of a prefetched document: (i) a hit results for the wrapper
in the cache, (ii) at the loading time, the wrapper replaces itself with the prefetched
document from the cache, (iii) inline objects in the prefetched document point to
objects from the prefetch server and hence are found in the cache as well, and (iv)
links in the prefetched document point to the demand server.

This mechanism has two limitations. First, prefetched objects might get
evicted from the cache before their wrappers. In such a case, when the wrapper
loads for a demand request, a new request will be sent to the prefetch server. Since
sending a request to the prefetch server in response to a demand request could
cause undesirable delay, we reduce such occurrences by setting the expiration time
of the wrapper to a value smaller than the expiration of the prefetched object itself.
Second, but not a significant limitation is that some objects may be fetched twice,
once as demand and once as prefetch objects as the browser cache considers them

as different objects.

Prediction Algorithm

For our experiments, we use prediction by partial matching [47] (PPM-n/w) to
generate hint lists for prefetching. The algorithm uses a client’s n most recent
requests to the server for non-image data to predict URLs that will appear during
a subsequent window that ends after the wth non-image request to the server. Our

prototype uses n=2 and w=10.

129

In general, the hint server can be made to use any prediction algorithm. It
can be made to use standard algorithms proposed in the literature [64, 70, 86, 140]
or others that utilize more service specific information such as a news site that

prefetches stories relating to topics that interest a given user.

Alternatives

We explored other alternatives for prefetching in the two-connection architecture.
We could have used a Java Applet instead of the JavaScript in Figure 4.14. One could
also use a zero-pixel frame that loads the prefetched objects instead of JavaScript.
The refresh header in HTTP/1.1 could be exploited to iteratively prefetch a list of
objects by setting the refresh time to a small value.

As an alternative to using wrappers, we also considered maintaining state
explicitly at the client to store information about whether a document has already
been prefetched. Content could be augmented with a script to execute on a hyper-
link’s onClick event that checks this state information before requesting a document
from the demand server or prefetch server. Similar augmentation could be done for

inline objects. Tricks to maintain state on the client can be found in [149].

4.3.7 Prototype and Evaluation

Our prototype uses the two connection architecture whose prefetching mechanism
is shown in Figure 4.13. We use Apache 2.0.39 as the server, hosted on a 4560MHz
Pentium II, serving demand requests on one port and prefetch requests on the other.
As an optimization, we implemented the frontend as a module within the Apache
server rather than as a separate process. The hint server is implemented in Java
and runs on a separate machine with 932 MHz Pentium III proessor, and connects
to the server over a 100 Mbps LAN. The hint server uses prediction lists generated

offline using the PPM algorithm [140] over a complete 24 hour IBM server trace.

130

The monitor runs as a separate thread of the hint server on same machine. The
content munger is also written in Java and modifies the content offline (as shown in
Figure 4.14). We have successfully tested our prefetching system with popular web

browsers inluding Netscape, Internet Explorer, and Mozilla. !

4.3.8 End to End Performance

In this section, we evaluate NPS under various setups and evaluate the importance
of each component in our system. In all setups, we consider three cases: (1) No-
Prefetching, (2) No-Avoidance scheme with fixed pfrate, and (3) NPS (with Monitor
and TCP-Nice). In these experiments, the client connects to the server over a wide
area network through a commercial cable modem link. On an unloaded network,
the round trip time from the client to the server is about 10 ms and the bandwidth

is about 1 Mbps.

w

£ 0.100- -200

S == Avg Response Time

9 = Demand Bandwidth

g 0.080+ == Prefetch Bandwidth [150 m

2 0.060+ =3
o

§_ -100 E

$ 0.040+ A

@ S

o -50 £

@ 0.020

: il

(]

o}

= 0.000 0

>

<

No-Prefetching Prefetching NPS
No-Avoidance

Figure 4.18: Effect of prefetching on demand response times with unloaded resources

!Source code for NPS prototype can be downloaded from
http://www.cs.utezas. edu/users/rkoku/RESEARCH/NPS/

131

0.100 -200

== Avg Response Time
— Demand Bandwidth

0.080+ == Prefetch Bandwidth [150 w

0.060+

-100

0.040+

0.020 H I

0.000 No-Prefetching Prefetching NPS 0
No-Avoidance

(sdgy) yipmpue

T
a1
o

Avg Demand Response Time (seconds)

Figure 4.19: Effect of prefetching on demand response times with a loaded server

We use httperf to replay a subset of the IBM server trace. The trace is
one hour long and consists of demand accesses made by 42 clients. This workload
contains a total of 14044 file accesses of which 7069 are unique; the demand net-
work bandwidth is about 92 Kbps. We modify httperf to simulate the execution of
JavaScript as shown in Figures 4.14, 4.15 and 4.16. Also, we modify httperf to im-
plement a large cache per client that never evicts a file that is fetched or prefetched
during a run of an experiment. In No-Avoidance case, we set the pfrate to 70, i.e.
it gets a list of 70 files to prefetch, fetches them and stops. This pfrate is such that
neither the server nor the network becomes a bottleneck even for the No-Avoidance
case. For NPS, we assume that each document will consist of ten files (a document
is a HTML page along with the embedded objects). Thus the hint server gives out
hint lists of size 10 to the requesting clients. Note that many of the files given as

hints could be cache hits at the client.

132

0.100 — -200

== Avg Response Time
— Demand Bandwidth

0.080+ == Prefetch Bandwidth [150 w

0.060 '
100
0.040-
0.020- H
0.000 0

No-Prefetching Prefetching NPS
No-Avoidance

Effect of prefetching on demand response times with a loaded network

(0.161 sec)

(sday) yipimpue

T
a1
o

Avg Demand Response Time (seconds)

Unloaded resources In this experiment, we use the setup explained above. Fig-
ure 4.18 shows that when the resources are abundant, both No-Avoidance and NPS
cases significantly reduce the average response times by prefetching. The graph also

shows the bandwidth achieved by No-Avoidance and Nice.

Loaded server This experiment demonstrates the effectiveness of the monitor as
an important component of NPS. To create a loaded server condition, we use a client
machine connected on a LAN to the server running httperf that replays a heavier
subset of the IBM trace and also prefetches like the WAN client. Figure 4.19 plots
the average demand response times and the bandwidth used in the three cases. As
expected, even though the server is loaded, the clients prefetch aggressively in the
No-Avoidance case, thus causing the demand response times to increase by more
than a factor of 2 rather than decrease. NPS, being controlled by the monitor,
prefetches less data and hence avoids any damage to the demand response times.
NPS in fact benefits from prefetching, as shown by the decrease in the average

demand response time.

133

Loaded network This experiment demonstrates the effectiveness of TCP-Nice as
a building block of NPS. In order to create a heavily loaded network with little spare
capacity, we set up another client machine running httperf that shares the cable
modem connection with the original client machine, replays the same trace, and also
prefetches like the original client. Figure 4.3.8 plots the average demand response
times, demand bandwidth, and prefetch bandwidth in all three cases. The results
show that when the network is loaded, No-Avoidance causes significant interference
to demand requests, thereby increasing the average demand response times by a
factor of 7. Although NPS doesn’t show any improvements, it contains the increase
in demand response times to less than 30%, which shows the effectiveness of TCP-
Nice in avoiding network interference. The damage is because TCP-Nice is primarily

designed for long flows.

4.3.9 Related Work

Several studies have published promising results that suggest that prefetching (or
pushing) content could significantly improve web cache hit rates by reducing com-
pulsory and consistency misses [50, 64, 86, 89, 111, 114, 140, 174]. However, existing
systems either suffer from a lack of deployability or use threshold-based magic num-
bers to address the problem of interference. Several existing commercial client-side
prefetching agents that require new code to be deployed to clients are available
[134, 98, 177]. At least one system makes use of Java applets to avoid modifying
browsers [73]. It is not clear however, what, if any, techniques are used by these

systems to avoid self- and cross-interference.
Duchamp [64] proposes a fixed bandwidth limit for prefetching data. Markatos [129]

adopts a popularity-based approach where servers forward the N most popular doc-

uments to clients. Many of these studies [64, 102, 174] propose prefetching an object

134

if the probability of its access before it gets modified is higher than a threshold. The
primary performance metric in these studies is increase in hit rate. However, the
right measures of performance are end-to-end latency when many clients are actively

prefetching, and interference to other applications.

Davison et. al [60] propose using a connectionless transport protocol and
using low priority datagrams (the infrastructure for which is assumed) to reduce
network interference. Servers speculatively push documents chunked into datagrams
of equal size and (modified) clients use range requests as defined in HTTP/1.1 for
missing portions of the document. Servers maintain state information for prefetch-
ing clients and use coarse-grained estimates of per-client bandwidth to limit the
rate at which data is pushed to the client. Their simulation experiments do not
explicitly quantify interference and use lightly loaded servers in which only a small
fraction of clients are prefetching. Crovella et. al [50] show that a window-based
rate controlling strategy for sending prefetched data leads to less bursty traffic and

smaller queue lengths.

In the context of hardware prefetching, Lin et. al [122] propose issuing
prefetch requests only when bus channels are idle and giving them low replacement
priorities so as to not degrade the performance of regular memory accesses and
avoid cache pollution. Several algorithms for balancing prefetch and demand use of
memory and storage system have been proposed [34, 38, 107, 143]. Unfortunately,
applying any of these schemes in the context of Web prefetching would require

modification of existing clients.

135

4.4 Providing Consistency Guarantees in Mars

Mars’ architecture as introduced in Section 4.2, and the sample application of a
Web prefetching system, NPS, did not address the issue of maintaining consistency
requirements imposed by applications. It is easy to that ASR can improve response
times and availability of large-scale replicated systems that require weak or no con-
sistency semantics. It is less obvious that these improvements extend to applica-
tions with strict consistency requirements. In this section, we show how to augment
Mars’ architecture in order to provide arbitrary levels of consistency guarantees in
ASR-enabled systems. We then illustrate through examples how to model practical
systems using this augmented architecture.

The key to understanding how to provide consistency in Mars-based ASR
systems is the observation that consistency information is meta-information that
can be propagated independently of the data or update that it is associated with.
An example of consistency information is an inwvalidate message that can be sent
to a cache to inform it that the copy it is caching is stale. This invalidate can be
sent independently of the actual updated data itself that may arrive via a sepa-
rate channel. Separation of consistency or invalidate information from updates thus
enables Mars-based ASR systems to maintain consistency semantics desired by an
application. The architecture illustrated in Figure 4.2 can be used to propagate con-
sistency information via the demand channel at regular priority while speculative
updates arrive via the background channel. The system can continue to use legacy
protocols for maintaining consistency with minor modifications, i.e. by replacing
whole updates with small invalidates of a fixed size. As before, updates, like specu-
latively replicated objects, are simply maintained and propagates in priority order
to locations where they are expected to be accessed.

Note that consistency information and demand requests do not have to share

a common channel. For example, for some applications such as distributed financial

136

transactions, it might be important to transmit invalidate information with time-
liness guarantees without interference from even demand requests. In such cases,
consistency information may be propagated using an even higher priority channel,
or an entirely different network providing enhanced quality of service guarantees.
Demand and speculative update bodies can be propagated as in the original Mars
architecture. Separation of consistency and updates is key for this kind of flexi-
bility. Note that Mars’ architecture itself does not enforce the need for a channel
for consistency information that is different from that used to propagate demand
requests. Legacy applications need only modify consistency maintenance protocols
to work with invalidates as opposed to whole update bodies. The point here is that
if the the application already has a separate enhanced propagation infrastructure
available for consistency information, then it can be smoothly integrated with Mars’
architecture.

We remark that this augmented architecture of Mars does not let us cir-
cumvent the CAP impossibility result introduced in Chapter 1. For example, if an
application receives an invalidate but not the corresponding update for an object,
then a request for that object cannot be satisfied. In some applications, requiring
linearizablity for instance, a disconnected replica cannot be allowed to serve a cached
copy even if it has not received any invalidate for the copy. Though Mars does not
help the CAP result for the general replication problem, it does allow for improved
availability for several classes of applications through its support for ASR. For ex-
ample, if an application seeks only A-consistency (i.e., only copies no staler than a
time A may be served), an ASR-enabled system is likelier to have a fresh enough
copy than a system that does not use ASR. An example of a system that seeks to
provide A-consistency is a commercial content distribution system like Akamai [5].

We give below two examples of systems requiring consistency guarantees that

can leverage Mars’ architecture for ASR. The first is that of a data dissemination

137

service described in detail in the work by Nayate et al. [135], and the second is that
of a replicated file system like Bayou described in detail in the work by Dahlin et
al. [56]. We show how these systems can be redesigned along Mars’ architecture and

enabled to use ASR.

A Dissemination Service We consider a data dissemination service consisting of
a primary server and a collection of replica servers distributed across a WAN. Clients
make read requests at replica locations. Writes, i.e. updates to existing objects and
creation of new objects, happens only at the primary. The consistency semantics
demanded by the service is that of sequential consistency. Clearly, such a system
can benefit from speculative propagation of writes to replica locations. Sequential
consistency is simply maintained by associating each write with a sequence number
that represents the order in which the write was committed at the primary. Replicas
process both speculative and demand writes in the common order dictated by the
sequence number. Nayate et al. [135] show that sequential consistency is indeed
maintained because of first-in-first-out (FIFO) property of global sequence numbers.

However, the simple system as described above cannot perform ASR as de-
mand response times shoot up drastically due to interference and network overload.
However, the system be redesigned using Mars to enable ASR as follows. The
primary separates the traffic it sends to replicas into three categories - i) demand
requests, ii) invalidate information, and iii) speculative update bodies. Consistency
information can be propagated on the same channel as that used for demand requests
while speculative update bodies arrive via a background channel in priority order.
Each replica continues to apply all messages in the common sequence number order.
This modified system can yield significant reductions in both response times, avail-
ability and bandwidth consumption at replicas. Response times get reduced because
available bandwidth is used to speculatively replicate in the background preventing

interference and system overload. Bandiwdth usage is reduced as only those updates

138

are speculatively replicated whose likelihood of being used is high. ASR improves
availability as a disconnected replica can continue serving cached copies for a longer
duration. We omit details of certain workarounds needed to continue to maintain
sequential consistency in this modified system and refer the interested reader to

Nayate et al. [135] for the detailed implementation and evaluation of such a system.

A Replicated File System We consider a sample replicated file system like
Bayou [168]. Bayou consists of a collection of replicas all of which maintain a
complete replica of a database. Writes and reads to objects in the database may
occur at each replica and the system strives to maintain causal consistency of views
of the database seen by a replica. Bayou functions through an anti-entropy protocol
wherein a replica can exchange updates with any other replica to bring each other
closer to the eventual committed version of the database. Replicas maintain the
causality property by using logical Lamport clocks [116] for local writes and a version
vector that represents its view of what updates other replicas have seen.
Unfortunately, the Bayou anti-entropy protocol ends up transmitting com-
plete bodies of all updates that the other replica has not yet seen. This protocol
incurs heavy bandwidth overheads as all updates are propagated to all replicas. and
thus may be impractical to use in bandwidth-constrained environments. Moreover,
though causal consistency is maintained, a replica may serve very stale data as band-
width constraints may prevent a replica from receiving a fresher update for a long
time. As an alternative, this system may be redesigned using the Mars approach as
follows. As in the above example, each replica separates its exchanges with other
replicas into three categories - i) demand requests, i) invalidates, iii) update bod-
ies. Notice that in the original Bayou system, demand requests could always be
served locally. However, by separating invalidates and updates, a replica may need
to contact other replicas for a causally consistent version of the requested object.

The anti-entropy protocol is simply modified to work with invalidates instead of

139

whole update bodies, while update bodies are propagated in a prioritized manner,
like in Mars, to only those replicas that need the updates. Thus, Bayou redesigned
using Mars’ architecture augmented with separation of consistency and update in-
formation can yield significant reductions bandwidth usage. Dahlin et al. [56] give
a detailed description of this redesign and a rigorous evaluation of the reductions in

bandwidth consumption.

140

Chapter 5

Bandwidth-Constrained

Speculative Relication

In the previous sections, we introduced mechanisms for aggressive speculative repli-
cation. The research methodology was to develop mechanisms and validate them
through analytical means as well as by building prototypes to understand system
properties. In the next three chapters, we focus on policy issues related to ASR. The
research methodology is primarily based on proving system properties in a simplistic
analytical framework and on simulation based experiments.

This chapter examines the problem of choosing what objects to specula-
tively replicate, or prefetch, at a large content distribution site. Towards this end,
we study the costs and potential benefits of a technique called long-term prefetch-
ing for content distribution. In contrast with traditional short-term prefetching,
in which caches use recent access history to predict and prefetch objects likely to
be referenced in the near future, long-term prefetching uses long-term steady-state
object access rates and update frequencies to identify objects to replicate to con-
tent distribution locations. Compared to demand caching, long-term prefetching

increases network bandwidth and disk space costs but may benefit a system by im-

141

proving hit rates. The techniques of short-term prefetching, long-term prefetching,
and demand caching are complementary and we envision systems that incorporate
all three techniques for improving response times.

We use analytic models and trace-based simulations to examine several al-
gorithms for selecting objects for long-term prefetching. We find that although the
web’s Zipf-like object popularities makes it challenging to prefetch enough objects
to significantly improve hit rates, systems can achieve significant benefits at modest

costs by focusing their attention on long-lived objects.

5.1 Introduction

In spite of advances in web proxy caching techniques in the past few years, proxy
cache hit rates have not improved much. Even with unlimited cache space, passive
caching suffers from uncacheable data, consistency misses for cached data and com-
pulsory misses for new data. Prefetching attempts to overcome these limitations of
passive caching by proactively fetching content without waiting for client requests.
Traditional short-term prefetching at clients uses recent access history to predict
and prefetch objects likely to be referenced in the near future and can considerably
improve hit rates [28, 30, 64, 70, 142].

In this chapter, we examine a technique more appropriate for large proxies
and content distribution networks (CDNs), namely long-term prefetching. Rather
than basing prefetching decisions on the recent history of individual clients, long
term prefetching seeks to increase hit rates by using global object access patterns to
identify a collection of valuable objects to replicate to caches and content distribution
servers.

As hardware costs fall, more aggressive prefetching becomes attractive mak-
ing it possible to store an enormous collection of data at a large content distribution

site. For example, in March 2001 an 80GB disk drive cost about $250 [57]. How-

142

ever, maintaining a collection of hundreds of gigabytes or several terabytes of useful
web data incurs not just a space cost but also a bandwidth cost: as objects in
the collection change, the system must fetch their new versions. It must also fetch
newly created objects that meet its selection criteria. Due to the Web’s Zipf-like
access patterns, a large number of objects must be actively prefetched to improve
hit rates significantly [28]. Maintaining such a collection appears to be challenging.
In particular, bandwidth expenditure will be the primary constraint in a long term
prefetching strategy. For example, in May 2001 a 1.5 Mbps T1 connection cost
about $1000 per month [100].

In this chapter, we present a model for understanding steady-state cache be-
havior in a bandwidth-constrained prefetching environment. Qur hypothesis is that
by prefetching objects that are both long-lived and popular, we can significantly
improve hit rates for moderate bandwidth costs. The key contribution of our work
is a Goodfetch algorithm for long term prefetching that balances object access fre-
quency and object update frequency and that only fetches objects whose probability
of being accessed before being updated exceeds a specified threshold determined by
the bandwidth limit.

Using synthetic and real proxy trace based simulations we establish that our
algorithm provides significant hit rate improvements at moderate storage and band-
width costs. For example for a modest-size cache that receives 10 demand requests
per second, long-term prefetching can improve steady state hit rates for cacheable
data from about 62% (for an infinite demand-only cache) to above 75% while increas-
ing the bandwidth demands of the system by less than a factor of 2. More generally,
we quantify the trade-offs involved in choosing a reasonable prefetch threshold for a
given object access rate. Based on our trace based simulation, we conclude that the
key challenge to deploying such algorithms is developing good predictors of global

access patterns. Although we leave development of such predictors as future work,

143

we provide initial evidence that even simple predictors may work well.

The rest of this chapter is organized as follows. Section 5.2 provides some
background information about prefetching and our prefetching model. Section 5.3
presents the algorithms that we consider for long-term prefetching. Section 5.4
discusses the methodology we use to evaluate long-term prefetching. Section 5.5
discusses the results of our simulations and provides insights about how long-term
prefetching works. Section 5.6 discusses related work. Section 5.7 summarizes our

conclusions.

5.2 Background

This section describes five key parameters of web workloads that determine the effec-
tiveness of caching and prefetching: prefetching models, object popularities, object
sizes, object update patterns and lifetimes, and the availability of spare bandwidth

for prefetching.

5.2.1 Prefetching Models

We categorize prefetching schemes into two groups: short-term and long-term. In
the short-term model, a cache’s recent requests are observed and likely near-term
future requests are predicted. Based on these predictions, the objects are prefetched.
Considerable research has been performed on this type of model [64, 70, 142], most
of which are based on variations of a Prediction-by-Partial-Matching (PPM) strat-
egy [53].

In the long-term model of prefetching on which we focus, we assume that a
cache or content distribution site maintains a collection of replicated objects based
on global access pattern statistics such as object popularity and update rates. We
envision a hierarchical structure for content distribution with lower level caches

(proxy caches) primarily focusing on servicing client requests and the higher level

144

caches (content distribution servers) on effective content distribution using long-
term prefetching. Proxy caches can use short term prefetching to improve hit rates
further. Content servers maintain a collection of popular objects and update these
objects as they change. New objects are added to the collection based on server
assistance and user access.

The content distribution system requires four components:

1. Statistics tracking. Our selection algorithm uses as input: (i) estimates of
object lifetimes and (ii) estimates of access frequency to objects. Maintaining
these estimates is a key challenge to deploying a long-term prefetching based

system, and we do not address this problem in detail.

If content servers are trusted by the content distribution system, they may
be able to provide good estimates. Otherwise, the system itself must gather
access probability reports from clients or caches and track object update rates.
For example, a distributed federation of caches and content distribution nodes
could gather local object access distributions and report these statistics to a
central aggregation site which would distribute the aggregate statistics to the
caches and nodes. There is some evidence that relatively short windows of

time can provide good access estimates [104].

2. Selection criteria. Based on the statistics, the selection criteria module deter-
mines which objects should be included in the replica’s collection. The rest of

this section discusses this issue in detail.

3. Data and update distribution. The system must distribute objects and updates
to objects to caches that include the objects in their collection of replicated
objects. We model a push-based system in which updates to replicas are sent
immediately to caches that have “subscribed” to the object in question. In

this work, we do not address the details of constructing such a push-based

145

system and refer the interested reader to relevant literature [135, 89].

4. Request redirection. In order to enable clients to transparently access a nearby
copy of a replicated object, an effective redirection scheme is needed. A number

of experimental [69, 190] and commercial systems [4, 101] address this issue.

5.2.2 Popularity Distributions

A key parameter for understanding long-term prefetching is the distribution of re-
quests across objects. Several studies [6, 52, 78, 181] have found that the relative
distribution with which Web pages are accessed follows a Zipf-like distribution.
Zipf’s law states that the relative probability of a request for the ¢’th most popular
object page is inversely proportional to i. Cunha et al. [52] found that the request
probability for a Web cache trace, when fitted with a curve of the form 1/, yields
a curve with exponent of a = 0.982 which we will use as a default parameter. Other
researchers have reached similar conclusions [28].
According to this model, given an universe of N Web pages, the relative
probability of ith most popular page is
C 1
pi = where C' = Zszo (k%) (5.1)
For our synthetic workload, we will use this model of accesses with N = 10?,

a = .982, and C = 0.0389.

5.2.3 Object sizes

Studies by Barford and Crovella [50] show that web object sizes exhibit a distribution
that is a hybrid of a log-normal and a heavy tailed Pareto distribution. The average
size of a web object has been shown to be around 13KB. Work by Breslau et al.
[28] suggests that there is little or no correlation between object sizes and their

popularity. However, an earlier study by Crovella et al. [562] claims an inverse

146

relationship between object sizes and popularities, i.e. users prefer small documents.
They show a weak Zipf correlation between popularity and size with a zipf parameter
-0.33. However we did not observe an appreciable correlation between object sizes
and popularity in the Squid traces we analyzed. Hence, for our simulations we
do not assume any correlation. It must, however, be emphasized that if the inverse
correlation were to be assumed, a prefetching strategy based on maintaining popular

objects will perform better with respect to both bandwidth and cache size.

5.2.4 Update patterns and lifetimes

Web objects have two sources of change - (i) updates to objects that are already
present, (ii) introduction of new objects. The work by Douglis et al. [62] shows that
(mean) lifetimes of web objects are distributed with an overall mean of about 1.8
months for html files and 3.8 months for image files. Though they analyzed life-
times for objects in varying popularity classes, little correlation is observed between
lifetime and popularity. The work by Breslau et al. [28] further strengthens the case
for lack of strong correlation between lifetime, popularity and size of objects.

The lifetime distribution for a single object over time is found to be expo-
nential in [30]. They consider the Internet as an exponentially growing universe
of objects with each object changing at time intervals determined by an exponen-
tial distribution. Their analysis shows that the age distribution of an exponentially
growing population of objects with (identical) exponential age distributions remains
exponential with the parameter given by the sum of the population growth and ob-
ject update rate constants. They then show with respect to the cost of maintaining a
collection of fresh popular objects that the introduction of new objects on the Inter-
net is equivalent to changing objects in a static universe of objects with a different
rate parameter.

In our simulations we use the data for lifetime distribution presented in [62].

147

We assume no correlation with popularity or size. Our criterion for selecting an
object is based on its current popularity and mean lifetime and is independent of
its past and of other objects. We therefore describe our algorithm in terms of the
bandwidth cost to update a fixed collection of objects as they are updated. But
following analysis done by Brewington et al. [30], our algorithm and analysis also
apply to the case of maintaining a changing collection of objects that meet the
system’s replication selection criteria. We explain this assumption in greater detail

in section 5.4.

5.2.5 Spare Prefetch Resources

Prefetching increases system resource demands in order to improve response time.
This increase arises because not all objects prefetched end up being used. Resources
consumed by prefetching include server CPU cycles, server disk I/O’s, and network
bandwidth. The increased resource consumption can interfere with demand re-
quests. Interference can increase miss latencies for demand requests and offset the
benefits of prefetching as explained in Chapter 4. Excessive prefetching can also
overload systems causing severe performance degradation compared to even a sys-
tem that does no prefetching. Therefore, a key issue in understanding prefetching is
to determine an appropriate balance between increased resource consumption and

improved response time.

5.2.6 Methodology

In Chapters 1-4, we addressed the mechanism issue of how to achieve this balance in a
self-tuning manner to support aggressive prefetching. In this chapter, we explore the
policy question of what objects to aggressively prefetch given bandwidth constraints
at a large content distribution site. In order to examine the effect of a particular level

of aggressiveness, we simulate it using a prefetch threshold, i.e. a file is prefetched

148

Demand fetch

uncached object Cached object
Collection of invalidated

objectsin cache

Prefetch object

Figure 5.1: Equilibrium in bandwidth-constrained cache.

if the probability of its access is above the threshold. Note that the purpose of
the threshold in the following experiments is strictly as an aggressiveness metric
and is used to determine the increased bandwidth and storage costs of prefetching
and the associated benefits in response times assuming that there is no interference
between prefetch and demand requests. In a real system employing ASR, Mars’ self-
tuning architecture will obviate the need for explicitly setting thresholds and will
automatically propagate prefetch requests commensurate to available spare capacity

without interfering with demand requests.

5.3 Model and algorithms

In contrast with traditional caching, where space is the primary limiting factor,
for long-term prefetching bandwidth is likely to be the primary limiting factor. In
this section, we first describe an equilibrium model useful for understanding the
dynamics of bandwidth-constrained long-term prefetching. We then describe our

algorithms.

5.3.1 Bandwidth Equilibrium

A long-term prefetching system attempts to maintain a collection of object replicas
as these objects change and new objects are introduced into the system.

Figure 5.1 illustrates the forces that drive the collection of fresh objects stored
in a cache towards equilibrium. New objects are inserted into the cache by demand

requests that miss in the cache and by prefetches. Objects are removed from the set

149

Object decay rate

Prefetching increases
the rate that new objects

are added to the cache New Equlllbnurt\ X.

. Rate of demand fetches + prefetches
“New Equilibrium X2

“Object decay rate with

Rate of object insertion long~term prefetching

(RegRate * MissRate(X))

Original Equilibriui”*
Rate of demand fetches

By prefetching
less fast-changing

Fetch Rate (Objects/second)

objects, the invalidation
rate falls for a given X

Rate of object invalidation
(increases with increasing |X|)

|X| (Number of fresh cached objects)

Figure 5.2: Equilibrium in bandwidth-constrained cache.

of fresh objects in the cache when servers update cached objects, invalidating the
cached copy.!

The solid lines in Figure 5.2 illustrates how this equilibrium is attained for
a demand-only cache with no prefetching. Let X be the set of fresh objects in the
cache at a given moment, and let |X| denote the number of objects in this set. If
the number of requests per second being sent to the cache is ReqRate, then the rate
of object insertion into this set is ReqRate- MissRate(X). For a given request rate,
the miss rate typically falls slowly as | X| increases [65, 84], and the rate of insertion
falls with it. At the same time the rate of invalidations (or expirations) of cached
objects increases as |X| increases. As the figure illustrates, these factors combine to
yield an equilibrium collection of objects that can be maintained in the cache.

The dotted lines in Figure 5.2 illustrate how prefetching can change this
equilibrium. First, as the horizontal line illustrates, prefetching increases the rate

at which new objects are added to X. If the collection of objects prefetched have

!For simplicity, we describe a system in which servers invalidate clients’ cached objects when
they are updated [49, 113, 123, 185]. Client-polling consistency would yield essentially the same
model: in that case, objects that expire are removed from the set of objects that may be accessed
without contacting the server.

150

similar lifetimes to the collection of objects fetched on demand, then invalidation
rates will behave in a similar fashion, and a new equilibrium with a larger set X
will be attained as shown by the point labeled New Equilibrium X;.

A prefetching system, however, has another degree of freedom: it can choose
what objects to prefetch. If a prefetching system chooses to prefetch relatively
long-lived objects, its invalidation rate for a given number of prefetched objects | X|
may be smaller than the invalidation rate for the same number of demand fetched
objects. This change has the effect of shifting the invalidation rate line down, and
yields a new equilibrium, New Equilibrium Xa, with | Xa| > |X1]-

A potential disadvantage of preferentially prefetching long-lived objects is
that the system may thereby reduce the number of frequently-referenced objects
it prefetches. In particular, although |X2| > |Xi|, if the objects in X; are more
popular than the objects in X3, the hit rate for equilibrium X; may exceed the hit

rate for equilibrium X5.

5.3.2 Prefetching Algorithms

We consider two prefetching algorithms. The first attempts to maintain an equilib-
rium cache contents containing the most popular objects in the system. The second
attempts to balance object popularity (which represents the benefit of keeping an

object) against object update rate (which represents the cost of keeping an object.)

Popularity

The Popularity algorithm identifies the £ most popular objects in the universe and
maintains copies of them in the cache. Whenever any one of these objects is updated
(or a new object joins the set of the most popular k objects), the system fetches the
new object into the cache immediately.

Figures 5.3 and 5.4 shows the hit rate achieved and bandwidth consumed by

151

1
Stéady state hit‘rate ‘
Object hit rate ---+--- A
//{‘r/
e
7
0.8 - * —
,’*r
,’+/r
/”F/
A&
2 06 A i
< e
14 o
T +
3 s
2, +
=
O o4 o E
A+
A
A
,"F/
//;k/
02} T E
0 Il Il Il Il Il Il Il
10 100 1000 10000 100000 1le+06 1le+07 1le+08 1e+09

Number of objects

Figure 5.3: Hit rate vs. number of prefetched objects for the Popularity algorithm

1le+09 T
Demand ——
Popularity ---+--
1e+08 PR
,,+
/*/
,%/
1le+07 | e E
7 7
& -
4
c le+06 | A E
=
5 P
£ %/*
3 100000 | E
c A
<] -
o ,+’
S «
2 10000 F o E
=] v
3 +
oM - .
1000 | = E
<
100 F E
*/’F
et
10 Il Il Il Il Il Il Il
10 100 1000 10000 100000 1e+06 1e+07 1e+08 1e+09

Number of objects

Figure 5.4: Bandwidth vs. number of prefetched objects for the Popularity

152

the Popularity algorithm when it prefetches the k£ most popular objects. Although
this approach can achieve high hit rates, its bandwidth costs are high. In particular,
to improve the hit rate by 10% compared to the steady state hit rate of a demand
cache that receives 10 requests per second, the Popularity algorithm must consume
at least 1000 times more bandwidth than such a demand cache.

Because of these high bandwidth demands, we do not consider the Popularity

algorithm further in this section.

Goodfetch

The Goodfetch algorithm balances object access frequency and object update fre-
quency and only fetches objects whose probability of being accessed before being
updated exceeds a specified threshold. In particular, for object 7, given the object’s
lifetime i f etime;, the probability that a request will access that object P;, and the
total request rate of demand requests to the cache request Rate and assuming that
object references and updates are independent, the probability that a cache will

access an object that it prefetches before that object dies is

Goodfetch =1— (1 _ B)lifetime,—-requestRate (52)

lifetime; xrequestRate is the total number of requests to the cache expected during
the object lifetime, and (1— P;)!ifetimes requestRate jg the probability that none of these
requests access object 1.

The Goodfetch values computed as above are used to prioritize objects to
be prefetched and maintain them as a sorted list. As illustrated in Figure 4.2, the
most valuable object in this list is pushed out when spare capacity is available. In
our simulation experiments, however, we simply use a threshold to limit the total
bandwidth consumed by prefetching and do not simulate interference effects. As

demonstrated through NPS in Chapter 4.3, simple end-to-end mechanisms may be

153

used to prevent such interference. In the following experiments, the threshold is
used to limit prefetch bandwidth by prefetchng only those objects whose Goodfetch
value exceeds the threshold corresponding to the available prefetch bandwidth.

Figure 5.5-a shows a ”contour map” that relates the Goodfetchvalues to a
Zipf-like popularity distribution. Objects are sorted by popularity or access fre-
quency and the z-axis represents the object index ¢ in this sorted order. Assuming
accesses to objects follows a Zipf-like distribution P; ~ Z.%, P; falls slowly with in-
creasing i. Each line in the figure represents a line of constant objectLifetime -
cacheRequest Rate, and the y-axis represents corresponding Goodfetch values.
ObjectLifetime depends on the particular object chosen and cacheRequestRate
depends on the demand fetch rate to the cache under consideration. A given value
of threshold in these experiments corresponds to a particular amount of spare band-
wdith available for prefetching in the system. Given a threshold for a cache, the set
of objects that qualify for prefetching based on their access frequencies and update
rates is determined. Figure 5.5-b illustrates the set of objects that will be prefetched
for a threshold of 0.5 and a request rate of 10 request/second. Objects among the
top-1000 are worth prefetching if they will live at least 10% seconds (about 17 min-
utes); in contrast objects among the top-1,000,000 are worth preserving if they will
live at least 10® seconds (about 12 days). Given that a significant fraction of ob-
jects live for 30 days or longer [62], a busy cache such as this may be justified in
prefetching a large collection of objects.

Overall, it appears that long-term bandwidth-constrained prefetching will
be most attractive for relatively large, busy caches. Reducing the request rate to a
cache by an order of magnitude reduces the set of objects eligible to be prefetched
to that cache for a given threshold by approximately an order of magnitude, i.e. as
the access rate at a cache decreases, the number of objects that can be prefetched

at that cache for a given amount of spare bandwidth decreases considerably.

154

-

T T T T
“\ \ . .
. \
08| N
: !
| |
08 |
g i
g i
g i
o 07 L |
c ' i
Q | !
206 4 §
(=) . \
8— .‘. \
) i
0.5 2. i
= ! \
[3] : |
= ! i
L 04 | |
<5 N |
E “ \
) \
03 fr v
% : \
\ L \
\ . \
02 1\ " N
\ \
\ \\
0.1 :
1 10 100 1000 10000 100000 1le+06 1e+07 1le+08 1le+09
Object Id
(a) Goodfetch map
1 T T =T, T T T
S \ \ . n lifetime=0.1s
N . ; lifetime=1s -------
09 % \ \ % Y 5 lifetime=10s --------
y \ | \ K lifetime=10"2s
t \ Y N y L lifetime=10"3s ——--
08 \ s \ + | b lifetime=10"s -------
| v v i i i lifetime=10"5s -
Y | | | i 1 lifetime=10"6s -
0.7 | i 1 Y i . lifetime=10"7s -
= - | L \ 4 B " Threshold = 0.5
[} ; ! § | ; ;
— L 1 o b
‘5 0.6 L | |
8— .‘. \
: i
c 05 B 1
[3] : |
= L i
L 04 | |
<5 N |
E “ \
) \
03 fr v
% : \
\ L \
\ . \
02 1\ N
\ \
\ \\
0.1 :
o >~ o e e e g T Ty
1 10 100 1000 10000 100000 1le+06 1e+07 1le+08 le+09
Object Id

Figure b5.5:

(b) Example

Prefetch threshold vs object popularity for lines of constant

objectLifetime - cacheRequestRate. (a) shows the threshold map and (b) illus-
trates the set of objects that will be prefetched for a threshold of 0.5 and a request
rate of 10 request/second.

155

5.3.3 Constant-factor Optimality

In this section we show that the hit rate obtained by prefetching the set of objects
computed by the Goodfetch algorithm is within a constant factor (2X) of the optimal
achievable hit rate under a simple restrictive model. The model assumes that the
cache gets a long sequence of requests so that average access rates and average
lifetimes of objects can be computed and are known a priori. It also assumes that
requests for objects arrive independently in accordance with the respective access
rates. We show the optimality to within a constant factor by expressing the object
selection problem in the context of prefetching as equivalent to the 0-1 Knapsack
problem. We then show that the Goodfetch algorithm is equivalent to the value-
density heuristic for the 0-1 Knapsack problem, which is known to be within a 2X
factor of optimal solution, but for a technical condition described below.

We first introduce the Knapsack problem which is as follows: Given a set of
items S = {1,...,n}, where item ¢ has size s; and value v; and a knapsack with
capacity C, find the subset S’ C S that maximizes the value of Zie g v; given that
Dies' 8i < C.

The value-density heuristic for the Knapsack problem is as follows: Let
di,ds,...,d, denote the items in the order of non-increasing value-density, i.e. ;’—z
Return the set of objects as §' = {di,...,dr}, where k is the largest integer such that
> <i<k d; < C. The following lemma expresses the optimality of the value-density
heuristic to within a constant factor provided the following technical condition is
satisfied: no single object has greater value than the combined value of the set of
objects computed by the value-density heuristic.

Lemma 1: Let P, be the value of the optimal selection of objects and P
denote the value of the set computed by the value-density heuristic. Then, P,,; <
2(mas(P, masicys) (11)))

Theorem 1: The byte hit rate achieved by the Goodfetch algorithm is within

156

a 2X factor of the optimal.

Proof Outline: We model the object selection problem in the context of prefetching
as an instance of the 0 — 1 Knapsack problem. Given a set of n objects, with a
popularity distribution P;, a lifetime distribution (f;, 1 < ¢ < n, a size distribution
8z;, a total bandwidth constraint B and an infinite demand cache, the prefetching
problem is to select a suitable subset of objects S to keep updated locally in order to
maximize hit rate. The contribution of object 7 to the object hit rate is P;. However,
the contribution to the hit rate because of prefetching object i, given the existence

of an infinite demand cache, is the probability that object 7 is accessed at least once
Goodfetch(i)
I
Goodfetch(i)*sz;
l; .

during its lifetime, divided by [; which is given by . The contribution to

the byte hit rate is therefore proportional to We understand this
expression as the value of object . The ”size” or the bandwidth cost of keeping the
local copy of object 7 updated is f—jzp: Therefore, the value-density of object ¢ is given
by Goodfetch(i), which is exactly the criterion that the Goodfetch algorithm uses
to select objects. Thus the Goodfetch algorithm is equivalent to the value-density
heuristic for the 0-1 Knapsack problem and hence achieves a byte hit rate that is
within a 2X factor of the optimal provided that the following technical condition is

satisfied: no single object ¢ has a value, i.e. w
?

, the contribution to the hit
rate because of prefetching ¢, greater than the combined value of the set of objects

selected by the Goodfetch critrerion. [J

5.4 Methodology

In the previous section we introduced the Goodfetch algorithm that computes a
collection of objects for which the probability of access before it gets updated is
maximal. We claimed that this algorithm balances object access frequency and up-
date frequency thereby resulting in minimal wasted prefetch bandwidth and still

gives attractive improvements in hit rate. In order to verify this, we perform a cost-

157

benefit analysis of the Goodfetch algorithm in terms of improvement in hit rate,
bandwidth consumption and cache size through two sets of simulation experiments
- (i) based on a synthetically generated set of 1 billion objects, and (ii) a proxy
trace based simulator implementing a prediction based version of the Goodfetchal-
gorithm. The synthetically generated workload experiments fundamentally give a
proof of concept for the performance of the Goodfetch algorithm. A key benefit of
using a synthetic workload is that it allows us to model global object popularities,
including objects that have not been accessed in the trace of a particular cache. On
the other hand the proxy trace based experiments analyze the performance of the
implementation of an adaptive, prediction based version of the Goodfetch algorithm
on a smaller but realistic workload. This workload automatically exhibits tempo-
ral locality between accesses to the same object, their size distribution and models
burstiness in request traffic as well. It is directly comparable to the performance of

real web proxies and hence serves as a sanity check.

5.4.1 Analytic model

For simplicity, we assume the demand request arrival rate follow a Poisson distribu-
tion (We discuss the effect of this assumption later in the section). For calculation
of steady state hit rates, we assume that the request arrival rate has a mean of a
requests per second. We define the lifetime of an object as the time between two
modifications to that object. The lifetimes of an object are known to follow an ex-
ponential distribution [30]. In our model, we assume that the average lifetime of an
object i to be l;. Each object ¢ is assumed to have a fixed size s;. As previously ex-
plained, the probability of an access to an object with popularity ¢ follows a zipf-like
distribution. We assume the objects are indexed with respect to their popularities.

Hence the probability of a request is for an object with index i is p; = C % (1/%).

158

Steady state demand hit rate

In this section we present a closed form expression for calculating the steady state
hit rate of a demand cache with an infinite cache size. An analytical expression is
necessary as the simulation based study is not plausible for calculating the steady
state parameters because of the huge number of objects and hence the long time
requirements for cache warm up. We define Py, (t) as the probability that the
previous access to object ¢ was ¢ time units before the present time and Pp,(t) as
the probability that no updates were done to object 7 since its last access ¢ time

units in the past. Now, the probability of a hit on a request to a demand cache is
o0
Puy = Yo [PalPat)at (5.3)
- 0
(3

Suppose P,) (k) is the probability of k accesses occurring in ¢ time given
an access arrival rate of a. With the assumption of request arrivals following Pois-
son distribution, the probability of k arrivals occurring in ¢ seconds is P,) (k) =
e, (at) . The probability of object i being accessed on a request is p;. The proba-

bility of no accesses to object 7 in this time ¢ is

o0
P(0 accesses to object ¢ in ¢ time) = Z P(k requests in t)P(none of these k requests is for 7)

k=0
(—“)u—mﬁ

_ _—at atl—p,-))k
- eakz_% A

e—ateat(l—pi)

Il
|M8

— e (api)t

The above equation implies that the inter access rates to an object i follow
an exponential distribution with a mean time of (1/ap;). Hence, the probability of

an access to an object ¢ occurring ¢ time units after an access to the same object is

159

(api)e~(®Pi)t which is also the distribution for Py, (t). Hence,
Py (t) = (ap;)e (@it (5.4)

Given that the lifetimes of an object ¢ are exponentially distributed with an

average [;, the probability of no updates to that object happen in time ¢ is
Pp(t) = etk (5.5)
From Equations 5.3, 5.4 and 5.5, the probability of hit on an access will be
Prig, = Zpi/ ((api)e_(api)t) (e_t/l") dt
- 0
(2
_ sz(apz) e_(apz‘H-/lz)t
—(api +1/5L) |
apil;
— . _ 5.6
;p, <<1pz'li+ 1) (5.6)
ap;l;

The fraction apil;+1 represents the hit rate among accesses to the object .

Stated otherwise, this denotes the probability of object 7 being fresh when it is being

accessed. We also call this as freshness factor of object i denoted as ff(i).

Steady state prefetch hit rate

In the Goodfetch algorithm we propose for prefetching objects, an object is always
kept fresh by prefetching it, when any change occurs, if its Pyooqretcn as calculated
in Equation 5.2 is above chosen threshold value T. For an object i, if Pyoodretcn (i) is
more than the chosen threshold value 7', then we will have a hit on that object for
all accesses. For other objects the hit rate remains same as calculated in previous

which will be ff(:). Hence, the steady state hit rate in a prefetch based scheme

160

with threshold value T is

Phitp (T) = Z Pihi, where (57)
i
h 1 if PgoodFetch(i) >T
i =
agﬁ—ilil otherwise

Steady state cache sizes

The steady state cache size is defined as the total size of fresh objects in a demand
cache of infinite size at steady state when the cache is in equilibrium, i.e. the rate
at new incoming objects are brought into the cache equals the rate at which objects
get invalidated. We estimate the steady state demand and prefetch cache sizes in
this section. The estimation of these sizes for a billion object real web workload
mean a long run of simulation. Assuming a billion object web with 13KB average
size, a pessimistic steady state demand cache size is 13TB. However, the steady
state cache size as defined above, is likely to be lesser if invalidation of objects were
to be taken into consideration.

In steady state, the probability of an object ¢ being fresh in the cache is
given by [° P4, (t)Pg,(t)dt, where Py, (t) and Pp; are as defined earlier. Hence the
probability of an object ¢ being fresh in the cache at some random time instance is
just the freshness factor of 4, ff (i) as derived before. Given the freshness factors of
objects, the estimated steady state cache size is), s;ff(¢). Hence, the estimated

demand cache size in steady state, C'Size,s,, is

. ap;l
CSize = E Si——— 5.8
584 p Yapil +1 (5.8)

When using the Goodfetch algorithm for prefetching with threshold value T,

the estimated total cache size is calculated as

161

CSizess, = Zs,-*fi,where (5.9)
i

1 if PgoodPrefetch(i) >T

ap;l
ap;l+1

i =

otherwise

Steady State Bandwidth

We present the steady state bandwidth requirements for both demand based access
methods and the Goodfetchalgorithm based scheme. The estimated steady state
bandwidth consumed by just demand fetches is

BWy, = > si(l— ff(i))ap; (5.10)

(3
For Goodfetchalgorithm based prefetch strategy, the steady state bandwidth
consumed by both prefetch and demand fetches is

BWgs, = Zsi*hi,where (5.11)

1
1/1; if Pyoodreten(i) > T
ap;(1 — ff(i)) otherwise

hi =

To see the above, consider a time period T over which accesses appear at a
rate of a arrivals per unit time. The number of accesses in time T has a Poisson
distribution with mean a7'. Let the relative access probability of an object 7 is p;.
From the discussion in Section 5.4.1, we can infer that the number of accesses to an
object 7 in time period T also follows a Poisson distribution with mean ap;T.

The estimated bandwidth is

BWss, = 1> 720 P(k accesses to i in T time) x (5.12)

Z?:o P(j hits in those k accesses)(k — j)s;

162

2k
P(k accesses to 7 in T time) = e_)‘ﬁ, where A = ap;T (5.13)
P(j hits in k accesses to 1) = Cf(pg)j(l —)9 where (5.14)

p; = probability of hit on an access to i

The probability of hit on an access to object ¢ is same the freshness factor

calculated in Section 5.4.1. From above equations,

o0

BW.., — %ZZ s Zok PP =)k~),
2

= Z sz-(l — pi)api. (5.15)

5.4.2 Analytic model parameters

The synthetic workload simulator assumes a set of 1 billion objects that exhibit a
Zipf like popularity distribution with the Zipf parameter a = —0.982. The sizes
of the objects are assumed to follow a log-normal + pareto like distribution as
explained in [16]. We assume that there is no correlation between object sizes
and their popularities. The distribution of object lifetimes was taken from [62]
again assuming no correlation with popularity or size. The analysis in [28] support
these assumptions of the non existence of any observable correlation between the
popularity, lifetime and size of objects. Figures 5.6 and 5.7 shows the cumulative

distribution functions for object sizes and lifetimes.

163

Cumulative Distribution Function

Cumulative Distribution Function

Distribution of File Sizes
1 T T T

T
"sz.gr"

09

0.6 -
05
04 |

03 |

Il
1 10 100 1000 10000 100000 1le+06 le+07
log(file size in bytes)

Figure 5.6: Cumulative distribution of object sizes

Cumulative Distribution Function

1le+08

1 T T

It gr*
09 -
0.8 -

0.7 -

04

03 |

02 |

0.1

0 L L L
0 2 4 6

log_10(lifetime in secs)

©

Figure 5.7: Cumulative distribution of object lifetimes

164

10

All data is considered to be cacheable. This assumption is justified since
we are concerned only with the improvement in hit rate because of prefetching and
uncacheable data affects both demand and long term prefetch caching alike. We also
speculate that efforts such as active caches [33], active names [171], and ICAP [170]
to support execution of server program at caches and Content Distribution Nodes.
Also the efforts to improve cache consistency semantics [185, 49, 113, 123] will enable
caching of much currently uncacheable data. To obtain the steady state hit rate
we need to simulate a trace consisting of several billion records. Since this takes an
inordinate amount of time, we resort to the expression derived in the previous section
to compute the steady state hit rate of an infinite-size demand cache. The bandwidth
consumption for the prefetching strategy is computed by summing size; /li fetime;
over all prefetched objects with (Pyooqretch > Goodf etch).

The above simulation methodology has several limitations. It ignores bursti-
ness of the request traffic and approximates it by a fixed average arrival rate. This
will directly affect the number of consistency misses as seen by a demand cache.
Burstiness of request traffic can also hurt prefetching at a proxy since there may
not be any bandwidth available for prefetching at the peak points of demand traffic.
(On the other hand prefetching can also help burstiness by smoothing out demand.)
Ignoring temporal locality in the synthetically generated trace underestimates the
hit rate seen by the demand cache.

The above methodology models a scenario where the universe of objects be-
ing accessed at the cache is fixed and their popularities known a priori. However,
the Internet is a dynamic set of objects with new objects being created continuously.
But, our model and the prefetching strategy extends to a dynamic universe of ob-
jects by assuming the existence of an oracle to perform the statistics gathering as
described in Section 5.2.1. Such an oracle continuously maintains the information

about changing set of objects, their popularities and lifetime distributions. The

165

prefetching strategy obtains a snapshot of the Internet from the oracle and decides
whether or not to prefetch an object solely on the basis of its current popularity and
mean lifetime, independent of other objects and independent of its history. Thus,
given good statistical data, it makes no difference if the collection of objects in the
prefetch set change over time. As noted in Section 5.2.1, developing such a realistic
statistics predictor module is a subject left as future work. Though such an oracle
is unrealistic, we show in the next subsection that the prefetching strategy yields to

an adaptive/learning implementation that shows attractive performance in practice.

5.4.3 Proxy trace simulation

The trace based simulator uses a 12 day trace logged by the Squid proxy cache [31]
at NCSA, Urbana Champaign between Feb 27 and Mar 10 2001. The trace consists
of about 10 million records and accesses to 4.2 million unique objects. We simulate
an LRU based demand cache and a prefetch cache implementing the Goodfetch
algorithm using two simple predictors for assessing object popularities. Query URLs
(with a ”?” in them) are considered as both uncacheable and unprefetchable.

The sizes of the objects are used as logged in the trace. However, as in
the analytic model, lifetimes are generated synthetically from the distribution given
in [62], because the traces do not contain object update information. Since our
prefetch strategy is sensitive to object lifetimes, this distribution could directly and
significantly affect our results. Hence we also perform a sensitivity analysis of the
performance of the Goodfetch algorithm with respect to median object lifetime
by shifting the probability distribution curve of the lifetimes by several orders of
magnitude along the lifetime axis.

We use a simple statistical model to estimate the popularities of the objects.
The simulator maintains a running count of the number of accesses to each object

and computes object popularity by dividing this number by the total number of

166

accesses seen. At any access the simulator computes the Pyooqretch Of the object
as defined in Equation 5.2 and checks if it exceeds the threshold, in which case the
access is considered to be a prefetch hit. We call this object popularity predictor
as Predictorl. Predictorl is aggressive, as it uses the current access to update the
corresponding object’s popularity before computing its Pyooqretch- This predictor
can potentially save compulsory misses to an object since it knows an object’s pop-
ularity even before the first access to it. Such a predictor is feasible in a scenario
where popularity information is aggressively pushed out by the server, or is widely
shared across several cooperating caches. We also simulate a more conservative
predictor known as Predictor-2 that can not prevent compulsory misses. An object
has to be seen at least once before before its popularity can be used to consider
it for prefetching by this predictor. For comparison purposes, we also simulate an
oracle EverFresh that gets rid of all consistency misses, i.e., an access is a hit if
the corresponding object has been seen before. The hit rate so obtained is the
maximum attainable by a cache based on local prefetching alone. Even the oracle
cannot prevent compulsory misses or achieve hits to uncacheable objects. For all of
the experiments, the cache was allowed to warm up for 8 days. The long period of
warm up will prevent inflated estimates of popularities corresponding to accesses in
the beginning of the trace.

As part of future work we intend to measure the performance of more aggres-
sive predictors that gather popularity information from several cooperating caches.
In such a scenario, it might be possible to considerably reduce compulsory as well

as consistency misses.

167

Steady State Hit Rate

0.2 | 1
o s
0.1 1 . 10 100
Arrival rate (reg/sec)
(a) Steady state hit rate

1le+09
D
£
e
L
Q2
9 1e+08
o
<]
kS,
B le+07
=
<
> - .
o R}
% 1e+06 | * e i
Q - -
Q
o .
N i
5
» 100000 | .- E
&

T0.01" —+—
g "Tg.r e
"TO.5" ---%--

z T0.9" 8

10000 L L

0.1 100

1 . 10
Arrival rate (reg/sec)

(b) Number of objects prefetched

Figure 5.8: Prefetching popular long lived objects.
arrival rates for various thresholds

168

Effect

of increasing request

100000

10000

1000

100

Steady State Bandwidth(in Kbps)

10 : :
0.1 1 . 10
Arrival rate (reg/sec)

(a) Steady state bandwidth consumed

100000

10000

1000

100

Steady State Cache Size(in GB)

"T0.9" &
"demand” --m--

10 : :
01

1 . 10 100
Arrival rate (reg/sec)

(b) Steady state cache size

Figure 5.9: Prefetching popular long lived objects. Effect of increasing request
arrival rates for various thresholds

169

5.5 Results

5.5.1 Analytic Evaluation

Figure 5.8(a) plots the hit rates obtained by our prefetching policy for various
prefetch thresholds with increasing request arrival rate. Note that demand request
arrival rate is a key parameter describing the scale of the content distribution node
under consideration and an increase in demand arrival rate increases the set of ob-
jects that meet a given threshold. The steady state hit rates for demand cache serve
as a baseline for comparing the hit rates obtained by our prefetch policy. The graphs
show that the threshold policy improves hit rates. For example, at an arrival rate
of 1 req/sec, for threshold 0.5, we get an overall hit rate of 55% compared to a hit
rate of 50% obtained by an infinite demand cache in steady state. For an arrival
rate of 10 req/sec, for threshold 0.1, we get an overall hit rate of 75% compared to
a hit rate of 62% obtained by the demand cache.

Note that significant improvements are achievable across a broad range of
CDN scales. Although lower arrival rates reduce the collection of objects that meet
the prefetch threshold criteria, lower arrival rates also reduce the steady state hit
rates achieved by a demand cache.

Figure 5.8(b) plots the total number of objects (from our simulated universe
of one billion objects) that qualify to be prefetched at various threshold values
with increasing arrival rates. Figures 5.9(a) and 5.9(b) plot the amount of prefetch
bandwidth and prefetch cache needed to maintain the prefetched objects.

As seen from the graphs, the threshold value affects the observed hit rate
and the overhead. A high threshold implies a better chance of use of the prefetched
object but a decreased hit rate since fewer objects will qualify for prefetching. A high
threshold means that the amount of spare bandwidth in the system is less. Thus,
the simulator limits bandwidth and cache size usage by prefetch requests through

the threshold. As observed before,

170

Figure 5.9(a) suggests that as the arrival rate increases, even low thresholds
would incur a modest bandwidth overhead as compared to demand bandwidth. For
example, for an arrival rate of 10 req/sec, a threshold of 0.1 would incur bandwidth
costs of 1.6Mbps over the demand bandwidth of 800Kbps. From Figure 5.8(a), this
would give us a hit rate of 75%.

Figure 5.9(b) helps us in analyzing a typical cache size budget needed at a
real world proxy given its request rate. For example, a 10req/sec request rate, with
a threshold of 0.1 would correspond to a 2TB prefetch cache size. Given today’s
disk costs, it would cost around $6400 to add a 2TB disk. From Figure 5.8(a), a
threshold of 0.1 at an arrival rate of 10 req/sec would provide us with a 75% hit
rate.

From the graphs, at the cost of 10TB disk and 10Mbps bandwidth, we could
achieve 87% hit rate which effectively means a decrease in missrate from 45% to

13%.

5.5.2 Trace-Based Simulations

A simple analyis of the trace showed that out of the 10.9 million requests that the
proxy received, approximately 10% were consistency check messages. This implies
that even an ideal prefetching strategy that prevents all of the consistency misses
cannot give an improvement of more than 10% in hit rate over that of an infinite
demand cache, unless, its statistics tracing spans multiple caches, or it allows servers
to supply popularity estimates when objects are created.

In our experiments we assume a demand cache of size 28GB. We allow the
cache to be warmed for 8 days and then gather performance measurements over the
remaining 4 days.

Figures 5.10,5.11, and 5.12 show the change in hit rate, overall bandwidth

consumption (demand-+prefetch) and overall cache size (demand+prefetch) with

171

Object Hit Rate

Overall cache size(in GB)

=}
08 |- e a.
o .
0.6 &I
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, R
04
02
Demand —+—
EverFresh ---<---
Predictorl ------
Predictor2 &
0
0.1
1/Threshold
Figure 5.10: Object Hit rate vs. threshold
60
50
40 |
———————————— K= mm e3¢
30
20
10 -
Demand —+—
. Predictorl ------
0.1

1/Threshold

Figure 5.11: Overall cache size vs. threshold

172

Bandwidth (in Kbps)

Object Hit Rate

1000

Predictor2 --
800 |
600 |
o i h T
b h T
- - K-
400 F — ‘ 7
e B
T e IV =
200 |
0
0.1 J
1/Threshold
Figure 5.12: Total Bandwidth vs. threshold
1
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, *
B
0.8 | KT |
*
T EverFresh
0.6 - Predictorl X |
g =] 2l B
* T
T / Predictor2 J
Demand
0.2 | |
0 : : ! L L Il Il Il
250 300 350 400 450 500 550 600 650 700

Bandwidth usage

Figure 5.13: Hit rate vs. Total Bandwidth

173

Object Hit Rate

Object Hit Rate

1
0.8 4
0.6 | i
04 | i
0.2 4
Demand ——
Predictorl: T=0.1 ---x---
Predictorl: T=0.9 ---%---
Predictor2: T=0.1 &
o)) Predictor2: T=0.9 —-m-
10 . . 100
Overall cache size(in GB)
Figure 5.14: Hit rate vs. Total cache size
1 T
Demand —+—
Predictorl:T=0.1 ---x--—-
Predictorl:T=0.9 ---*--- I
Predictor2:T=0.1 & =T
Predictor2:T=0.9 ---=- T K
08 | e 4

0 !

4 -3 -2 -1 0 1 2
shift factor for life time. shift factor 0 => mean lifetime = 90days

Figure 5.15: Object Hit rate senstivity

174

Bandwidth(in Kbps)

Overall cache size(in GB)

10000

w000 F T E

60

50

40

30

20

10

10 I I I I I

T
Demand —+—
Predictor1:T=0.1 -
Predictor1:T=0.9 ---
Predictor2:7=0.1 &
Predictor2:7=0.9 --m--

-4 -3 -2 -1 0 1 2
shift factor for life time. shift factor 0 => mean lifetime = 90days

Figure 5.16: Bandwidth sensitivity

De‘mand _—
Predictor2:T=0.1 ---x---
Predictor2:T=0.9 ---*---

4 -3 -2 -1 0 1
shift factor for life time. shift factor 0 => mean lifetime = 90days

Figure 5.17: Total cache size sensitivity

175

varying thresholds. In figure 5.10, the EverFresh algorithm gives a hit rate of about
61%. At a threshold of 0.1 Predictor2 almost matches this ”optimal” achievable hit
rate. Predictorl, as expected, gives much higher hit rates since it can avoid com-
pulsary misses as well. Figure 5.12 shows that for a threshold of 0.1, the bandwidth
blow-up as compared to the demand bandwidth is less than 2X. Predictor 1 shows
lesser bandwidth costs because of the smoothing out of prefetched bytes over a larger
duration (a typical prefetched object’s lifetime) as opposed to the post-warming pe-
riod of 4 days for Demand and Predictor?2. Figure 5.11 shows that the increase in
cache size due to prefetching is nominal as well. Thus, we conclude that we can
obtain significant improvements in hit rate at modest bandwidth and cache space
costs.

Figures 5.13 and 5.14 show the attainable hit rate with respect to the band-
width and cache space costs respectively. These graphs have also been generated
from the data obtained from experiments performed by varying the threshold and
have been included for ease of reference.

To test the sensitivity of our results to our assumptions about lifetimes, we
vary the mean life time of objects and study its effect. Figures 5.15, 5.16, 5.17
show our results. The x-axis shows a shift factor s which denotes the horizontal dis-
placement along the lifetime axis (on a logscale) of the probability density function
corresponding to the CDF taken from [62]. This graph varies the mean lifetime of
the objects across several orders of magnitude, with each unit representing a change
in the average lifetimes by a factor of 10. The graphs show that when life times are
small, we get less hit rate improvement but at the same time use less prefetch cache
size and bandwidth. This result is expected because our algorithm does not select
short lived objects. At bigger lifetime values, we achieve higher hit rates at a reduced
cost of bandwidth and prefetch cache size. The hit rate graphs at high threshold

values flatten as the number of unique objects are limited, and almost all the objects

176

would have already qualified for prefetch. This observation holds for a universe of
a fixed set of objects; if we are already caching all the ojects, then increase in life
times or arrival rates would not alter hit rates. But the bandwidth required to keep
the objects refreshed reduces proportionally as the lifetimes increase.

In summary, trace based simulation results show that our prefetch algorithm
indeed provides significant hit rate improvements. One limitation of our trace based
study is that we chose a medium-sized trace. But given the results we obtained,

increasing the trace length would only benefit our results rather than hurt them.

5.6 Related Work

The idea of prefetching in the web has been widely studied by many researchers
recently. Most of the research has concentrated on short-term prefetching based on
recent access patterns of clients. Duchamp [64] provides a survey of various research
contributions relevant to short-term prefetching in the web: software systems, al-
gorithms, simulations and prototypes [140], and papers that establish bounds [114].
Duchamp [64] proposes to prefetch hyperlinks of web pages based on aggregate ac-
cess patterns of clients as observed by the server. This approach gives priority to
popular URLs and hence is similar to our popularity algorithm. Our (threshold
based) approach is different from the above approaches in that we consider long-
term prefetching suitable to CDNs [4] and busy proxies by prefetching objects that
are both popular and long lived so that we get long-term benefits.

Gwertzman et al. [88] discuss push-caching which makes use of a server’s
global knowledge of usage patterns and network topology to distribute data to co-
operating servers. A number of research efforts support multicast delivery for web
content distribution. Li et al. [121] investigate multicast invalidation and delivery of
popular, frequently updated objects to web cache proxies. Nayate et al. [135] discuss

push-caching for a data dissemination service where updates are made by exactly

177

one server while replicas serve sequentially consistent data. These techniques are
complementary to our work and can be used to realize the distribution of updates
that we assume in our model.

Implementations of cooperating caches are becoming increasingly common-
place. Sharing of popularity information across caches enables not only better es-
timates of popularity but can also prevent some compulsory misses. In the next
chapter, we show how to select objects to be prefetched in a cooperative caching

environment to minimize average access cost.

5.7 Discussion

In this paper, we focussed on a technique called long-term prefetching, which is
beneficial for web proxies and content distribution networks. In this prefetching
model, we have explored an algorithm for object selection based on the popularity
and lifetime of objects. We evaluated the performance of a long-term prefetching
algorithm whose aggressiveness can be tuned by varying a prefetch threshold. For
example, our analytical evaluation showed that, for a cache that receives 10 demand
requests per second, our prefetching algorithm can improve hit rates by up to 13
percent, while increasing the bandwidth requirements by just over a factor of 2.
Our trace-based results show that using simple history based predictors one can
eliminate a significant fraction of consistency misses. More sophisticated popularity
predictors that share information between cooperating caches can result in up to a
30% improvement in hit rate at a bandwidth blow-up of less than a factor of two.
Goodfetch or the probability of access before update is a global metric of an
object’s prefetch worthiness at a replica and can be compared across objects residing
at different servers or copies at peer caches. Long-term prefetching can be naturally
integrated with a self-tuning speculative replication system like NPS; speculatively

replicated objects can be prioritzed using their goodfetch values at the server and

178

in the network. Long-term prefetching is ideal for proxies or content distribution
servers as Goodfetch can be easily computed using aggregated request statistics,
however, it is applicable at any replica that has means of estimating Goodfetch
values for prefetched objects.

Short-term prefetching can be viewed as a special case of long-term prefetch-
ing where additional information is available to compute goodfetch values of objects.
In Section 5.3, the expression 1 — (1 — p;)%% for goodfetch was derived by modeling
request sequences as independent arrivals. Often, servers can easily compute proba-
bilities of access of other documents it serves given the current document the client
is viewing. These probabilities could be significantly higher that the long-term av-
erage popularities of these objects observed at a proxy or the client, and hence, such
objects can be attractive candidates for short-term prefetching. Nevertheless, the
prefetch worthiness of such short-term prefetches is also determined by the proba-
bility of access before update. In particular, if a server knows that a document i is
likely to be accessed with probability ¢ in the next ¢ seconds by a particular client,
it can inform the associated proxy which can modify that object’s goodfetch as
1—(1—q)(1—p;)*¢~? (assuming no other request dependencies). Similarly, more
complex request dependency information could be incorporated while computing
goodfetch. One advantage of long-term prefetching over just performing short-term
prefetching is that the former has greater freedom to spread prefetched bytes over
a longer period of time than just the time before the next access by a user; such
freedom is valuable for performing speculative replication in the background.

The question of how to share information between the server and a proxy or
a server and a client has not been sufficiently addressed in this dissertation. If a
proxy alone maintains statistics of user behavior, it cannot avoid compulsary misses
to objects it hasn’t seen before or stale objects whose popularity has suddenly in-

creased. On the other hand, if a server is prescient of such popularity fluctuations

179

at a proxy, it can proactively push hints of future knowledge to the proxy, which
in turn can prefetch those documents. On first glance these savings might appear
insignifcant, as they save only the first miss in an object’s lifetime. However, one
must keep in mind that saving the first miss is the only benefit prefetching provides
over just demand based caching. As has been shown above, such savings can re-
sult in significant reductions in miss costs. The downside of obtaining popularity
information from a server is that the server itself can have a skewed perception of
object popularities because of intermediate caches absorbing all but the first request
in an object’s lifetime. This effect, termed as the trickle down effect in [63] and rec-
ognized earlier in the context of multi-level caches in file systems [133], can result
in the server providing misleading information to a proxy. A proxy must combine
the server’s estimate of the prefetch worthiness of the object with its own by taking
into account the fraction of requests it absorbed, and therefore hid from the server.
With multiple proxies, where some have accessed the object at least once and oth-
ers haven’t, combining popularity and request dependency estimates computed by
the server and a proxy appears non-trivial. The question of easy deployability of
mechanisms that exchange such popularity information is also important, though it
appears that techniques similar to the ones used in NPS or alternatives suggested in
the paper could be effectively employed. These issues of providing mechanisms to
aggregate popularity information in cooperative environments is an avenue of future

work.

180

Chapter 6

Bandwidth-Constrained
Speculative Replication for

Cooperative Caches

6.1 Introduction

The previous chapter addressed the problem of speculative replication in a bandwidth-
constrained environment for a large stand-alone cache. In this chapter, we extend
the study to the problem of bandwidth-constrained speculative replication to a co-
operative environment. The goal is to speculatively place copies of objects at a
collection of distributed caches to minimize expected access times from distributed
clients to those objects; each cache is subject to a maximum bandwidth constraint
and the probability of access of each object at the cache (or its Goodfetch value as
introduced in the previous chapter) is given a priori. We develop a simple algorithm
to generate a bandwidth-constrained placement by hierarchically refining an initial
per-cache greedy placement. We prove that this hierarchical algorithm generates

a placement whose expected access time is within a constant factor of the optimal

181

placement’s expected access time. We then proceed to extend this algorithm to

compute close to optimal placement strategies for dynamic environments.

6.2 Motivation

The goal of bandwidth-constrained speculative replication in a cooperative environ-
ment is to place copies of objects at a collection of distributed caches to minimize
expected access times from distributed clients to those objects. In a cooperative
caching model [58], a cache miss at one location may be satisfied by another cache
in the system. Unlike a stand-alone cache, in a cooperative environment, one must
decide not only what objects to speculatively replicate, but also where to place spec-
ulative copies. Thus, the bandwidth-constrained speculative replication problem is
essentially a placement problem and will also be referred to as the bandwidth-
constrained placement problem in the rest of the chapter.

A number of scalable request-forwarding directory schemes have been devel-
oped to enable large-scale cooperative caching in WANSs [5, 69, 169] and commercial
content distribution networks of cooperating caches have been deployed by compa-
nies such such as Akamai and Digital Island. Although traditional caches are filled
when client demand requests miss locally and cause data to be fetched from a remote
site, hit rates might be significantly improved by pushing objects to caches before
clients request them [89, 174]. The distributed cache placement problem attempts
to select which objects should be pushed to which caches in order to optimize per-
formance. A number of researchers have examined the space-constrained placement
algorithms — in which cache storage space places limits on what can be cached where
— in local area networks [58, 71, 120] and wide area networks [126, 111]. However,
little attention has been paid to bandwidth constrained placement in cooperative
environments.

Unfortunately, for WAN replication, bandwidth constraints may be more

182

restrictive to replication than space constraints. A number of web-trace simulations
have indicated that only modest cache sizes are needed to achieve maximum hit
rates [65, 84, 169]. Furthermore, maintaining a pushed copy of an object in a
cache consumes not only disk space but also network bandwidth to update that
copy when the origin data changes. Gray and Shenoy [82] compare the dollar cost
of transmitting an object across the Internet to the dollar cost of storing the object
on disk and indicate that network costs will be greater than disk storage cost for
objects whose lifetime is less than 13 months.

In this chapter, we extend Korupolu et al.’s [126] space-constrained place-
ment algorithm to address bandwidth constraints. The bandwidth-constrained prob-
lem differs from the simple space constrained model used by Korupolu et al. in

several important ways:

e The bandwidth-constrained cost model depends on object update frequency
and must account for the on-demand replication of objects that naturally
occurs as demand-reads are processed. Conversely, the space-constrained
cost model does not depend on object-update frequency, and a good space-
constrained placement may not be improved by on-demand replication because

any new replica must displace a previously placed object.

e In a bandwidth-constrained placement model, replicas of data initially present
in caches should be left there, while such initial copies have no advantage over

other objects under the space-constrained model.

e After a good bandwidth-constrained placement is calculated, it may take
considerable time to send objects to their caches. In fact, in some cases
bandwidth-constrained placement may be a continuous process as copies of
objects are pushed to caches at some low background bandwidth, new ob-

jects are created, and existing objects are updated. Thus, it is important for

183

a bandwidth-constrained placement algorithm to work well in a dynamically
changing environment and provide good performance at intermediate points in
its execution. Conversely, Korupolu et al.’s algorithm only seeks to optimize
the cost of the final, complete placement and runs in a batch mode as opposed

to an incremental one.

We extend Korupolu et al.’s algorithm and show that our Fized-ty; algo-
rithm generates a final placement that is within a constant factor of the cost of
a bandwidth-constrained optimal placement under empty-cache initial conditions.
We then show that our ImitFill algorithm also provides a final placement that is
within a constant factor of the optimal even when considering an initial placement.
Finally, we show that our DoublingEpoch algorithm generates series of placements
that is continuously within a constant factor of the optimal placement at any time ¢,
but that to do so, it expands the required bandwidth by at most a factor of 4. This
means that the DoublingEpoch algorithm is well-suited to a dynamic environment
where objects are updated, demand-read copies appear, and new objects appear
because it requires no a priori estimate of what point in time for which to optimize
the placement schedule.

Our placement algorithms have several limitations. First, the constant cost
and bandwidth-expansion factors that bound our worst case performance appear
large (about a factor of 14 for the cost bound and 4 for the bandwidth expansion
bound). However, previous experimental evaluation of the space-constrained place-
ment algorithm indicates that for practical topologies and workloads, its behavior
closely approximates the ideal algorithm despite similarly large constants [111]; our
intuition leads us to expect similar behavior in the bandwidth constrained case.
Second, although the DoublingEpoch algorithm is robust in a dynamic environment
and provides a constant-factor approximation of the optimal bandwidth-expanded

placement within any interval across which it is run, it must be restarted when

184

system conditions significantly change, and it is not provably near-optimal across
a series of executions. Finally, all of our constant-factor bounds assume uniform
unit-sized objects. The nonuniform-size placement problem is NP-hard. We present
a simple heuristic that extends our algorithms to accommodate variable-sized ob-
jects. Future work is needed to experimentally validate our conjectures that for
practical topologies and workloads our Fized-ts;;, InitFill, and DoublingEpoch al-
gorithms will be nearly optimal within any interval, that our heuristics for chaining
the DoublingEpoch algorithm across intervals work well, and that our heuristics for
variable-sized objects work well.

The rest of this chapter is organized as follows: In section 6.4, we describe the
system architecture and the hierarchical distance and cost model we are considering.
In section 6.5, we introduce the basic Fized-ts;; algorithm that is a straightforward
extension of the Greedy algorithm in [126] and prove that its cost is within a
constant factor of the optimal. In section 6.6, we remove the restrictions assumed
while developing the Fized-ty;; algorithm and extend it to relate to more realistic
scenarios. Herein, we introduce the Doubling Epoch algorithm and and analyze it
for performance bounds. In section 6.7, we explain a heuristic algorithm to handle
variable sized objects. We show that that the placement problem for variable sized
objects reduces to the partition problem and is hence intractable and unyielding to

efficient approximation algorithms.

6.3 Related Work

The placement problem has traditionally been treated as one constrained by space.
Korupolu et al. [126] studied the problem of coordinated placement for hierarchical
caches with space constraints, ¢.e. fixed cache sizes. They proved that under the hi-
erarchical model of distances, the space constrained Amortized Placement algorithm

is always within a constant factor (about 13.93) of the optimal. Though for practical

185

purposes this factor is rather large, the experimental work in [111] suggests that
this algorithm yields an excellent approximation of the optimal for a wide range of
workloads. In addition, the simplified greedy version of the amortized algorithm
introduced in [126] has also been shown to provide an excellent approximation of
the optimal, though in theory its performance can be arbitrarily far from optimal.

In an earlier study, Awerbuch, Bartal and Fiat [13] provide a polylog(n)-
competitive on-line algorithm for the general space constrained placement prob-
lem under the assumption that the size of each cache in the on-line algorithm is
polylog(n) times larger than the size in the optimal algorithm. The placement
problem for a network of workstations modeled as a single level hierarchy has been
studied by Leff, Wolf and Yu [120]. They provide heuristics for a distributed
implementation of their solution. However, the heuristics make use of particular
properties of single-level hierarchies and are not applicable to arbitrary hierarchies.

Replacement algorithms attempt to solve the problem of determining which
object(s) are to be evicted when a cache miss occurs. Relevant studies of replace-
ment algorithms have been done in [32, 186]. In the space constrained scenario,
replacement algorithms may also be viewed as placement algorithms starting with
an empty placement. The work in [111] shows that the hierarchical version of the
GreedyDual replacement algorithm exhibits good cooperation and performs well in
practice. However, for the bandwidth constrained placement problem, objects can
be allowed to remain in the caches until they are modified, and hence replacement
policy is not an issue.

The object placement problem has an orthogonal counterpart, namely the
object location problem. The object location problem has been widely studied
[25, 40, 164]. Recent studies such as Summary Cache [69], Cache Digest [155],
Hint Cache [169], CRISP [148] and Adaptive Web Caching [190] generalize from

hierarchies to more powerful cache-to-cache cooperation scenarios. Some recent

186

Figure 6.1: Model for network distances

studies have combined the location problem with the placement problem by remem-
bering routing information at intermediate nodes [90, 127, 148, 182]. However, in
this paper, we do not deal with lower level routing issues and separately consider
only the placement problem.

To the best of our knowledge, the placement problem with bandwidth con-

straints has not been studied for hierarchical caching networks.

6.4 System Architecture

The system architecture is modeled as a set of N distributed machines and a set S
of origin servers connected by a network. Assume that these machines are accessing
a set of M shared objects maintained at any of the servers in S and cached at
the machines. For each machine i, there is a fixed available bandwidth denoted by
bw(i) to push objects into the cache at machine ;. The size of the cache at every
machine is assumed to be very large. The cost of communication between any pair
of machines ¢ and j is given by the function dist(i, j).

Requests for objects are made by clients at or near these machines. If there
exists a local copy of a requested object a at machine i, then the object is served
locally. If not, a directory (e.g. a summary [69] or a hint cache [169]) is consulted
to find the nearest copy of object «, which is fetched and served to the requester as

well as stored locally at machine 7. This implies that all future requests for object «

187

at machine ¢ will be local hits. Thus the cost of satisfying an access request for an
object a at a machine i, denoted by c(i,) is given by the cost of communication
dist(i,j) between i and j, where j is the closest machine that possesses a copy of
object a. If no copy of object a resides on any of the caches in the network, then
c(i,) is defined to take a value A that denotes the miss penalty. In other words
this is the cost of obtaining a requested object directly from an origin server rather
than from one of the N cooperating caches. Note that A must at least be as large
as the maximum value of the function dist.

An example of a system with such properties is a large scale content distri-
bution network where bandwidth costs dominate storage costs and where the caches

have a limited available bandwidth to receive object updates.

Hierarchical distance model

To make this problem tractable and applicable for practical distributed networks,
we structure the distance function dist(, j) according to a hierarchical model. This
hierarchy may be understood as a multilevel cluster or a cluster tree as shown in Fig
1. Such an organization of machines naturally reflects the way wide area network
topologies are structured. For example in a collection of universities each machine
belongs to the department cluster, which in turn belongs to the university cluster,
and so on.

A depth-0 hierarchy is a singleton set containing one machine. A depth-
d hierarchy H is a virtual node H plus a set of hierarchies Hy, Ho,..., Hy, each
of depth smaller than d, and at least one of which has depth exactly d — 1. The
hierarchies Hy, ..., Hy, are referred to as the children of H and H itself as the parent
of Hy,...,H. A hierarchy is associated with a diameter function diam which is
defined as follows: If H is a singleton hierarchy, diam(H) = 0, else diam(H) >
Adiam(H;), for all children H; of H. (Such a hierarchy is said to be A — separated.)

188

For any hierarchy H, machines(i) is defined to be the set of singleton hierarchies that
are descendents of H. The distance function dist(i,j) between any two machines ¢
and j belonging to H is defined as diam(H;) where H; is the least depth hierarchy
such that 7 and j belong to machines(Hy).

Thus, a hierarchy is essentially a tree and we use the two terms interchange-
ably. It must be remembered that while understanding a hierarchy as a cluster tree,
the caches/machines are only at the leaf nodes. The intermediate nodes are vir-
tual and only maintain book-keeping information. The distance function described
above ignores small variations in cost inside a subtree and models a system where
each machine has a set of nearby neighbors, all at approximately the same distance
di, and then a set of next closest neighbors all at approximately a distance d and
so on. Note that the term hierarchical caches used to describe caching systems like
Harvest [25], Squid [179] etc. is different and the two models must not be confused.
In the latter, the hierarchy models the actual network topology and interior nodes
act as caches. In our model the hierarchy itself is a logical tree introduced solely to
capture network distances.

The model described above is the same as the ultrametric model used by
Karger et al. [105] Such a hierarchical structure can be used to capture a wide
variety of distributed networks like intranets or WANs. A local area network for
example is a depth-1 hierarchy. It can also be used to model content distribution
networks - the leaf caches are the geographically distributed pseudo-servers. A client
request originating at an ISP is directed to one of these caches that may either serve
the object or redirect the request to the closest neighboring cache which stores a
copy. If none of the caches store the object, then the request is directed to the
origin server for the object. It seems reasonable to think that a hierarchal distance
model may serve as a reasonable approximation of a complex network such as the

Internet. In fact recent results on approximation of general metrics by tree metrics

189

[17, 20, 41] imply that any hierarchal placement algorithm may be used to obtain a
placement algorithm for any arbitrary metric cost model with at most a blow up in

the approximation factor by a polylog factor in the number of nodes.

Cost Model

A placement assigns copies of objects to machines in a hierarchy. A copy (i,«) is
a pair consisting of a machine ¢ in the hierarchy and an object a. Every object o
is associated with an expiry time denoted by expiry(a) that represents the point of
time at which the object will be invalidated.!

For any machine ¢ and object a, let p(i,a) denote the probability of access
of object a at machine i before expiry(a). For any hierarchy H, the aggregate
probability of access of an object a p(H, @) is defined as 1-TL;cpmachines(zr) (1—p(i, @),
i.e. it represents the probability of access of object a at at least one of the leaf
nodes in the tree rooted at H. The goal of the coordinated placement strategy is to
push objects into the caches such that the overall cost of access to these objects is
minimized.

In order to develop a notion of the overall cost of a placement given the
probabilities of access of objects at the machines, we observe that if there is a re-
quest for an object a in any hierarchy H, none of whose machines have a copy
of a, the incremental cost of leaving H to fetch a copy of the a is p(H,a) -
(diam(parent(H)) — diam(H)). The overall access cost cost(P, H,1) of a place-
ment P over a hierarchy H and a universe of objects v is recursively defined to be
> acy P(h, @) - 6(h,) - (diam(parent(h)) — diam(h)) + 3=) cost(P, Hi,), where
Hyq, ... Hy, are the immediate children of H and §(h,) takes the value 0 if at least
one machine in machines(h) contains a copy of «, else 1. A formal justification of

the cost function defined above may be arrived at by a straightforward proof of the

'In practice, expiry(c) may be known or estimated a priori, e.g. a newspaper website may be
updated every night at 2am or past update patterns may be used to predict the next update.

190

claim that for a random series of n object requests in accordance with the distribu-
tion of the given probabilities of accesses, the expected total latencies encountered
by two given placements are in the ratio of their costs as defined above, as n — .

In practice, access probabilities may be known or estimated using application
specific benchmarks with knowledge of history based statistical information [36].
Since objects are associated with lifetimes and probabilities of access are likely to
show temporal variation, it seems natural to introduce a fill-time tg; within which
the placement has to be accomplished. Thus, given probabilities of access and
the available bandwidth to push objects into machines, the goal of the bandwidth
constrained placement problem is to compute the placement with the minimum cost

that can be accomplished within the fill-time.

6.5 Algorithms

In this section we present some core algorithms to handle the bandwidth constrained
placement problem as defined above as well as its extensions to more realistic sce-
narios. We start with a basic algorithm called the Fired-tg; algorithm that solves
the version of the placement problem defined in section 6.4 , i.e. it assumes that (i)
all the caches are initially empty, (ii) objects do not get modified during ¢z, (iii)
all object requests occur after the placement is complete, (iv) the probabilities of
access and the universe of objects are fixed, and (v) all objects are of equal size.
We first describe a simple greedy strategy that that captures the core idea of the
Fized-tg, algorithm. We then describe an amortized version of this algorithm which
adds a small technical adjustment needed for bounding the algorithm’s worst case
performance with respect to the optimal placement. Subsequently, in section 6.6
and 6.7 we proceed to progressively refine this algorithm to handle (i) non-empty
initial placements, (ii) simultaneous placement and accesses to objects, (iii) object

updates and introduction of new objects and (iv) variable sized objects.

191

All the algorithms described in this section have been described, for sim-
plicity’s sake, under the assumption of a centralized implementation. However, it
is straightforward to transform the centralized implementation into an efficient dis-

tributed one by a procedure that parallels the approach outlined in [126].

6.5.1 The Greedy Fized-ts; Algorithm

The algorithm we present involves a bottom-up pass along the cluster tree. It starts
with a tentative placement in which the caches at the leaves of the cluster tree
pick the locally most valuable set of objects. Then the algorithm proceeds up the
hierarchy by having each node improve the corresponding subtree’s placement.

It must be emphasized that the problem of determining a good placement is
conceptually distinct from accomplishing that placement itself. The latter involves
routing issues which we do not address directly in this discussion. These issues are
simply abstracted out in terms of an effective bandwidth bw(i) available to push
objects into machine i’s cache.

We first introduce a few definitions. For any H, and a placement P over it,
we define an object a to be P-missing if no copy of o exists in any of the caches
in H. The benefit of an object a at a machine ¢ in a placement P is defined as
the increase in the cost of the placement over H were « to be dropped from %, and
is denoted by benefit(i,, P). It follows from the definition that the benefit of a
copy is dependent on where other copies of the same object are distributed among
the machines in the hierarchy. The wvalue of a P-missing object in a hierarchy
H is defined to be p(H,a) - (diam(parent(H)) — diam(H)). The Fized-tg; greedy

algorithm for bandwidth constrained placement is given below.

Input: A hierarchy U, the universe of objects v, a fill time tg;, available band-
width bw(7) for i € machines(U), the access probability p(i,) for all objects a and

192

i € machines(U). Let all objects be of size objectsize.

Initialization: For each i € machines(U), set size(i) = bw(i) - tay. For each
i € machines(U), select the L(ﬁi%i(;)zej objects with the highest local probability of

access p(i,a) and call this local placement P;. For each object « that gets selected

at machine ¢, initialize AssignedBenefit(i, o) = p(i, a)-(diam(parent(i)) —diam(7))

Iterative step: step d, 1 < d < depth(U)

1. Compute the level-d placement for each depth d hierarchy H as follows:
Let Hi,...,Hy be the constituting hierarchies that are the immediate children of
the hierarchy H. Initialize the placement Py over C to the union of the placements
already computed at Hy,..., Hg, t.e. Py = Uiccnitaren(m)Fi-

2. Update benefits: For each object o in H that has one or more copies
in the current placement Pp, let (i,ap) be the primary copy, i.e. the copy with
the highest local AssignedBenefit. The AssignedBenefit of this primary copy is
increased by H’s aggregate access probability times the cost of leaving hierarchy
H, i.e., AssignedBenefit(i,ap) + = p(H,a) - (diam(parent(H)) — diam(H)). All
other copies of « are known as secondary copies and their AssignedBenefits remain
unchanged. Let X denote the set of Py-missing objects.

3. Greedy Swap Phase: While there is a P-missing object 8 in X, whose
value is more than the copy (i,) with the least AssignedBenefit in P, remove the
copy (i,) and substitute a copy of (¢, 3) with its AssignedBenefit initialized to its

value just before the swap.
Object Insertion: After the placement P over the hierarchy H has been com-

puted, send out the selected copies of objects into the corresponding machines in

the order of their AssignedBenefits computed at the end of the loop above.

193

The key idea is that the swapping procedure at every level continues till there
exists a P-missing object with value greater than the least beneficial copy in the
current placement. The greedy swapping procedure stated above uses AssignedBen-
efits instead. However, observe that the AssignedBenefit represents the benefit of a
copy just before it gets swapped out, and that the benefit of a copy is at most equal
to its AssignedBenefit. It follows that the greedy swapping rule is equivalent to one
based on swapping out the copy with the least benefit.

It may be verified that the execution time complexity of the greedy algorithm
given above is O(C - N), where C is the sum of the cache sizes at all of the leaf

nodes and N is the total number of nodes in the hierarchy.

6.5.2 The Amortized Fized-t5; Algorithm

Though the greedy algorithm seems simple and promising, the placement it com-
putes in the worst case could be arbitrarily far from optimal. The fundamental
drawback of the algorithm is that a single secondary copy of some object may pre-
vent swapping in of several missing objects. Though the benefit of the secondary
copy may be larger than the value of each of the missing objects, on the whole it
might be much less than the sum of all these values put together. Korupolu et al.
[126] demonstrate that for the space constrained version of the greedy algorithm,
this effect can lead to a placement arbitrarily far from optimal.

In order to overcome this problem, we augment the greedy algorithm with
an amortization step using a potential function identical to the one used in [126].
The potential function accumulates the values of all the missing objects, and the
accumulated potential is then used to reduce the benefits of certain secondary items
thereby accelerating their removal from the placement. The Amortized Fized-tg;

algorithm is as follows:

194

Initialization: Same as greedy except that we also set a potential ¢; for each

machine 7 to zero.

Iterative Step: Same as in the greedy algorithm except that the potential ¢y
is set to the sum of the potentials ¢1, ..., ¢2 computed by the children of H.

1. Update Benefits: Same as in the greedy algorithm.

2. Greedy Swap Phase: This procedure is similar to the swapping procedure in the
greedy algorithm except that the potential ¢ is used to reduce the AssignedBenefits

of some copies.

1. Let y, be the primary copy with the least AssignedBenefit and y, the secondary
copy with the least AssignedBenefit in Py. Let a be the highest-valued object

in X, the set of all Py-missing objects.

2. If value(a) > min(AssignedBenefit(yp), AssignedBenefit(ys) — ¢m), then

perform one of the two following swap operations, and goto step 1.

o If AssignedBenefit(y,) < AssignedBenefit(ys) — ¢m, swap yp, with a.
Set X to X —a+ al, where o is the object corresponding to the copy

Yp- Set value(a') to Assignedbenefit(yp).

e Otherwise, remove y; from @ and substitute it with a. Set X to X — «

and reset the potential to maxz(0, ¢y — Assignedbenefit(ys)).
3. Update Potential: Add the values of all the Pgy-missing objects in X to ¢.

Theorem 1: The cost of the amortized Fized — tgy algorithm is within a constant

factor of the cost of the optimal placement.

195

Proof Outline: The proof of optimality of the amortized bandwidth con-
strained placement algorithm exactly parallels the proof of its space constrained
counterpart introduced in [126]. The fundamental difference between the cost
model we developed and that used in [126] is that the access quotient in the former
is based on probabilities of access while in the latter, it is the frequency of access.
The cost of a placement in the former is defined as > freg(a, i) -diam(closest(a, i),
over all 7 € machines(H) and « € 1, where freq(a,i) denotes the frequency of ac-
cess of object a at machine i and closest(a,) is the least common ancestor v of ¢
such that at least one copy of the object « is present in machines(v). We first claim
that both the cost models are identical except for the definition of the aggregate

access quotient at interior nodes.

Lemma 1: Let f(a,i) denote the frequency of access of object a at a leaf node
i in a hierarchy H. Let f(a,v) at an interior node v denote the aggregate access
quotient as defined in the frequencies model to be the sum of the frequencies of
access of object o over all i € machines(v). Then,

> ucHacy f (W a) - 6(a,u) - (diam(parent(u)) — diam(u)),

= ZiEmachines(H),aE'z/; f(u’ O[) : (di‘St(CloseSt(a’ ’L))

The proof of the above lemma is by a straightforward rearrangement of terms.
Thus, it follows that the amortized bandwidth constrained algorithm is within a
constant factor of the optimal if the access quotient to an object at an interior node
were defined as the sum of the access quotients to the same object over all leaf node
descendents of that node.

The proof of optimality to within a constant factor in the frequencies case
proceeds by introducing what is known as a bridging placement. The algorithm to

compute the bridging placement is parameterized by a fixed, but arbitrarily chosen

196

placement, say P. The bridging placement, say B, is an intermediate placement that
is then proved to be at least as expensive as the corresponding amortized placement
and is also proved to be within a constant factor A.(1 + 3A/(A — 1)) of P. Since P
could be arbitrarily chosen and hence chosen as the optimal placement, it follows
that the amortized placement is within a constant factor of the optimal. All the
properties of the aggregate access quotient as defined in the frequencies model also
extend the probabilities model. In particular we state below a property that relates

the benefit of a copy to its value just before it gets swapped in. This property is

A

crucial in deriving the constant factor of approximation A(1 + 3 - 327

), and it is

straightforward to show that it holds in the probabilities model as well.

Lemma 2: Let H denote a A — separated hierarchy for some A > 1, let P de-

note an H — placement in which a copy of an object a be placed at a machine .

Then benefit(a,i) < A/(A — 1).value(H, a).

Though the worst-case constant (about 14) is large for practical purposes,
measurements indicate that the space constrained variation performs nearly opti-
mally for the workloads examined in [111], and we expect similar performance for
bandwidth constrained workloads. In the rest of the chapter we just use the term

Fized-tg algorithm to mean amortized Fized-tg, algorithm.

6.6 The Dynamic Case

In the previous section we introduced a placement algorithm that is a straightfor-
ward extension of the space constrained amortized placement algorithm in [126].
However, we made several restrictive assumptions. In a content distribution network

for example, we need to handle object updates dynamically. New copies of objects

197

have to be continuously pushed out to the caches to maintain consistency. The
universe of objects itself may change with time and the objects may have arbitrary
sizes. In this section we perform a stepwise refinement of the Fized-ts; algorithm
that addresses most of these constraints.

We first present the InitFill algorithm that computes a placement given an
existing set of objects already placed at the machines. To relate this to a practical
scenario, imagine a content distribution network where we have placed a subset of
objects at the caches or content servers over the course of an hour. At this point a
significant number of objects could possibly change, along with their probabilities of
access. For example, a sudden important news event at a news website could cause
new articles with higher popularity to appear. Since not all of the objects might have
changed, we would still like to leverage the benefit of the objects already placed in
the network. However, the Fized-tg; algorithm introduced in section 6.5, assumes
the caches to be initially empty. The space constrained placement algorithm on
which we based the Fized-tg; algorithm does not take into consideration the objects
already present in the cache. In general, the InitFill algorithm is useful for iterative
application of the placement algorithm.

Next, we discuss the issues that arise when choosing t5; in a dynamic en-
vironment where objects could get modified during the placement, the universe of
objects and associated access probabilities could change, requests for objects could
occur simultaneously with the placement and the caches could start from a non-
empty state. We show examples for which naive strategies for selection of the fill
time, could lead to arbitrarily poor placements. We then present the DoublingE-
poch algorithm that handles such dynamic object updates as well as modification
of the access probability distribution and the universe of objects. We analyze this
algorithm and prove that, given a 4X blow-up in bandwidth, this algorithm com-

putes a placement whose cost is within a constant factor of the cost of the optimal.

198

The DoublingEpoch algorithm is therefore useful for continuous application of the

placement algorithm in a dynamic situation.

6.6.1 Imitial Placement

Assume that we already have an initial placement over a hierarchy H given to us
instead of empty caches. We modify the Fized-t5; amortized algorithm are as fol-
lows. We a) add sufficient free virtual bandwidth to each cache to store the already
placed objects and b) artificially inflate the access probabilities of the already placed
copies to force the algorithm to include them in the placement. The Following is

the InitFill algorithm, given an initial placement P;:

1. Inmitialization: For each machine 7, set size(i) to the sum of the combined
size of the objects already present in the cache and bw(i) - tg;. For each copy
(i,a) € Py, set p(i,a) = 1. Prioritize the copies in P; so that, ties while placing the
first | size(i)/objsize| objects at machine ¢ during the initialization phase are always
broken in favour of copies in P;. (Note that the greedy/amortized algorithm allows
us to do this.) For each of the already placed copies (i, @), set AssignedBenefit(i, o)
to oco.

2. Run the rest of the Fized-tg; as before on this modified problem instance, result-
ing in a final placement P.

3. Delete from P, all copies (i,) € P;. (This is so that the already placed objects
don’t have to be pushed into their corresponding caches again during the Object

Insertion phase.)
Theorem 2: The placement computed by the InitFill algorithm is within a con-

stant factor of optimal.

Proof. 1t is clear that none of the initially placed objects ever get swapped out

199

during the course of the Fized-tg; algorithm, since their Assignedbenefit is set to co
at level 1. That they get placed at level 1 is ensured by setting their access proba-
bilities to 1, prioritizing them and ensuring that sufficient bandwidth is available to
place them. Let P' be the placement computed by the InitFill algorithm and P;pt
the optimal placement with the already placed objects with respect to the modified
access probabilities. Let P,y denote the optimal placement with the already placed
objects with respect to the unmodified access probabilities. Then, by the result
of optimality to within a constant factor ¢(~ 14) proved in the previous section,
¢-cost(P') < cost(PZ,pt). However, cost(P;pt) = cost(Pppt) in spite of the modified
access probabilities for the already placed objects because the terms corresponding
to the already placed copies anyway contribute to zero in either of the costs. It
follows that c - cost(P') < cost(Ppp). O

The InitFill algorithm is attractive since it allows for an incremental imple-
mentation of the static algorithm. We could start with the cache at each machine
being empty at some initial time ¢y and then onwards at various points of time,
invoke the InitFill algorithm to recompute a placement.

We also point out that the InitFill algorithm may be used to compute close
to optimal placements over a distance model wherein the servers are located at
different distances from different caches and have varying performance properties.
To accommodate this extension, for each server create a new dummy cache located
in the network topology at the same place as the server and include each of these
dummy caches in the virtual cluster hierarchy in the same manner as regular caches.
Set the bandwidth of each dummy cache to be 0 and initialize the contents of each
dummy cache to include the objects served by the corresponding server. The InitFill
algorithm may now be used so that the cost of accessing an object from a dummy

cache matches the miss cost of fetching it from the server.

200

6.6.2 Challenges in choosing 5y

The discussion above assumes that a time epoch tg; is known a priori. However,
in real systems, it is potentially difficult to choose tg; optimally. First, in some
systems it may be difficult to predict when the universe of objects being placed (or
their probabilities of access) will change. Second, even for a static set of objects and
access probabilities, the placement algorithms in the previous section optimize the
performance of the placement achieved after tg; time has elapsed. If placement and
client reads proceed in parallel (which may often be the case in real systems), then
reads during the tg; interval may see substantially sub-optimal performance during
this transient interval. In this section we investigate the problem of minimizing the
transient latency cost during the course of the placement itself and motivate the
need to select an optimal sequence of epoch times to achieve the same.

Choosing too long a tg; interval and then sending out the selected objects
in the order of their AssignedBenefits to the individual caches may cause the tran-
sient access cost of the placement to be arbitrarily far from optimal. We illustrate
this point using a specific example below. The transient access cost of a placement
is defined as the average response time to service a request over the course of the

complete interval.

Claim 1: Let Pp(t),0 <t < T be the placement strategy that computes a placement
at time 0 using the Fized-tg; algorithm with a fill time T', and thereafter sends out
the selected objects to the individual caches over the entire interval 7' in the order
of their AssignedBenefits so that at any time ¢, |¢-bw(¢)/objsize| objects have been
placed at cache i. Throughout the epoch of length T, requests are served by the sys-
tem according to the probability distribution specified. There exist topologies and
access probability distributions for which the transient access cost of Pr(t) could be

arbitrarily far from the optimal achievable.

201

Ezxample: Consider a topology consisting of a single level hierarchy with n ma-
chines numbered 1 to n, diameter 1 and miss penalty n. Assume that there exist n
data objects ay, s, ..., a, and that the access probability distribution is as follows:
p(l,e;) = P, 1 <i<mnandp(fa) =0, 2<j<nl<i<n We define a
time-step as a small value of gy, say du, such that for each of the leaf nodes 4,
bw(i) - 65 > objsize. Let the probability of access of object j at machine 1 in any
time-step be p 2. Further, assume that T = n - dfiu

The T epoch placement algorithm places one copy of all the n objects on
machine 1. The cost of this final placement is 0. However, this placement takes n
time-steps to complete and the cost of the transient placement? at step i for object
j is given by 0, if j < i (because object j would have already been placed at the
§’th time-step), and (1 — p)? - p - n otherwise. The term (1 — p)¢ - p represents the
probability that there is a request for object j at machine 1 for the first time in step
i. Therefore, the average response time to service a request for object j is given

by > i i n-(1—p)i-p = n-(1—(1—p)i*1). The transient access cost of Pr(t) is thus:

AccessCosty = %Eje[l,n] n-(1—(1-p)Y*th) =0(n)

A better strategy is to place a copy of object ¢ at machine i during step 1, and
then to place a copy of object ¢ at machine 1 during step ¢. For this placement, the
cost to service a request for object j in step 1 is p - n and is bounded by p- 1 in
subsequent steps. The average response cost for a request for to object j is at most
%(p ‘n+mn-p-1) = p+ 1. Thus, it follows that the transient access cost of this

placement strategy is

AccessCosty = %Zje[l,n}(p +1)=0(1)

?In practice p could be related to P as 1 — (1 — p)" = P, where 7 is the number of time-steps in
the object’s lifetime
3a demand placement that happens to satisfy a request for an unavailable object.

202

Thus, from the above it is clear that the transient access cost of Pr(t) to could be
arbitrarily far from the optimal. [.

From the above example, it is clear that choosing tg; to be too long may
lead the system to defer placing important objects because a more valuable location
will later become available, resulting in a higher transient miss rate and therefore
a higher average response time per request. This suggests that even if objects are
static, ¢.e. they do not change, the naive strategy of computing a placement for a
huge epoch and then pushing out objects in the order of their final benefits may not
be efficient with respect to the time-averaged access cost of the placement.

Conversely, choosing tg;; to be too short can cause the system to waste work
by placing a copy at a sub-optimal location before placing it at the right place at
a later time. The system therefore may end up taking more overall bandwidth or
time (number of epochs) to complete a placement that is as good as the optimal

placement for a larger epoch. We show this formally below again with an example:

Claim 2: Let P be the placement computed by the Fized-tg); algorithm for a given fill
time T'. Let 6 denote a tiny epoch such that for all machines 7, d7-bw(i) > objsize.
Then the number of iterations of the InitFill algorithm required to compute a place-
ment that is at least as good as P could be as many T'/é¢ - log(n), where n is the

total number of machines in the hierarchy.

Ezample: Consider a topology consisting of a single level hierarchy with n ma-
chines numbered 1,...,n, diameter d and miss penalty A. Assume that the set
of objects and the distribution of probabilities of access to objects are as follows:
(i) every object is accessed at exactly one machine, there are k distinct objects
accessed at every machine. (ii) the probability of access of any object a at ma-

chine %, p(i,a) > % -p(i + 1,8), where [is any object accessed at machine i + 1.

203

Assume further that all machines have the same bandwidth and every iteration of
the J; epoch algorithm allows at most one object to be inserted into any machine.
Assume T'/6f to be k, so that the cost of the T' epoch placement is 0 (every ob-
ject gets placed where it is accessed). At the end of the first iteration of the df
epoch InitFill algorithm, machine i possesses a copy of the object with the i'th
highest probability of access. Thus, the first k/n iterations place objects accessed
at machine 1 at all the machines. The next k/(n — 1) iterations place copies of
objects accessed at machine 2 at machines 2,3,...,n, and so on, without displac-
ing the secondary copies of objects accessed at machine 1 because of the above
constraint on the probabilities of accesses. Thus, the number of iterations of the
05 epoch algorithm before machine n can place a copy of an object it accesses is
k/n+k/(n—1)+k/(n—2),...,k/1 =Q(k-log(n)). Thus, the time taken by an iter-
ative small epoch algorithm could be a factor of log(n) more than the corresponding
long epoch version for the cost of a placement computed by the former to match
that computed by the latter. O

Lemma 3: Let P be the optimal placement computed by the amortized
Fized-tgy, algorithm for a given epoch T'. Let 67 denote a tiny epoch such that for
all machines i, d7 - bw(i) > objsize. Then in % - h iterations, the é¢ epoch iterative
algorithm, achieves a placement that is within a constant factor of P.
Proof Qutline: The proof of this algorithm proceeds by showing that the §; epoch
iterative algorithm achieves a placement whose cost is within a constant factor of
that of the T epoch placement algorithm. The basic argument is that though the
iterative algorithm introduces greedy replicas of copies at non optimal locations, the
number of greedy replicas for every copy in the T' epoch algorithm is at most h,
the height of the hierarchy. The formal proof proceeds by introducing a variant of
the InitFill algorithm known as the Marking algorithm that does not assign infinite

benefits to initially placed copies, but never swaps them out either. It is shown that

204

the Marking algorithm in 51 - h iterations, is within a ﬁ factor of the T epoch
f
placement. Finally, the d; iterative algorithm is shown to be within ﬁ factor of

the Marking algorithm. [J

6.6.3 The Doubling Epoch Algorithm

Based on the intuition gathered by the discussion above we present here an algo-
rithm that does not assume knowledge of a fill time a priori and that varies the
epoch times in a manner such that the overall placement at any time is close to
optimal, 7.e. the placement sampled at any time ¢ can be proved to be within a
constant factor of the optimal achievable with 1/4’th the bandwidth available to fill
the caches. We first present the algorithm, perform a worst case analysis and then

proceed to explain why the bound is reasonable.

Input: A hierarchy H, a set of objsize sized objects 1, and probabilities of ac-
cess p(i,) of objects ¢ € ¢ at ¢ € machines(H), and an initial placement Py
Algorithm:

(i) Initialize epoch length To = ¢y, where d;; is the minimum value such that for

all i € machines(H), bw(i) - iy > objsize.
(ii) for(i = 0,To = dfiy; until done; i + +,T; = Tj_1 % 2)

Run InitFill algorithm for epoch length = T;, with the current placement
resulting from the previous run.

(iii) Goto (i)

The until done in the above algorithm means that the loop iteratively executes

runs of InitFill algorithm until such time that a change occurs or all objects end up

205

getting placed at every machine that they are accessed at. A change could possibly
be an object update, a demand placement, introduction of a new object or a change
in its probability of access at a particular machine. Theorem 3 below bounds the

worst case performance of this algorithm.

Theorem 3: Assume that the bandwidth to the caches is B[]. At time ¢ seconds
after a change, the doubling epoch algorithm creates a placement that is within a
constant factor of the optimal placement that can be achieved by a system with
bandwidth B[]/4 in time ¢ with the same initial conditions. i.e., the doubling epoch
algorithm computes a placement that is within a constant factor of optimal at any

instant between changes with a 4X blow-up in bandwidth.

To prove theorem 3, we first introduce the following lemma;:

Lemma 1: For any two given initial placement I; and I», such that I is a superset
of Iy, the InitFill algorithm starting with the initial placement I with a fill time 7',
computes a placement P that is within a constant factor of the optimal placement
Pyt obtained by starting with the placement I; and the same fill time 7.

Proof. By the proof of optimality to within a constant factor of the InitFill algo-
rithm, we assert that for any given epoch time, the placement P computed by the
InitFill algorithm starting with the initial placement I, is within a constant factor
of the optimal placement starting with the initial placement I5. However, it is also
trivially true that cost of the optimal placement starting with I is at most the cost
of the optimal placement obtained by starting with I;, (given the same fill epochs),
since [is given to be a superset of I;. It follows that P is within a constant factor
of the optimal placement starting with I;. [

Proof of Theorem 3: Starting from an initial placement [y, at any time ¢ the dou-

bling epoch algorithm has completed epochs of length ¢/4,¢/8, ... (and has partially

206

completed the epoch of length ¢/2). Denote the placement at the beginning of the
epoch of length t/4 by I>. It is clear that I is a superset of I;. Since the doubling
epoch algorithm has completed an epoch of length ¢/4, the resultant placement is
at least as good as the placement we would have obtained in time ¢ with 1/4’th the
bandwidth and starting with I;. This follows from lemma 1 above. [J

Note that the bandwidth blow up of 4 is a loose worst case estimate. The
proof relies only on the fact that at time ¢, we have completed a sub-epoch of length
t/4. However, we also will have completed sub-epochs of length ¢/8,¢/16, During
the short epochs the system will place high-benefit objects into machines that are
typically close to their optimal locations. The quadrupling result of bandwidth gives
no credit for this. Thus, in practice, the epoch doubling algorithm will give much
better performance than a 4X blow up in bandwidth.

It must also be emphasized that a 4X increase in bandwidth may not very
damaging to the hit rate. Web caches typically exhibit a log-linear relationship
between cache size and hit rate. Doubling a cache’s size normally increases hit rate
by less than 5% (e.g. for web caches) [84, 174], so a 4X blow-up in bandwidth often
will not hurt the hit rate much. The epoch doubling algorithm handles the problem
of choosing the optimal epoch, since we no longer have to pick an epoch a priori,
whatever arbitrary changes occur in the set of objects or the access pattern. Between
changes we are assured to be within a constant factor of the optimal. Observe that
this property implies that for a static set of objects and access probabilities, the
transient access cost of the DoublingEpoch algorithm with a bandwidth blow-up of

four is also assured to be within a constant factor of the optimal achievable.

6.6.4 Dynamic Continuous Placement

The InitFill and the DoublingEpoch algorithms provide a basis for coping with sys-

tems that may be changing almost continuously because of (i) object updates causing

207

previously placed copies to be invalidated, (ii) creation of new objects to be placed,
(iii) a demand-read of an object by a cache resulting in an extra copy of an object,
(iv) changes in the system’s estimates of object-access probabilities, (v) changes in
the system’s estimate of network performance (e.g., fill bandwidths or inter-machine
distances).

With the DoublingEpoch algorithm, whenever a change occurs, the system
begins a new placement epoch with t5; = 1 and with the updated situation as
input. Unfortunately, the optimality result to within a constant factor with a 4X
blow-up in bandwidth holds for the DoublingEpoch algorithm between changes, but
not across changes. On one hand, if a change is large, resetting t5; = 1 and starting
over may be appropriate. On the other hand, if a change is small, a less radical
adjustment to the schedule seems in order. Determining how to update a placement
schedule so that the disruption to the original schedule is proportional to the scale
of the change event is an interesting topic for future work. Some heuristics worth
exploring are (i) periodic resets based on diurnal patterns of object updates, (ii)
resetting when ¢(Ppey(k+1)) —c(Pog(k+1)) > n-c(Pyg(k+1)), where ¢(Ppew(k+1))
and ¢(Py4(k + 1)) are the costs of the placements at the end of the nezt epoch,
(the current epoch being the k’th) using the old and new object set and access
probabilities resp. and 1 < 1 is a constant, (iii) resets based on monitoring objects
updates or number of of new objects as a percentage of the current total number of
objects.

Although the worst-case performance of resetting ¢5; to a small value when
changes occur may be poor, this approach may still offer a reasonable heuristic
because it is conservative — using too short a tg; interval causes the system to place
important objects into key subtrees early (at the cost of not picking the best node
within a subtree). Emperically evaluating the performance of different heuristic

algorithms for varying the epoch time is an avenue for future work.

208

In section 6.6.2 we proved that the J; epoch iterative algorithm could be a
factor log(n) worse in the number of epochs. However, it can be shown that with a
factor h blow-up in the number of epochs, where h is the height of the hierarchy, the
05 epoch iterative algorithm achieves a placement that is within a constant factor
of the optimal achievable. The formal statement and a proof outline are below.

Lemma 3: Let P be the optimal placement computed by the amortized
Fized-tg, algorithm for a given epoch T'. Let 67 denote a tiny epoch such that for
all machines i, d7 - bw(i) > objsize. Then in % - h iterations, the d; epoch iterative
algorithm, achieves a placement that is within a constant factor of P.
Proof Qutline: The proof of this algorithm proceeds by showing that the §; epoch
iterative algorithm achieves a placement whose cost is within a constant factor of
that of the T epoch placement algorithm. The basic argument is that though the
iterative algorithm introduces greedy replicas of copies at non optimal locations, the
number of greedy replicas for every copy in the T epoch algorithm is at most h,
the height of the hierarchy. The formal proof proceeds by introducing a variant of
the InitFill algorithm known as the Marking algorithm that does not assign infinite
benefits to initially placed copies, but never swaps them out either. It is shown that
the Marking algorithm in % - h iterations, is within a ﬁ factor of the T epoch
placement. Finally, the d; iterative algorithm is shown to be within ﬁ factor of

the Marking algorithm. [J

6.7 Variable Sized Objects

In this section we show that the bandwidth-constrained placement problem for vari-
able sized objects, even for a static universe of unchanging objects and access prob-
abilities, is a hard problem. This can be shown by a straightforward reduction
from the Knapsack problem. However it is still tempting to look for approximation

algorithms by tweaking the above algorithms appropriately. However, in the follow-

209

ing, we establish that unless P=NP, no polynomial time algorithm can provide a
finite approximation guarentee to the bandwidth-constrained hierarchical placement
problem.

To establish this, suppose there does exist an approximation algorithm A
that produces a placement of variable sized objects to within a constant factor ¢
of the optimal, for a fixed ¢. We show that A can be used to solve the partition
problem (which is known to be NP-complete).

The Partition problem takes as input a finite set S of objects with positive
sizes and partitions them into two subsets S; and Sy such that the sum of the sizes
of objects in S; is equal to the sum of the sizes of objects in Ss.

Let § ={a1,as,...,a,} be an instance of the partition problem. Let s(a;) €
Z* Dbe the size for each object, and C' = Y7 | s(a;). In order to solve the partition
problem using algorithm A, consider a two level hierarchy consisting of two caches
each of size %, connected by a root. Assume that the diameter of this hierarchy is
1 and the miss penalty is nc. Set the probability of access of each object at each
cache to be a fixed value, say p. It is now straightforward to show that a partition
of § exists if and only if A can produce a placement with cost less than n.

Analogous to the value density heuristic for the Knapsack problem, we can

modify the Amortized Fized-tg; algorithm’s swapping phase as follows:

Swapping phase: Swap out the object with the least

Assignedbenefit

vize and replace it with the P-missing object

AssignedBenefit-density i.e.,

value

a with the highest value-density i.e., “** that fits into the available cache space.

A theoretical analysis of the above algoritm is complicated. We intend to measure
as part of future work performance of various heuristics for variable sized objects.

A good algorithm for the placement of variable sized objects immediately

210

allows us to efficiently solve a restricted steady-state version of the bandwidth con-
strained placement problem, where the universe of objects and their probabilities of
access are fixed, the only changes in the system are object updates, and all objects
are of the same size objsize. Let u(a) denote the frequency of update of object
at the server(s). Assume that in steady-state all of the bandwidth to a cache is
used for keeping objects stored in the cache fresh. Thus, the bandwidth B(a) con-
sumed by a copy of a at any machine is u(«) - objsize. Given the frequency of access
f(i,a) of object a at machine 7, the steady-state bandwidth constrained problem is
to minimize the overall cost of access, as defined in the frequencies model developed
in [111]. Thus, the steady-state bandwidth constrained placement problem can be
viewed as a direct instance of a space constrained placement problem with the size

of object o as B(a) and the space available at machine i as bw(7).

211

Chapter 7

Online Hierarchical Cooperative

Caching

In this section, we address a hierarchical generalization of the well-known disk pag-
ing problem. In the hierarchical cooperative caching problem, a set of n machines
residing in an ultrametric space cooperate with one another to satisfy a sequence
of read requests to a collection of (read-only) files. A seminal result in the area of
competitive analysis states that LRU (the widely-used deterministic online paging
algorithm based on the “least recently used” eviction policy) is constant-competitive
if it is given a constant-factor blowup in capacity over the offline algorithm. Does
such a constant-competitive deterministic algorithm (with a constant-factor blowup
in the machine capacities) exist for the hierarchical cooperative caching problem?
The main contribution of the present paper is to answer this question in the nega-
tive. More specifically, we establish an Q(loglogn) lower bound on the competitive
ratio of any online hierarchical cooperative caching algorithm with capacity blowup

O((log n)'~¢), where ¢ denotes an arbitrarily small positive constant.

212

7.1 Introduction

The traditional paging problem, which has been extensively studied, is defined as
follows. Given a cache and a sequence of requests for files of uniform sizes, a system
has to satisfy the requests one by one. If the file f being requested is in the cache,
then no cost is incurred; otherwise a uniform retrieval cost is incurred to place f
in the cache. If need be, some files, determined by an online caching algorithm
that does not know the future request sequence, are evicted to make room for f.
The objective is to minimize the total retrieval cost by wisely choosing which files
to evict. The cost of the online algorithm is compared against that of an optimal
offline algorithm (OPT) that has full knowledge of the request sequence. Following
Sleator and Tarjan [162], we call an online algorithm c-competitive if its cost is at
most ¢ times that of OPT for any request sequence. It is well-known that an optimal
offline strategy is to evict the file that will be requested furthest in the future.

The paging problem is also known as caching if the files have nonuniform size
and retrieval cost. In their seminal paper, Sleator and Tarjan [162] have shown that
LRU (Least-Recently-Used) and several other deterministic paging algorithms are
ﬁ—competitive, where k is the cache space used by LRU and h is that used by
OPT. They have also shown that k—LhH is the best possible among all deterministic
algorithms. We call % the capacity blowup of LRU. For files of nonuniform size and
retrieval cost, Young [187] has proposed the LANDLORD algorithm and shown that
LANDLORD is k%hﬂ—competitive. As stated in [187], the focus of LANDLORD “is on
simple local caching strategies, rather than distributed strategies in which caches
cooperate to cache pages across a network”.

In cooperative caching [58], a set of caches cooperate in serving requests for
each other and in making caching decisions. The benefits of cooperative caching
have been supported by several studies. For example, the Harvest cache [26] in-

troduce the notion of a hierarchical arrangements of caches. Harvest uses the In-

213

ternet Cache Protocol [180] to support discovery and retrieval of documents from
other caches. The Harvest project later became the public domain Squid cache
system [179]. Adaptive Web Caching [191] builds a mesh of overlapping multicast
trees; the popular files are pulled down towards their users from their origin server.
In local-area network environments, the xF'S system [10] utilizes cooperative caches
to obtain a serverless file system.

A cooperative caching scheme can be roughly divided into three components:
placement, which determines where to place copies of files, search, which directs
each request to an appropriate copy of the requested file, and consistency, which
maintains the desired level of consistency among the various copies of a file. In this
paper, we study the placement problem, and we assume that a separate mechanism
enables a cache to locate a nearest copy of a file, free of cost, and we assume that
files are read-only (i.e., copies of a file are always consistent). We focus on a class
of networks called hierarchical networks, the precise definition of which is given
in Section 7.2, and we call the cooperative caching problem in such networks the
hierarchical cooperative caching (HCC) problem.

Our notion of a hierarchical network is constant-factor related to the notion
of hierarchically well-separated tree metrics, as introduced by Bartal [18]. Refining
earlier results by Bartal [18], Fakcharoenphol et al. [68] have shown that any metric
space can be approximated by well-separated tree metrics with a logarithmic distor-
tion. Hence, many results for tree metrics imply corresponding results for arbitrary
metric spaces with an additional logarithmic factor.

If the access frequency of each file at each cache is known in advance, Ko-
rupolu et al. [112] have provided both exact and approximation algorithms that
minimize the average retrieval cost. In practice, such access frequencies are often
unknown or are too expensive to track. Since LRU and LANDLORD provide con-

stant competitiveness for a single cache, it is natural to ask whether there exists a

214

deterministic constant-competitive algorithm (with constant capacity blowup) for
the hierarchical cooperative caching problem.

In this paper, we answer this question in the negative. We show that
Q(loglogn) is a lower bound on the competitive ratio of any deterministic online
algorithm with capacity blowup O((logn)'~¢), where n is the number of caches in
the hierarchy and ¢ is an arbitrarily small positive constant. In particular, we con-
struct a hierarchy with a sufficiently large depth and show that an adversary can
generate an arbitrarily long request sequence such that the online algorithm incurs
a cost Q(loglogn) times that of the adversary. Interestingly, the offline algorithms
associated with our lower bound argument do not replicate files.

On the other hand, if an online algorithm is given a sufficiently large capacity
blowup, then constant competitiveness can be easily achieved. Appendix 7.6 shows
a simple result that, given (1 + ¢')d capacity blowup, where d is the depth of the
hierarchy (i.e., d = ©(logn)) and &’ an arbitrarily small positive constant, a simple
LRU-like online algorithm is constant-competitive. Note that in terms of d, our lower
bound result yields that if the capacity blow up is O(d'~¢), then the competitive
ratio is Q(logd). Hence, our results imply that there is a very small range of values
of the capacity blowup that separates the regions where constant competitiveness is
achievable and unachievable.

Drawing an analogy to traditional caching, where LRU and LANDLORD pro-
vide constant competitiveness, we may think that a constant-competitive algorithm
exists for HCC, being perhaps a hierarchical variant of LRU or LANDLORD. In
fact, we began our investigation by searching for such an algorithm. Since the HCC
problem generalizes the paging problem, we cannot hope to achieve constant com-
petiveness without at least a constant capacity blowup. (In this regard, we remark
that the results of [112] are incomparable as they do not require a capacity blowup.)

Several paging problems (e.g., distributed paging, file migration, and file allo-

215

cation) have been considered in the literature, some of which are related to the HCC
problem. (See, e.g., the survey paper by Bartal [19] for the definitions of these prob-
lems.) In particular, the HCC problem can be formulated as the read-only version
of the distributed paging problem on ultrametrics. And the HCC problem without
replication is a special case of the constrained file migration problem where access-
ing and migrating a file has the same cost. Most existing work on these problems
focuses on upper bound results, and lower bound results only apply to algorithms
without a capacity blowup. For example, for the distributed paging problem, Awer-
buch et al. [13] have shown that, given polylog(n, A) capacity blowup, there exists
deterministic polylog(n, A)-competitive algorithms on general networks, where A is
the normalized diameter of the network. For the constrained file migration problem,
Bartal [18] has given a deterministic upper bound of 2(m), where m is the total size
of the caches, and a randomized lower bound of Q(logm) in some network topology,
and an O(log;mlog2 n) randomized upper bound for arbitrary network topologies.
Using the recent result of Fakcharoenphol et al. [68], the last upper bound can be
improved to O(logm logn).

The rest of this paper is organized as follows. Section 7.2 gives the prelim-
inaries of the problem. Sections 7.3 and 7.4 present the main result of our paper,
a lower bound for constant capacity blowup. Section 7.5 provides some conclud-
ing remarks. Appendix 7.6 presents an upper bound for sufficiently large capacity

blowup.

7.2 Preliminaries
In this section we formally define the HCC problem. We are given a fixed six-tuple

(F,C, dist, size, cap, penalty),

216

where F is a set of files, C a set of caches, dist a function from C x C to N, size a
function from F to N, cap a function from C to N, penalty a function from F to N,
and N denotes nonnegative integers. We assume that dist is an ultrametric (defined
below) over C, and we assume that for every file f in F, penalty(f) > diam(C),

where diam(U) denotes max,, ycrr dist(u,v) for every set of caches U.

7.2.1 Ultrametrics and Hierarchical Networks

A distance function d : C X C — N is defined to be a metric if d is nonnegative,
symmetric, satisfies the triangle inequality, and d(u,v) = 0 if and only if u = v.
An wltrametric is a special case of a metric that satisfy the inequality d(u,v) <
max(d(u,w),d(v,w)), which subsumes the triangle inequality d(u,w) < d(u,v) +
d(v,w).

An equivalent and perhaps more intuitive characterization of our ultrametric
assumption is that the caches in C form a “hierarchical tree”, or simply, a tree defined
as follows. Every leaf node of the tree corresponds to a (distinct) cache. Every node
in the tree has an associated nonnegative value, called the diameter of the node,
such that for every two caches u and v, dist(u,v) equals the diameter of the least
common ancestor of u and v.

Since a hierarchical network has a natural correspondence to a tree, in the
rest of this paper, we use tree terminology to develop our algorithms and analysis.
In what follows, the definitions of ancestor, descendant, parent, and children follow
the standard tree terminology. We use T to denote the tree of caches and we use
root to denote the root of T. The depth of root is 0, and the depth of T is the
maximum depth of any of its nodes. The capacity of a node is the total capacity of
all the caches within the subtree rooted at that node. We impose an arbitrary order

on the children of every internal node.

217

7.2.2 The HCC Problem

The goal of an HCC algorithm is to minimize the total cost incurred in the movement
of files to serve a sequence of requests while respecting capacity constraints at each
cache. To facilitate a formal definition of the problem, we introduce additional
definitions below.

A copy is a pair (u, f) where u is a cache and f is a file. A set of copies is
called a placement. If (u, f) belongs to a placement P, we say that a copy of f is
placed at w in P. A placement P is b-feasible if the total size of the files placed in
any cache is at most b times the capacity of the cache. A 1-feasible placement is
simply referred to as a feasible placement.

Given a placement P, upon a request for a file f at a cache u, an algorithm
incurs an access cost to serve the request. If P places at least one copy of f in any
of the caches, then the cost is defined to be size(f) - dist(u,v), where v is the closest
cache at which a copy of f is placed; otherwise the cost is defined to be penalty(f).
After serving a request, an algorithm may modify its placement via an arbitrarily
long sequence of the following two operations: (1) it may add any copy to P and
incur an access cost as defined above, or (2) it may remove any copy from P and
incur no cost.

Given a capacity blowup of b, the goal of an HCC algorithm is to maintain

a b-feasible placement such that the total cost is minimized.

7.3 The Lower Bound

In this section, we show that, given any constant capacity blowup b, the competitive
ratio of any online HCC algorithm is Q(log d), where d is the depth of the hierarchy.
We prove this lower bound algorithm by showing the existence of a suitable hierarchy,

a set of files, a request sequence, and a feasible offline HCC algorithm that incurs

218

an Q(logd) factor lower cost for that request sequence than any online b-feasible
HCC algorithm. This result easily extends to analyzing how the lower bound on
the competitive ratio varies as a function of nonconstant capacity blowup up to the
depth of the hierarchy. In particular, with a capacity blowup of d'—¢ for a fixed
¢ > 0, the competitive ratio of any online HCC algorithm is still Q(logd).

We present an adversarial argument for the lower bound. Let ON denote
a b-feasible online HCC algorithm and ADV an adversarial offline feasible HCC
algorithm. ON chooses a fixed value for the capacity blowup b, and ADV subse-
quently chooses an instance of an HCC problem (i.e., the six-tuple as introduced in
Section 7.2) as follows. The hierarchy root consists of n unit-sized caches that form
the leaves of a regular k-ary tree with depth d = 4bk. Thus, for a given choice of k,
n = k% The set of files ¥ consists of O(%) unit-sized files. The diameter of each
hierarchy at depth 4bk —1 is 1, and the diameter of every non-trivial hierarchy is at
least A times the diameter of any child, where A > 1. For any file f, penalty(f) is at
least A - diam(root). Given an instance of an HCC problem as described in Section
7.2, we give a program that takes ON as an input and generates a request sequence
and a family of offline HCC algorithms each of which incurs a factor Q(logd) less
cost than ON. We use the name OFF to refer to one algorithm in this family.

At a high level, ON’s lack of future knowledge empowers ADV to play a game
analogous to a shell game®. In this game, OFF maintains a compact placement of
files tailored for the request sequence that ADV generates, while ON is forced to
guess OFF’s placement and incurs relocation costs if it guesses incorrectly. When
ON finally zeroes in on OFF’s placement, OFF switches its placement around,
incurring a small fraction of the relocation cost that ON has already expended, and
repeats the game.

As an example, consider a simple two-level hierarchy associated with equal-

!Thimblerig played especially with three walnut shells.

219

sized departments within a university. A set of files, say A, are of university-wide
interest, while the remaining files are of department-specific interest. The capacity
constraints are set up in such a way that a department can either cache files of its
interest or of the university’s, but not both sets simultaneously. OFF stores all the
files in A in an “idle” department, i.e., one with no access activity. On the other
hand, ON has to guess the identity of the idle department. If ON guesses incorrectly,
ADYV creates requests that force ON to move files in A to a different department.
The best strategy for ON is to evenly distribute files in A across all departments
that have not yet been exposed as nonidle. Unfortunately, even with this strategy
ON ends up incurring a significantly higher cost than OFF. Of course, in this
simplistic case, ON can circumvent its predicament simply by a two-fold blowup in
capacity and using the algorithm described in the Appendix 7.6. In the rest of the
paper, we present a formalization of the shell-game-like adversarial strategy and an

extension of this strategy to hierarchies of nonconstant depth.

7.3.1 The Adversary Algorithm ADV

We fix d + 1 disjoint sets of files Sp, 51, ..., Sg such that |Sy| =1 and |S;| = k¢ ¢!
for all 0 < ¢ < d. We call 7 the depth of a file f if f € S;. We define the function

g(i,7), where i > 0 and j > 0, as

ADYV is shown in Figure 7.1 and the key notations used in the algorithm
(and the rest of the paper) are explained in Table 7.3.1. In ADV, the nonnegative
integer N specifies the number of requests to be generated. The code in Figure 7.1
only shows how ADV generates a bad request sequence for ON. In Section 7.4, we
show how to augment this code to obtain an offline algorithm that serves the same

request sequence but incurs a much lower cost.

220

‘ Notation ‘ Meaning
a.parent | the parent of a
a.anc | the ancestors of a
a.desc | the descendants of «
a.depth | the depth of
a.diam | the diameter of o
a.files | S;, where ¢ = a.depth
a.cap | the total capacity of the caches in a
a.ch | children hierarchies of «
a.placed | the set of (distinct) files placed in the caches in «
a.load | the number of files f in a.placed such that the depth of f is less than a.depth
a.missing | the set of files f such that the depth of f is a.depth but f ¢ a.placed
a.act | g(a.depth,r), where r = |{8 : B € a.parent.ch : .z = 0}|, the “activation” value
a.react | g(a.depth, k), the “reactivation” value
a.deact | g(a.depth,2k), the “deactivation” value

Table 7.1: Key notations.

For every node, ADV maintains two integer fields, z and y, to summarize

the state of ON. In ADV, 7 is a global variable that records the current node where

ADYV generates the next request. Initially, 7 is set to root. The program proceeds

in rounds. At the end of each round, the algorithm generates a request. Based

on ON’s adjustment of its own placement, ADV adjusts 7w using the up loop and

the down loop. The former moves 7w to an ancestor while the latter moves it to a

descendant.

7.3.2 Correctness of ADV

We show in this section that ADV is well-defined (i.e., m # root just before line

12, 7 is not a leaf just before line 8, and line 14 finds a child) and that each round

terminates with the generation of a request. For the sake of brevity, in our reasoning

below, we call a predicate a global invariant if it holds everywhere in ADV (i.e.,

it holds initially and it holds between any two adjacent lines of the pseudocode in

221

© 00 O O i W N =

I e Y el el el o =
= O © 00 O OUih W= O

{initially, N > 0, count = 0, m = root, root.z = root.y = root.act = ¢(0, k), and a.z = a.y = 0 for

while count < N do {main loop}
while 7.load < mw.deact do {up loop}
T.y := m.react;
for every child § of 7, set both §.x and 4.y to 0;
T = m.parent
od; {end of up loop}
while 7.missing = 0 do {down loop}
if a child § of 7 satisfies d.x > 0 A d.load > d.react then
m:=4
else
if m has exactly one child with z equal to 0 then
for every child § of 7, set both §.z and 4.y to 0
fi;
m := a child § of 7 such that .z = 0 A d.load > d.act;
set both 7.z and 7.y to m.act
fi
od; {end of down loop}

generate a request for an element in 7.missing at an arbitrary cache in 7;

ON serves the request and arbitrarily updates its placement;
count := count + 1
od {end of main loop}

Figure 7.1: The ADV algorithm.

222

Figure 7.1).

Lemma 7.3.1 Let I, denote that every internal node has a child with the x field
equal to 0, Iy denote that w is an internal node, and I3 denote that w.load > w.deact.

Then I1 A\ Iy is a global invariant and Is holds everywhere in the down loop.

Proof: The predicate I; A I3 holds initially because m = root and a.x = 0 for all ¢,
and I3 holds just before the down loop due to the guard of the up loop. We next
show that every line of code out of the down loop preserves Iy A I (i.e., if [; A I,
holds before the line, then it holds after the line) and every line of code in the down
loop preserves I1 A Is A I3.

Every line of code out of the down loop preserves I; because none assigns a
nonzero value to a z field. The only line that affects Iy is line 5. We observe that
m # root just before line 5, due to the guard of the up loop and the observation that
root.load > root.deact = 0. Hence, line 5 preserves I5.

In the down loop, the only line that affects I; is 15, but I3 and the inner
if statement establish that 7w has at least two children with the z field equal to 0
just before line 14. Hence, line 15 preserves I;. The only lines that affect I, are
lines 9 and 14. We first observe that just before line 8, w.depth < 4bk — 1. This is
because I states that m.depth < 4bk and I35 implies that if 7.depth = 4bk — 1, then
mw.load > w.deact = bk — %. Since w.load is an integer, this implies that 7.load > bk,
which implies that m.missing O Sy # 0, a contradiction to the guard of the down
loop. Hence, w.depth < 4bk — 1 just before line 8. Therefore, line 9 preserves Is.
We now show that line 14 also preserves Ip. Let A = {a: a € m.ch A a.x = 0} and
B={3:8¢€mchAB.xz >0} Letr denote |A| and i denote mw.depth. We observe

223

that

Z a.load

acA

=) aload+ Y B.oad —) B.load

acA BEB BEB

= m.load +|S;| — Z B.load
BeB

> mw.deact + |S;| — Z B.react
BeB

= g(5,2k) + kT =Y g(i+1,k)
BEB

_ gt (21T
= ok <4k+2r+2k>'

(In the derivation above, the second equality is due to the guard of the down loop
and the definition of load, and the first inequality is due to the guard of the outer if

statement.) Hence, by an averaging argument, there exists a child § of = such that

d.load

.) 1
> d—i—1 . L =
2k <4k + 27“)

= J.act.

Hence, step 14 finds a child. And as shown above, 7.depth < 4bk — 1 just before line
8. Hence, line 14 preserves Is. The only lines that affect I3 are 9 and 14. Both of
these lines preserve I3 because by definition, a.act > a.deact and a.react > a.deact
for all a.

The claim of the lemma then follows. O

Lemma 7.3.2 The up loop terminates.

Proof: Every iteration of the up loop moves 7 to its parent, and root.load >

root.deact by definition. Hence, the up loop terminates. O

224

Lemma 7.3.3 The down loop terminates.

Proof: Every iteration of the down loop moves 7 to one of its children. By I of

Lemma 7.3.1, 7 is always an internal node. Hence, the down loop terminates. [

Lemma 7.3.4 ADYV terminates after generating a sequence of N requests.

Proof: Follows from Lemmas 7.3.2 and 7.3.3. O

7.4 Cost Accounting

In this section, we show that there exists an offline HCC algorithm OFF that
serves the sequence of requests generated by ADV and incurs a cost that is a factor

Q (log %) less than that incurred by any b-feasible online HCC algorithm.

7.4.1 Some Properties of ADV

We first prove some properties of ADV that follow directly from its structure. For
the sake of brevity, for a property that is a global invariant, we sometimes only state

the property but omit stating that the property holds everywhere.
Lemma 7.4.1 For all a, a.x =0 or a.x > a.react.

Proof: The claim holds initially because a.x = 0 for all a. The only line that
assigns a nonzero value to x is 15, which preserves the claim because by definition,

a.act > a.react for all o. O

Lemma 7.4.2 For all a, a.y equals 0 or a.react or a.zx.

Proof: The claim holds initially because a.y = 0 for all a. The only lines that
modify = are 4, 12, and 15. The only lines that modify y are 3, 4, 12, and 15. By

inspection of the code, all of these lines trivially preserve the claim. O

225

Lemma 7.4.3 Let P denote the predicate that every node in w.anc has a positive
z value and every node that is neither in w.anc nor a child of a node in w.anc has
a zero ¢ value. Then P is a loop invariant of the up loop, the down loop, and the

main loop.

Proof: Let A denote m.anc and let B denote the set of nodes that are neither in A
nor children of the nodes in A.

Every iteration of the up loop moves 7 to its parent. To avoid confusion,
we use m to denote the old node (i.e., child) and 7’ to denote the new node (i.e.,
parent). An iteration of the up loop removes w from A, adds mw.ch to B, and sets
the z value of m.ch to 0. Therefore, it preserves P.

Every iteration of the down loop moves 7 to one of its children. To avoid
confusion, we use 7 to denote the old node (i.e., parent) and 7' to denote the new
node (i.e., child). Suppose the down loop takes the first branch of the outer if
statement. Then it adds #’, which has a positive = value, to A and removes 7'.ch
from B. Hence it preserves P. Suppose the down loop takes the second branch
of the outer if statement. If line 12 is executed, P is preserved because line 12
preserves both A and B and only changes the = value of the nodes in neither A nor
B. Then lines 14 and 15 preserves P because they add 7/, which has a positive x
value after line 15, to A and removes 7’.ch from B. Hence, it preserves P.

The main loop preserves P because both the up loop and the down loop

preserve P. O

Lemma 7.4.4 For all o, a.y < a.z.

Proof: The claim holds initially because a.x = a.y = 0 for all a. The only lines that
modify the z or y field are 3, 4, 12, and 15. At lines 4, 12, and 15, the z and y fields

become the same value. It follows from Lemma 7.4.3 and the guard of the up loop

226

that just before line 3, m # root and 7.z > 0. It then follows from Lemmas 7.4.1

and 7.4.2 that line 3 preserves 7.y < 7.x. O

We now introduce the notion of an active sequence to facilitate our subse-
quent proofs. A sequence (ag,ai,...,a,), where 0 < r < k, is called i-active if

aj=g(i+1,k—j)forall0<j<r.

Lemma 7.4.5 For every internal node a, the nonzero x fields of the children of a

form an i-active sequence, where i = a.depth.

Proof: The claim holds initially because a.z = 0 for all . The only lines that
modify the z field are 4, 12, and 15. Lines 4 and 12 preserve the claim because
the z fields of the children of 7 all become 0. Line 15 preserves the claim (for
w.parent) because w.x becomes m.act, which by definition equals g(i + 1,k — j),
where ¢ = w.parent.depth and j equals the number of children of #.parent that have

a positive x field. O

Lemma 7.4.6 Let P(a) denote the predicate that for all B that are not ancestors
of a, B.y < B.react. Then P(w) holds initially and P(7) is a loop invariant of the

up loop, the down loop, and the main loop.

Proof: The predicate P(7) holds initially because m = root and a.y = 0 for all a.
The up loop preserves P(7) because every iteration first establishes 7.y = w.react
and then moves 7 to its parent. The down loop preserves P(7) because it does not
set the y field to a nonzero value. The main loop preserves P(7) because both the

up loop and the down loop preserve P(m). O

7.4.2 Colorings

In order to facilitate the presentation of an offline algorithm in Section 7.4.3, we

introduce the notion of colorings in this section and the notion of consistent place-

227

ments in the next.

A coloring of T (recall that T is the tree of caches) is an assignment of one of
the colors {white, black} to every node in T so that the following rules are observed:
(1) root is white, (2) every internal white node has exactly one black child and k£ —1
white children, and (3) the children of a black node are black. A coloring is called
consistent (with ADV) if for every q, if a.z > 0, then « is white.

For any coloring C and any pair of sibling nodes a and 3, we define swapc(C, a, 3)
(swap coloring) as the coloring obtained from C by exchanging the color of each node
in the subtree rooted at a with that of the corresponding node in the subtree rooted

at 8. (Note that the subtrees rooted at a and 8 have identical structure.)

7.4.3 Consistent Placements

A placement is colorable if there exists a coloring C such that: (1) for each white in-
ternal node a of T, the set of files a.files are stored in (and fill) the caches associated
with the unique black child of «; (2) for each white leaf a of T', the (singleton) set of
files a.files is stored in (and fill) the cache a. Note that in the preceding definition
of a colorable placement, the coloring C, if it exists, is unique. A placement is called
consistent if it is colorable and the associated coloring is consistent.

For any placement P and any pair of siblings a and 3, we define swapp (P, , 3)
(swap placement) as the placement obtained from P by exchanging the contents of
each cache in o with that of the corresponding cache in 3. Note that for any colorable
placement P with associated coloring C and any pair of sibling nodes o and J, the

placement swapp (P, a, 3) is colorable, and its associated coloring is swapc(C, a, 3).

7.4.4 The Offline Algorithm OFF

For every internal node «, we maintain an additional variable a.last defined as

follows. First, we partition the execution of the adversary algorithm into epochs

228

with respect to a. The first epoch begins at the start of execution. Each subsequent
epoch begins when either line 4 or line 12 is executed with m# = a. The variable
a.last is updated at the start of each epoch, when it is set to the child 8 of « for
which the line 15 is executed with = = 3 furthest in the future. (If one or more
children 3 of « are such that line 15 is never executed with m = 3 in the future,
then a.last is set to an arbitrary such child 8.) Note that the variables a.last are
introduced solely for the purpose of analysis and have no impact on the execution
of ADV.

At any point in the execution of ADV, the values of the last fields determine
a unique coloring, denoted by Corr, as follows: root is white and the black child of
each internal white node a is a.last.

We define an offline algorithm OFF that maintains a placement Popr as
follows. We initialize Popp to an arbitrary consistent placement with associated
coloring Copp. We update Popp to swapp(Porr, @, 3) whenever line 4 or line 12 is
executed, where o and 3 denote the values of 7.last before and after the execution
of the line. The algorithm OFF uses the placement Porp to serve each request
generated in line 18. The placement Porr is not updated when OFF serves a

request; Porr is updated only at lines 4 and 12.

Lemma 7.4.7 Throughout the execution of ADV, Popr is colorable and has asso-

ctated coloring Corp.

Proof: Immediate from the way Popr is updated whenever a last field is updated.

O

Lemma 7.4.8 Ezecution of line 4 or line 12 preserves the consistency of Corp.

Proof: Assume that Copr is consistent before line 4. So 7 is white in Copp before

line 4, because by Lemma 7.4.3, 7.z is positive before line 4. By the definition of

229

CoFrrF, before line 4, w.last is black. Let a be 7.last before line 4, and let 3 be =.last
after line 4. Before and after line 4, the = values of the descendants of o are equal
to 0. By Lemma 7.4.3, the z values of all proper descendants of 3 are equal to 0
before and after line 4. Since f.x = 0 after line 4, the x values of all descendants
of o and (B are equal to 0 after line 4. Hence, the swapp operation preserves the

consistency of Copr. The same argument applies to line 12. O

Lemma 7.4.9 Ezecution of line 15 preserves the consistency of Corr.

Proof: Assume that Copr is consistent before line 15. Line 14 implies that 7 # root
just before line 15. Let n’ denote 7.parent. By Lemma, 7.4.3, 7’.z > 0 and hence =’
is white before line 15. Therefore, by Lemma 7.4.7, 7’.last is the black child of =’.
Let ¢t denote the start of the current epoch for 7/, i.e., ¢ is the most recent
time at which n'.last was assigned. Just after time ¢, the = values of all children of
7' were equal to 0. By the definition of ¢, no child of 7' has been set to 0 since time
t. By Lemma 7.3.1, every internal node has at least one child with = equal to 0.
Therefore, from time ¢ until after the execution of line 15, at most & — 1 children of
7' have had their z value set to a nonzero value. (Note that line 15 is the only line
that sets to a nonzero value.) Thus, by the definition of last, 7'.last.z remains 0
after the execution of this line. Thus, 7’.last # 7. Since 7’ is white and ='.last is
black in Copr, we conclude that 7 is white in Copr. So Copr remains consistent
even with the additional constraint that m is required to be white. (Note that 7.z

is set to a positive value by line 15.) O

Lemma 7.4.10 The placement Porrp s always consistent.

Proof: We observe that Corpr is always consistent, due to Lemmas 7.4.8 and 7.4.9,
and the observation that lines 4, 12, and 15 are the only lines that can affect the

consistency of Copp (because they are the only lines that modify the last field or

230

the z field of any node). It then follows from Lemma 7.4.7 that Popp is always

consistent. O

7.4.5 A Potential Function Argument

Let ON denote an arbitrary online b-feasible algorithm. In this section, we use a

potential function argument to show that ON is Q2 (ﬁ)— competitive, where

and v = Let Ton denote the total cost incurred by ON. Similarly, we let

A
A—1"
Torr denote the total cost incurred by OFF, except that we exclude from Topp the
cost of initializing Popp. (This initialization cost is taken into account in the proof

of Theorem 1 below.) We define @, a potential function, as:

d = V'TOFF_V,'TON+ (71)

Z a.parent.diam - a.x +

a€m.ancNaFroot

Z a.parent.diam - (a.x — a.y + a.load)

aé¢m.anc
For convenience of exposition, we account for the cost of moving from the empty

placement to the first placement separately.

Lemma 7.4.11 The cost incurred by swapp(P, a, B3) is at most 2-k%*-a.parent . diam,

where i = a.depth.

Proof: The cost incurred is the cost of exchanging the files placed in a and 8 with
each other, which is at most 2- a.cap - a.parent.diam = 2-k%* . a.parent.diam. Note

that o and B have the same capacity. O
Lemma 7.4.12 The predicate ® < 0 is a loop invariant of the up loop.

231

Proof: Every iteration of the up loop moves 7 to its parent. To avoid confusion, we
use 7 to refer to the old node (i.e., child) and we use 7’ to refer to the new node (i.e.,
parent). Consider the change in ® in a single iteration of the up loop. ON incurs
no cost in the up loop. By the definition of ®, line 3 preserves ®. By Lemma 7.4.4,
line 4 does not increase ®. Let ¢ = w.depth. By Lemma 7.4.11, after the execution
of line 4, OFF incurs a cost of at most ¢ = 2 - k%~*~! . 7.diam to move from the
current consistent marking placement to the next. Thus, the total change in ® in

an iteration is at most

v-c— 7 .diam - (m.y — m.load)

IN
]

¢ — 7' .diam - (m.react — m.deact)

= v-.c—'.diam - (9(i, k) — g(i, 2k))

. 1
= V-c—ﬂ".diam-k:d_’_l-z
< A

vic——-c¢
- 8
< 0.

(In the derivation above, the first inequality is due to the guard of the up loop and
line 3, and the second inequality is due to the assumption that the diameters of the

nodes are A separated.) O

Lemma 7.4.13 The predicate ® < 0 is a loop invariant of the down loop.

Proof: Every iteration of the down loop moves 7 to one of its children. To avoid
confusion, we use 7 to refer to the old node (i.e., parent) and 7’ to refer to the new
node (i.e., child). ON incurs no cost in the down loop. We consider the following

three cases.

232

Suppose that the outer if statement takes the first branch. In this case, OFF

does not incur any cost. Thus, the change in @ is

w.diam - (7'.y — 7’ .load)
< m.diam - (w.react — w.react)

= 0,

where the inequality is due to Lemma, 7.4.6 and the guard of the outer if statement.
Suppose that the outer if statement takes the second branch and that line
12 is not executed. In this case, OFF does not incur any cost. Thus, the change in

® is

w.diam - (7'.y — 7'.load)

IN

w.diam - (r'.xz — 7'.load)

IN

0,

where the first inequality is due to Lemma 7.4.4 and the second inequality is due to
lines 14 and 15.
Suppose that the outer if statement takes the second branch and that line

12 is executed. By Lemma 7.4.11, in this case, OFF incurs a cost of ¢ = 2 k4 ¢71.

233

m.diam. Thus, the change in ¢(7) due to line 12 is at most

v-c— m.diam - Z (6.2 — d.y)

dem.ch
< v-c—m.diam - Z (6.x — d.react)
d€m.ch
k—1
= v-c—mdiam- Y (g(i+1,k—j) —g(i +1,k))
j=1
k—1
) 1 1
= v.c—mdiam - k4L - -
v-c—m.diam ;(2(19—]') 2k>
Ink 1
< (= _ =
< v-ec <4 4> c

< 0.

(In the above derivation, the first inequality follows from Lemma 7.4.6 and the first
equality follows from Lemma 7.4.5.) By the analysis of the previous case (i.e., the
outer if statement takes the second branch but line 12 is not executed), lines 14 and

15 do not increase ®. Thus, every iteration of the down loop preserves ® < 0. O

Lemma 7.4.14 Lines 18 to 20 preserve ® < 0.

Proof: The guard of the down loop ensures that there exists a file in w.missing
just before line 18. Thus, ON incurs a cost at least w.parent.diam > A\ - w.diam
at line 19. OFF incurs a cost at most m.diam because it stores all the files in
w.missing C S;,© = m.depth, in a child of . Let u be the cache where the request

is generated, and let A be the set of nodes on the path from 7 to u, excluding .

234

Since ON adds a file in w.missing to u, the change in ® is at most

v-m.diam —v' - - w.diam + Z a.parent.diam

acA
< m.diam - (v —v' - \) + w.diam - Z A
Jj=0
< 7r.dz'am~(1/—l/'-)\+i>
- A—1
< 0.

(In the above derivation, the last inequality follows from v/ = ﬁ >)\lj + %)

At line 19, ON is allowed to make arbitrarily many updates to its own placement.
Suppose an update causes the load of some nodes to increase. Then by the definition
of load, the set of nodes with an increased load value form a path from, say «, to
a leaf, and ON incurs a cost of at least a.parent.diam. Let the set of nodes on
this path be B. Since the diameters of the nodes on this path are A\ separated, the

change of ® is at most

Z B.parent.diam — v' - a.parent.diam
BEB

< a.parent.diam - Z A7 — V- a.parent.diam

j>0
A . / .
= 31 a.parent.diam — v' - a.parent.diam
= 0.
The claim of the lemma then follows. O

Theorem 1 ON is Q2 (5)—competz'tz've.

Proof: Initially, & = 0. By Lemmas 7.4.12, 7.4.13, and 7.4.14, & < 0 is a loop
invariant of the main loop. Therefore, by Lemmas 7.4.1 and 7.4.4, Tox > .7 - TorF
holds initially and is a loop invariant of the main loop. Let ¢ be the cost incurred

by OFF in moving from the empty placement to the first placement. Note that

235

Ton serves every request with a cost at least 1 (because the diameter of an internal

node is at least 1). Hence, given an arbitrarily long sequence of requests, Ton grows

unbounded. Therefore, we can make ?FN arbitrarily close to ; by increasing the

Torr+c

length N of the request sequence generated by the program. O
The Q (log %) bound on the competitive ratio for a capacity blowup b = d'~,

where € > 0, claimed in the beginning of Section 7.3, follows from d = 4bk and that

OFF can choose an arbitrarily large .

7.5 Discussion

Cooperative caching has in fact found its application in areas other than distributed
systems. For example, in NUCA (NonUniform Cache Architecture), a switched
network allows data to migrate to different cache regions according to access fre-
quency [106]. Although NUCA only supports a single processor at the time of
this writing, multiprocessor NUCA is being developed, with data replication as a

possibility.

7.6 An Upper Bound

We show in this section that, given 2(d+ 1) capacity blowup, where d is the depth of
the hierarchy, a simple LRU-like algorithm, which we refer to as HLRU (Hierarchical
LRU), is constant competitive. For the sake of simplicity, we assume that every file
has unit size and uniform miss penalty. Our result, however, can be easily extended
to handle variable file sizes and nonuniform miss penalties using a method similar

to LANDLORD [187].

236

7.6.1 The HLRU Algorithm

Every cache in HLRU is 2(d + 1) times as big as the corresponding cache in OPT.
HLRU divides every cache into d + 1 equal-sized segments numbered from 0 to d.
For a hierarchy a, we define a.small to be the union of segment a.depth of all the
caches within «, and we define a.big to be the union of 8.small for all 8 € a.desc.

For the rest of this section, we extend the definitions of a copy and a place-
ment (defined in Section 7.2.2) to internal nodes as well. A copy is a pair (a, f)
where « is a node and f is file that is stored in a.small. A placement refers to a set
of copies. The HLRU algorithm, shown in Figure 7.2, maintains a placement P. In

HLRU, a node «a uses a variable a.ts[f] to keep track of the timestamp of a file f.

{upon a request for f at (cache) a}

1 t:=now;
2 do
3 flag = false;
4 P=PU{l@}
5 a.ts[f] := max(a.ts[f], t);
6 if capacity is violated at a.small then
7 f := file with smallest nonzero a.ts[f];
8 P :=P\{(e, f)};
9 if f ¢ a.big then
10 t:= a.ts[f];
11 a.ts[f] := 0;
12 a = a.parent;
13 flag := true
14 fi
15 fi

16 while flag

Figure 7.2: The HLRU algorithm.

7.6.2 Analysis of the HLRU Algorithm

For any node « and file f, we partition time into epochs with respect to a and f as

follows. The first epoch begins at the start of execution, which is assumed to be at

237

time 1. Subsequent epochs begin whenever line 11 is executed.

We define a.ts*[f] to be the time of the most recent access to file f in node
« in the current epoch with respect to node « and file f. If no such access exists,
we define a.ts*[f] to be 0.

For convenience of analysis, we categorize the file movements in HLRU into
two types: retrievals and evictions. Upon request of a file, the HLRU algorithm first
performs a retrieval (from the beginning of the code to line 5 of the first iteration
of the loop) of the file from the nearest cache that has a copy. Each subsequent
iteration of the loop performs an eviction (from line 6 of an iteration to line 5 of the

next iteration) of a file from a.small to a.parent.small for some node a.

Lemma 7.6.1 Before and after every retrieval or eviction, for any node o and file

f, [€ a.big iff B.ts[f] > 0 for some (8 € a.desc.

Proof: Initially, both sides of the equivalence are false. If both sides of the equiva-
lence are false, the only event that truthifies either side is a retrieval of f at a cache
u within @, which in fact truthifies both sides. It remains to prove that if both
sides of the equivalence are true, and if one side becomes false, then the other side
becomes false.

The only event that falsifies the left side is an eviction of the last copy of f
in a.big from a.small. Prior to this eviction, 3.ts[f] = 0 for all proper descendants
B of a (since the equivalence holds for §) and a.ts[f] > 0. The eviction then sets
a.ts[f] to 0, falsifying the right side.

The only event that can falsify the right side is an eviction of f from a.small
such that, after the eviction, f & a.big. (Note that eviction of f from .small, for
a proper descendant 3 of o, cannot falsify the right side because such an eviction
ensures [(.parent.ts[f] > 0.) Thus, falsification of the right side implies falsification
of the left side. O

238

Lemma 7.6.2 Before and after every retrieval or eviction, for any node o and file

I
a.ts*[f] = max S.ts[f].

B€a.desc

Proof: Initially, both sides of the equality are zero. By the definition of a.ts*[f],
the value of a.ts*[f] changes from nonzero to 0 (i.e., a new epoch with respect to
a and f begins) at line 11. By the guard of the inner if statement, f & a.big just
before line 11. Hence, by Lemma 7.6.1, §.ts[f] is 0 for all 8 € a.desc.

The value a.ts*[f] increases due to some access of f at a cache u within a.
The equality holds because the max value on the right side is at u.

Between the changes of a.ts*[f], only eviction of f from « can change the
max (reset it to 0) on the right side of the equality. This eviction also resets a.ts*|[f]

to 0 because a new epoch begins. O

Lemma 7.6.3 Before and after every retrieval or eviction, for any node o and file

f, a.ts[f] < a.ts*[f]. Furthermore, just after line 8, if f & a.big, then a.ts[f] =
a.ts*[f].

Proof: The first claim of the lemma follows immediately from Lemma 7.6.2. For the
second claim, note that we are evicting the last copy of f in a.big from a.small. By
Lemma 7.6.1, all proper descendants 3 of a have 3.ts[f] = 0. So a.ts[f] = a.ts*[f]
by Lemma 7.6.2. O

In what follows, for the convenience of analysis, we define root.parent to be
a fake node that has every file, and we define root.parent.diam to be the uniform
miss penalty.

When a file is moved from cache u to v, for every node a on the path from the
least common ancestor of u and v to v excluding the former, we charge a pseudocost

of a.parent.diam to node a.

239

Lemma 7.6.4 If a file movement (between two caches) has actual cost C' and

charges a total pseudocost of C', then

Proof: Suppose the file movement is from cache u to cache v. Let a be the least
common ancestor of v and v and let B be the nodes on the path from «a to v,

excluding a. Then

C
= a.diam
< Zﬁ.parent.diam
BeB
-
< a.diam-Z)_j
j20
A
-~ a1 ¢

O

For any node o and file f, we define auxiliary variables a.in[f] and a.out[f]
for the purpose of our analysis. These variables are initialized to 0. We increment
a.in[f] whenever retrieval of file f charges a pseudocost to node . We increment

a.out[f] whenever eviction of file f charges a pseudocost to node a.

Lemma 7.6.5 For any node o, the total pseudocost charged to node o due to re-

trievals is

Za.m[f] - a.parent.diam.
f

Proof: Follows from the observation that whenever a pseudocost is charged to node

a due to a retrieval, the pseudocost is a.parent.diam. O

240

Lemma 7.6.6 For any node o, the total pseudocost charged to node a due to an
eviction s at most

Za.out[f] - a.parent.diam.
f

Proof: Follows from the observation that whenever a pseudocost is charged to node

a due to an eviction, the pseudocost is at most a.parent.diam. O

Lemma 7.6.7 For any node o and file f,
a.out[f] < a.in[f].

Proof: We observe that if a pseudocost is charged to a node a as a result of a
retrieval, then the retrieval truthifies f € a.big. Similarly, if a pseudocost is charged
to node «a as a result of an eviction, then the eviction falsifies f € a.big. It then
follows that

a.out[f] < a.in[f] < a.out[f] + 1

because f & a.big initially. O

Lemma 7.6.8 For any node «, the set a.big always contains the most recently

accessed 2 - a.cap files.

Proof: Let X denote the set of the most recently accessed 2-a.cap files. We consider
the places where a file is added to X or removed from a.big.

A file f can be added to X only when f is requested at a cache u within a.
In this case, f is added to u.small and is not evicted from wu.small because it is the
most recently accessed item. Hence, f € a.big.

A file f can be removed from a.big only when it is moved from a.small to
a.parent.small as the result of an eviction and there is no other copy of f in «.big.

This means that f is chosen as the LRU item at line 7. Since f is the LRU item,

241

there are 2 - a.cap items g in a.small such that a.ts[f] < a.ts[g] < a.ts*[g]. By
Lemma 7.6.3, a.ts[f] = a.ts*[f] just after line 8. It follows from the definition of
ts* that f & X. 0

In what follows, we use OPT to refer to an optimal offline algorithm.

Lemma 7.6.9 For any node «, the total pseudocost due to retrievals charged to «

by HLRU is at most twice the pseudocost charged to a by OPT.

Proof: Fix a node a. For OPT, we say that a request for a file f at a cache within «
results in a miss if no copy of f exists at any cache within « at the time of the request.
For HLRU, a miss occurs if no copy of f is in a.big. By Lemma 7.6.8, HLRU incurs
at most as many misses as an LRU algorithm with capacity 2 - a.cap running on
the subsequence of requests originating from the caches within a. (Note that LRU
misses whenever HLRU misses.) By the well-known result of Sleator-Tarjan [162],
such an LRU algorithm incurs at most twice as many misses as OPT.

Note that a miss results in a pseudocost of a.parent.diam being charged to
a. Therefore, the total pseudocost charged to node a in OPT is at least the number
of misses in OPT times a.parent.diam. Furthermore, within HLRU, a pseudocost is
charged to node a only on a miss. Therefore, the total pseudocost charged to node
a in HLRU is at most the number of misses incurred by HLRU times a.parent.diam.

The claim of the lemma then follows. O

Lemma 7.6.10 For any node a, the total pseudocost due to evictions charged to a

by HLRU 1is at most four times the total pseudocost charged to node o by OPT.

Proof: Follows immediately from Lemmas 7.6.5, 7.6.6, 7.6.7, and 7.6.9. O

Theorem 2 HLRU is constant competitive.

Proof: Follows immediately from Lemmas 7.6.4 and 7.6.10. O

242

Chapter 8

Summary

Replication, or making copies, of data and services is a fundamental building block in
the design of distributed systems. With the rapid growth of distributed applications
in the last few years, large-scale replicated systems, ie systems that move large
amounts of information across wide-area networks, have come to be in widespread
usage. Examples of such systems include the Web, caching and prefetching systems,
content distribution networks, file sharing applications, distributed databases, web
crawlers, edge-service architectures, backup systems among several others.

This dissertation presents mechanisms and algorithms to improve the perfor-
mance, availability, consistency and service quality of large-scale replicated services.
These benefits are obtained by enabling mechanisms and algorithms for aggressive
speculative replication, or ASR, that refers to massive-scale replication of objects
and aggressive propagation of updates on a speculative basis. ASR trades off in-
creased expenditure of hardware resources in return for savings in human time,
a worthy bargain in the light of falling costs of computing, storage, and network
bandwidth.

We summarize below the main contributions of this dissertation. On the

mechanism front, the main contributions of this dissertation are as follows:

243

. We make a case for aggressive speculative replication as a fundamental design

primitive in building large-scale replicated systems.

. We demonstrate through prototype-based experiments how approaches relying
on manually-tuned thresholds are fundamentally flawed due to their complex-
ity, inefficiency, and the risk of system overload. We make a case for self-tuning
system support for building large-scale distributed applications that involve

massive replication.

. We develop Mars, an architecture that provides self-tuning system support for
performing ASR in a manner that prevents interference between speculative
and regular load. We demonstrate that the Mars approach simplifies appli-
cation design by not relying on manually-tuned thresholds, more efficiently
utilizes resources for improving performance and availability, and is safe from

the risk of overloading system components.

. We build usable prototypes to instantiate Mars’ architecture in real-world
replicated systems. In particular, to prevent network interference, we develop
the abstraction of a background transfer that does not interfere with existing
regular traffic in the network. Our network transport protocol, TCP Nice,
provides this abstraction in a deployable manner with the modification of the
sender-side congestion control protocol only. In addition, for greater deploy-
ablity, we develop a user-level implementation of TCP Nice to obviate a kernel
level installation. TCP Nice effectively provides a two-level network-wide pri-

oritization without making changes to any routers.

. We demonstrate the benefits of Mars’ architecture through a case study of
NPS, a prototype Web prefetching system that is non-interfering and easily
deployable. NPS is free from the vagaries of technology trends, workloads, and

estimation error that static thresholds are subject to, and can still provide

244

significant reductions in response times commensurate with available spare

capacity.

The goal of the algorithmic half of the dissertation is to augment the mech-
anism contributions with appropriate policies for selection and placement of specu-
latively replicated objects. We study the problems of speculative replication and
caching in bandwidth- and space-constrained environments for cooperative and
stand-alone caches. The main algorithmic contributions of this dissertation are

as follows:

1. We develop long-term prefetching, a strategy for determining which objects to
speculatively replicate at a large cache constrained by bandwidth or storage
space in order to minimize response times. Long-term prefetching and the
associated object selection criterion, Goodfetch, take into account both the
access rate and the update rate of an object to determine its prefetch-worth.
Long-term prefetching is useful for specualatively replicating Web objects at
large proxies and content distribution servers, as is demonstrated by our sim-

ulation experiments with real proxy traces.

2. Next, we extend long-term prefetching to a distributed cooperative environ-
ment. We consider the problem of how to speculatively place objects in a set
of distributed cooperative caches in a hierarchical network where bandwidth
to the caches is the constraint and Goodfetch values are known for every ob-
ject at every cache. We develop an object placement algorithm that is shown
to be within a constant factor of the optimal. We then extend this algorithm,
maintaining asymptotic optimality, to more dynamic scenarios where object

access patterns and the universe of objects are not fixed a priori.

3. Finally, we consider the theoretically intriguing problem of distributed cooper-

ative caching in hierarchical networks in a more traditional space-constrained

245

environment where no a priori information about access patterns is given. We
show a non-constant lower bound for the competitive ratio of any online hier-
archical cooperative caching algorithm that is given at most a constant factor
space advantage. We then present a simple extension of the LRU algorithm
to hierarchical networks called HLRU, that when given a blowup of a factor
equal to the depth of the hierarchy in the capacity of each cache, lies within
a constant factor of an optimal algorithm that has complete knowledge of the

request sequence.

8.1 Ongoing Work

This dissertation has opened up several avenues for future work, some of which are
ongoing efforts. In Section 4.4, we outlined how to extend Mars’ support for ASR to
more general instances of the general replication problem, in particular, applications
requiring strict consistency guarantees. Two key ideas enabled support for ASR in
systems requiring strict consistency guarantees - i)separation of prediction policy
from resource scheduling, and ii) separation of consistency information from update
bodies. These ideas and more form the basis of our ongoing effort to develop a

unified architecture for large-scale replicated systems described below.

8.1.1 Towards a Unified Replication Architecture

A unified replication architecture refers to a single set of mechanisms based on which
a broad range of replicated systems can be built using different combinations of
consistency policies, data placement policies and communication topology policies.
Informally, consistency policies such as sequential [117] or causal [95] regulate how
quickly newly written data is seen by reads, placement policies such as demand-
caching [93, 136], replicate-all [145], or speculative replication of data that is most

likely to be accessed at a location define which nodes store local copies of which data,

246

and topology policies such as client-server [93, 136], hierarchy [7, 133], or ad-hoc [87]
define the paths along which information flows.

A core hypothesis motivating our effort of developing a unified replication
architecture is that existing systems are special cases of a more fundamental under-
lying architecture, but that they are superficially incompatible because they embed
consistency, placement, or topology policy assumptions in their replication mech-
anisms. For example, Bayou [168] allows arbitrary topologies for communication
among nodes, but Bayou fundamentally assumes a data placement policy where all
nodes store all data. Conversely, Coda s [108] more flexible placement policy allows
nodes to cache the subset of data of interest to them, but Coda fundamentally as-
sumes a restrictive client-server communications topology policy. Because of such
entaglement of mechanisms and policies, when a replication system is built for a
new environment, it must often be built from scratch or must modify existing mech-
anisms to accomodate new policy trade-offs. A unified set of flexible and orthogonal
mechanisms for consistency, placement, and topology will allow independent policy
choices in each of the dimensions.

As a first step towards this goal, we have developed an architecture for
PRACTI replication [56] that supports (i) partial replication — the ability to repli-
cate arbitrary subsets of data at any location, (ii) arbitrary consistency — support
for a continuum of consistency guarantees from eventual consistency to linearizabil-
ity, and (iii) topology independence — support for arbitrary communication patterns
between nodes in the system. Partial replication ensures that the amount of stor-
age, computing, and network bandwidth that a node consumes is proportional to
the amount of data that is of its interest. Topology independence ensures epidemic-
style efficient propagation of data to nodes in the system. Arbitrary consistency
ensures that the architecture can support a diverse range of applications. Two ideas

are fundamental to PRACTI replication — (i) separation of replication policy from

247

resource management mechanisms as in Mars, and (ii) separation of consistency and
update information [135]. Though the work on PRACTI replication itself is beyond
the scope of this dissertation, it stands as a testimony to the impact of enabling

aggressive speculative replication in large-scale distributed systems.

8.1.2 Future Work

This dissertation has not sufficiently addressed the issue of how to distribute avail-
able spare resources across competing applications or users to maximize global util-
ity. Moreover, it is unclear how much absolute benefit applications can actually de-
rive in an environment where everybody is using ASR. In the case of Web prefetching
for example, there might be sufficient capacity to let a small number of users prefetch
and obtain reductions in response times. It is however possible that if a large num-
ber of users start prefetching, the interference between all of the background traffic
generated by the massive-scale prefetching results in no user receiving any benefit.
A prefetch request becomes useless if the response does not arrive before a demand
request for that object arrives. Massive-scale prefetching can result in a scenario
where everybody as a whole is using up a lot of spare capacity, but no single user
receives enough to be able to get any real benefit.

The policy question of what a fair allocation of spare resources across dif-
ferent applications is needs further research. For example, it is not clear how to
allocate resources between a user who is performing a large background file transfer
and another who is doing Web prefetching through her browser and yet another
whose computer is automatically fetching software updates in the background. A
better understanding of utilities that human beings associate with different kinds of
background traffic is needed. It is conceivable that multiple classes of service pri-
oritization or pricing will be needed to ensure fair allocation of available resources

for ASR-enabled applications. To satisfactorily answer the question of what addi-

248

tional mechanisms and policies are needed to enable fair and globally useful ASR,
empirical data of human usage patterns in ASR environments is needed.

In Section 5.7, we raised the research question of how to efficiently aggregate
information about access patterns in a WAN environment to enable appropriate
prioritization of speculative requests in a Mars-based system. Such aggregation
mechanisms need to be combined with a discovery mechanism that automatically
directs a request to the "best” replica. A better understanding of these issues will
enable us to realize the vision of a world where replicas of objects are automatically
created where they are likely to be accessed and routing mechanisms obliviously
direct requests to suitable replicas.

Massive-scale replication of content takes us closer to the ideal of near-
instantaneous delivery of content, 100% perceived availability, desired levels of con-
sistency, predictable service quality, location-independent content delivery, tolerance
to natural disasters and malicious human attacks etc., all at the cost of cheap hard-
ware resources. This dissertation is a first step toward realizing the potential benefits

of massive-scale replication.

249

[1]
2]

8]

Bibliography

Abilene, Internet2.

Anurag Acharya and Joel Saltz. A study of internet round-trip delay. Technical
Report CS-TR-3736, University of Maryland, 1996.

V. Agarwal, M. S. Hrishikesh, S. W. Keckler, and D. Burger. Clock rate vs
ipc : The end of the road for conventional microarchitectures. In Proceedings
of the Twenty-Seventh International Symposium on Computer Architecture,

2000.
Akamai, Inc. http://www.akamai.com.
Akamai. Fast internet content delivery with freeflow, Nov 1999.

V. Almeida, A. Bestavros, M. Crovella, and A. de Oliveira. Characterizing
Reference Locality in the WWW. In Proceedings of Parallel and Distributed

Information Systems, 1996.

R. Alonso and M. Blaze. Dynamic hierarchical caching for large-scale dis-
tributed file systems. In Proceedings of the Twelvth International Conference

on Distributed Computing Systems, June 1992.

D. Andersen, D. Bansal, D. Curtis, S. Seshan, and H. Balakrishnan. Sys-

250

[9]

[10]

[11]

12)

[13]

[14]

[15]

[16]

[17]

tem support for bandwidth management and content adaptation in internet

applications. In OSDI, pages 213-226, 2000.

David G. Andersen, Hari Balakrishnan, M. Frans Kaashoek, and Robert Mor-
ris. Resilient overlay networks. In Symposium on Operating Systems Princi-

ples, pages 131-145, 2001.

T. Anderson, M. Dahlin, J. Neefe, D. Patterson, D. Rosselli, and R. Wang.
Serverless network file systems. In Proceedings of the 15th Symposium on

Operating Systems Principles, pages 109-126, 1995.
Apache HTTP Server Project. http://httpd.apache.org.

Mohit Aron, Peter Druschel, and Willy Zwaenepoel. Cluster reserves: a mech-
anism for resource management in cluster-based network servers. In Measure-

ment and Modeling of Computer Systems, pages 90-101, 2000.

B. Awerbuch, Y. Bartal, and A. Fiat. Distributed paging for general net-
works. In Proceedings of the Tth Annual ACM-SIAM Symposium on Discrete
Algorithms, pages 574-583, January 1996.

G. Banga, P. Druschel, and J.C. Mogul. Resource containers: A new facility

for resource management in server systems. In OSDI, 1999.

D. Bansal and H. Balakrishnan. Binomial Congestion Control Algorithms. In

Infocom, 2001.

P. Barford and M. Crovella. Generating representative workloads for network

and server performance evaluation, 1998.

Y. Bartal. On approximating arbitrary metrics by tree metrics. In In Pro-
ceedings of the 30’th Annual ACM Symposium on Foundations of Computer
Sciences, pages 184-193, October 1996.

251

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

Y. Bartal. On approximating arbitrary metrics by tree metrics. In Proceedings
of the 37th Annual IEEE Symposium on Foundations of Computer Science,
pages 184-193, October 1996.

Y. Bartal. Distributed paging. In A. Fiat and G. J. Woeginger, editors, The
1996 Dagstuhl Workshop on Online Algorithms, volume 1442 of Lecture Notes

in Computer Science, pages 97-117. Springer, 1998.

Y. Bartal. Probabilistic approximation of metric spaces and its algorithmic ap-
plications. In In Proceedings of the 30°th Annual ACM Symposium on Theory
of Computing, pages 161-168, may 1998.

S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and W. Weiss. An

architecture for differentiated services, 1998.

R. Bless, K. Nichols, and K. Wehrle. A lower effort per-domain behavior (pdb)

for differentiated services, December 2003.

T. Bonald. Comparision of TCP Reno and TCP Vegas via fluid approximation.
INRIA Research Report 3563, Nov 1998.

C. Bouras and A. Konidaris. Web components: A concept for improving
personalization and reducing user perceived latency on the world wide web.

In The 2nd International Conference on Internet Computing, 2001.

C. Bowman, P. Danzig, D. Hardy, U. Manber, and M. Schwartz. The Harvest
information discovery and access system. In Proceedings of the 2nd Intl. World

Wide Web Conference, pages 763-771, October 1994.

C. Mic Bowman, Peter B. Danzig, Darren R. Hardy, Udi Manber, and
Michael F. Schwartz. The Harvest information discovery and access sys-
tem. Computer Networks and ISDN Systems, 28(1-2):119-125 (or 119-12677),
1995.

252

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

Lawrence S. Brakmo and Larry L. Peterson. TCP vegas: End to end con-
gestion avoidance on a global internet. IEEE Journal on Selected Areas in

Communications, 13(8):1465-1480, 1995.

L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker. Web caching and

zipf-like distributions: Evidence and implications. In Infocom, 1999.
E. Brewer. Invited Talk. In Proceeding of PODC, Aug 2002.

B. E. Brewington and G. Cybenko. How dynamic is the web? WWW9 /
Computer Networks, 33(1-6):257-276, 2000.

Squid Web Proxy Cache. http://www.squid-cache.org.

P. Cao and S. Irani. Cost-aware WWW proxy caching algorithms. In Pro-
ceedings of the USENIX Symposium on Internet Technology and Systems, De-
cember 1997.

P. Cao, J. Zhang, and K. Beach. Active cache: Caching dynamic contents on
the web. In IFIP International Conference on Distributed Systems Platforms
and Open Distributed Processing (Middleware ’98), 1998.

Pei Cao, Edward W. Felten, Anna R. Karlin, and Kai Li. A study of integrated
prefetching and caching strategies. In SIGMETRICS, 1995.

Castro and Liskov. Practical byzantine fault tolerance. In OSDI: Symposium

on Operating Systems Design and Implementation. USENIX Association, Co-
sponsored by IEEE TCOS and ACM SIGOPS, 1999.

V. Cate. Alex - a global filesystem. In Proceedings of the 1992 USENIX File
System Workshop, pages 1-12, May 1992.

B. Chandra. Web workloads influencing disconnected service access. Master’s

thesis, University of Texas at Austin, May 2001.

253

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

B. Chandra, M. Dahlin, L. Gao, A. Khoja, A. Razzaq, and A. Sewani.
Resource management for scalable disconnected access to web services. In

WWW10, May 2001.

B. Chandra, M. Dahlin, L. Gao, and A. Nayate. End-to-end WAN Service
Availability. In USITS, 2001.

A. Chankhunthod, P. Danzig, C. Neerdaels, M. Schwartz, and K. Worrell. A
hierarchical internet object cache. In Proceedings of the USENIX Technical

Conference, pages 22—26, January 1996.

M. Charikar, S. Guha, D. Shmoys, and E. Tardos. A constant-factor approxi-
mation algorithm for the k-median problem. In Proceedings of the 31st Annual

ACM Symposium on Theory of Computing, pages 1-10, May 1999.

Jeffrey S. Chase, Darrell C. Anderson, Prachi N. Thakar, Amin Vahdat, and
Ronald P. Doyle. Managing energy and server resources in hosting centres. In

Symposium on Operating Systems Principles, pages 103-116, 2001.

X. Chen and X. Zhang. Coordinated Data Prefetching by Utilizing Reference
Information. In PAWS, 2001.

D. Cheriton and M. Gritter. TRIAD: A new next generation internet archi-
tecture. In USITS ’01, March 2001.

Chiu and Jain. Analysis of increase and decrease algorithms for congestion
avoidance in computer networks. Journal of Computer networks and ISDN,

17(1):1-14, June 1989.

J. Cho and H. Garcia-Molina. Synchronizing a database to improve freshness.

In SIGMOD, 2000.

254

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

J. Cleary and I. Witten. Data compression using adaptive coding and partial

string matching. IEEE Transactions on Communications, 1984.

K. G. Coffman and Andrew Odlyzko. The size and growth rate of the internet.
http://www.firstmonday.dk /issues/issue3_10/coffman/, 1998.

E. Cohen, B. Krishnamurthy, and J. Rexford. Improving End-to-End Perfor-
mance of the Web Using Server Volumes and Proxy Filters. In SIGCOMMY8,
1998.

M. Crovella and P. Barford. The network effects of prefetching. In Infocom,
1998.

Mark Crovella and Azer Bestavros. Self-Similarity in World Wide Web Traffic:
Evidence and Possible Causes. In SIGMETRICS, May 1996.

C. Cunha, A. Bestavros, and M. Crovella. Characteristics of WWW Client-
based Traces. Technical Report TR-95-010, Boston University, CS Depart-
ment, April 1995.

K. M. Curewitz, P. Krishnan, and J. S. Vitter. Practical prefetching via data
compression. In ACM SIGMOD International Conference on Management of
Data (SIGMOD ’93), pages 257-266, 1993.

F. Dabek, F. Kaashoek, D. Karger, R. Morris, and I. Stoica. Wide-area coop-
erative storage with CFS. In SOSP, 2001.

M. Dahlin. http://www.cs.utexas.edu/users/dahlin/
techTrends/data/diskPrices/data, Jan 2002.

M. Dahlin, L. Gao, A. Nayate, A. Venkataramani, P. Yalagandula, and
J. Zheng. Practi replication for large-scale distributed systems. Technical

report, Computer Sciences, UT Austin, 2004.

255

[57]

[58]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

M. D. Dahlin. http://cs.utexas.edu/dahlin/techTrends/data/diskPrices/data.

M. D. Dahlin, R. Y. Wang, T. E. Anderson, and D. A. Patterson. Cooperative
caching: Using remote client memory to improve file system performance. In
Proceedings of the First Symposium on Operating Systems Design and Imple-
mentation, pages 267-280, November 1994.

B. Davison. Assertion: Prefetching with get is not good. Web Caching and
Content Distribution Workshop, June 2001.

Brian D. Davison and Vincenzo Liberatore. Pushing politely: Improving Web
responsiveness one packet at a time (extended abstract). Performance Evalu-

ation Review, 28(2):43-49, September 2000.

Stephen E. Deering, Deborah Estrin, Dino Farinacci, Van Jacobson, Ching-
Gung Liu, and Liming Wei. An architecture for wide-area multicast routing.

In SIGCOMM, pages 126-135, London, UK, August 1994. ACM.

F. Douglis, A. Feldmann, B. Krishnamurthy, and J. C. Mogul. Rate of change
and other metrics: a live study of the world wide web. In USITS’97, 1997.

R. Doyle, J. Chase, S. Gadde, and A. Vahdat. The trickle-down effect: Web

caching and server request distribution, 2001.
D. Duchamp. Prefetching Hyperlinks. In USITS, 1999.

B. Duska, D. Marwood, and M. Feeley. The measured access characteristics

of world-wide-web client proxy caches. In USITS97, Dec 1997.

S. Dykes and K. A. Robbins. A viability analysis of cooperative proxy caching.
In Infocom, 2001.

Tivoli Data Exchange. http://www.tivoli.com/prod
ucts/documents/datasheets/data_exchange_ds.pdf.

256

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

J. Fakcharoenphol, S. Rao, and K. Talwar. A tight bound on approximating
arbitrary metrics by tree metrics. In Proceedings of the 35th Annual ACM
Symposium on Theory of Computing, pages 448-455, June 2003.

L. Fan, P. Cao, J. Almeida, and A. Z. Broder. Summary cache: A scalable
wide-area web cache sharing protocol. In Proceedings of the 1998 ACM SIG-
COMM Conference on Applications, Technologies, Architectures, and Proto-
cols for Computer Communication, pages 2564-265, August 1998.

L. Fan, P. Cao, W. Lin, and Q. Jacobson. Web prefetching between low-

bandwidth clients and proxies: Potential and performance, 1999.

M. Feeley, W. Morgan, F. Pighin, A. Karlin, H. Levy, and C. Thekkath. Im-
plementing global memory management in a workstation cluster. In Proceed-
ings of the 15th ACM Symposium on Operating Systems Principles, December
1995.

R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and

T. Berners-Lee. Hypertext transfer protocol — http/1.1, June 1999.

Fireclick. Netflame. http://www .fireclick.com, Last known to have existed in

2001.

S. Floyd, M. Handley, J. Padhye, and J. Widmer. Equation-based congestion
control for unicast applications: the extended version. Technical Report TR-

00-003, ICSI, March 2000.

Sally Floyd and Van Jacobson. Random early detection gateways for con-
gestion avoidance. IEEE/ACM Transactions on Networking, 1(4):397-413,
August 1993.

L. Gao, M. Dahlin, A. Nayate, J. Zheng, and A. Iyengar. Application specific

257

[77]

[78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

data replication for edge services. In Proceedings of the International World

Wide Web, May 2003.

S. Gilbert and N. Lynch. Brewer’s conjecture and the feasibility of Consistent,
Available, Partition-tolerant web services. In ACM SIGACT News, 33(2), Jun
2002.

S. Glassman. A caching relay for the World Wide Web. Computer Networks
and ISDN Systems, 27(2):165-173, 1994.

P. Goyal, X. Guo, and H.M. Vin. A hierarchical cpu scheduler for multimedia
operating systems. In OSDI, pages 107-122, October 1996.

J. Gray. Distributed computing economics. Technical Report MSR-TR-2003-
24, Microsoft Research, March 2003.

J. Gray, P. Helland, P. O’Neil, and D. Shasha. The dangers of replication and

a solution, 1996.

J. Gray and P. Shenoy. Rules of thumb in data engineering. In ”Proc. 16th
Internat. Conference on Data Engineering”, pages 3—12, 2000.

Jim Gray and Gordon Bell. Digital immortality. CACM, 44(3):28-31, 2001.

S. Gribble and E. Brewer. System Design Issues for Internet Middleware
Services: Deductions from a Large Client Trace. In USITS97, Dec 1997.

Steven D. Gribble, Eric A. Brewer, Joseph M. Hellerstein, and David Culler.
Scalable distributed data structures for internet service construction. In OSDI,

2002.

J. Griffioen and R. Appleton. Automatic Prefetching in a WAN. In IEEFE
Workshop on Advances in Parallel and Distributed Systems, October 1993.

258

[87]

[91]

[92]

[93]

[94]

[95]

Richard G. Guy, John S. Heidemann, Wai Mak, Thomas W. Page, Jr., Ger-
ald J. Popek, and Dieter Rothmeir. Implementation of the Ficus Replicated
File System. In Proceedings of the Summer 1990 USENIX Conference, pages
63-72, Summer 1990.

J. Gwertzman and M. Seltzer. An analysis of geographical push-caching, 1997.

J. S. Gwertzman and M. Seltzer. The case for geographical push-caching. In
Hot0OS, 1995.

A. Heddaya and S. Mirdad. WebWave: Globally load balanced fully dis-
tributed caching of hot published documents. In Proceedings of 17th Intl.

Conference on Distributed Computing Systems, May 1997.
Hotmail.

J. Howard, M. Kazar, S. Menees, D. Nichols, M. Satyanarayanan, R. Side-
botham, and M. West. Scale and Performance in a Distributed File System.
ACM Transactions on Computer Systems, 6(1):51-81, February 1988.

John H. Howard, Michael L. Kazar, Sherri G. Menees, David A. Nichols,
M. Satyanarayanan, Robert N. Sidebotham, and Michael J. West. Scale and
performance in a distributed file system. ACM Transactions on Computer

Systems, 6(1):51-81, February 1988.

N. Hutchison, S. Manley, M. Federwisch, G. Harris, D. Hitz, S. Kleiman, and
S. O’Malley. Logical vs. physical file system backup. In OSDI, 1999.

P. W. Hutto and M. Ahamad. Slow memory: Weakening consistency to en-
hance concurrency in distributed shared memories. The 10th International

Conference on Distributed Computing Systems, pages 302-309, 1990.

259

[96]

[97]

(98]

[103]

[104]

[105]

[106]

S. Tuecke I. Foster, C. Kesselman. The anatomy of the grid: Enabling scalable
virtual organizations. In International J. Supercomputer Applications, volume

15(3), 2001.
IBM. Websphere.

IMSI Net Accelerator.
http://nct.digitalriver.com/fulfill/0002.3.

Intel. N-tier architecture improves scalability and ease of integration.
Inc. Internet Doorway. http://www.netdoor.com/info/tiert3pricing.html.
Digital Island. http://www.sandpiper.net.

Quinn Jacobson and Pei Cao. Potential and limits of Web prefetching between
low-bandwidth clients and proxies. In Third International WWW Caching
Workshop, 1998.

V. Jacobson. Congestion avoidance and control. In SIGCOMMSES, 1988.

G Karakostas and D. Serpanos. Practical LFU implementation for Web
Caching . Technical Report TR-~622-00, Department of Computer Science,
Princeton University, 2000.

D. Karger, F. Lehman, T. Leighton, M. Levine, D. Lewin, and R. Panigrahy.
Consistent hashing and random trees: Distributed caching protocols for re-
lieving hot spots on the world wide web. In In Proceedings of the 29’th Annual
ACM Symposium on Theory of Computing, pages 654-663, May 1998.

C. K. Kim, D. Burger, and S. Keckler. An adaptive, non-uniform cache struc-
ture for wire-delay dominated on-chip caches. In Proceedings of the 10th In-

ternational Conference on Architectural Support for Programming Languages

and Operating Systems (ASPLOS), pages 211-222; October 2002.

260

[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

Tracy Kimbrel, Andrew Tomkins, R. Hugo Patterson, Brian Bershad, Pei Cao,
Edward Felten, Garth Gibson, Anna R. Karlin, and Kai Li. A trace-driven
comparison of algorithms for parallel prefetching and caching. In OSDI, pages

19-34, 1996.

J. J. Kistler and M. Satyanarayanan. Disconnected operation in the coda
file system. In Thirteenth ACM Symposium on Operating Systems Principles,
volume 25, pages 213-225, Asilomar Conference Center, Pacific Grove, U.S.,
1991. ACM Press.

R. Kokku, P. Yalagandula, A. Venkataramani, and M. Dahlin. A non-
interfering deployable web prefetching system. Technical Report TR-02-51,
Computer Sciences, UT Austin, May 2002.

R. Kokku, P. Yalagandula, A. Venkataramani, and M. Dahlin. Nps: A non-
interfering deployable web prefetching system. In USITS, March 2003.

M. Korupolu and M. Dahlin. Coordinated placement and replacement for
large-scale distributed caches. In Workshop On Internet Applications, June

1999.

M. R. Korupolu, C. G. Plaxton, and R. Rajaraman. Placement algorithms for
hierarchical cooperative caching. Journal of Algorithms, 38:260-302, 2001.

B. Krishnamurthy and C. Wills. Piggyback Server Invalidation for Proxy
Cache Coherency. In WW W7, 1998.

T. M. Kroeger, D. E. Long, and J. C. Mogul. Exploring the bounds of web
latency reduction from caching and prefetching. In USITS, 1997.

A. Kuzmanovic and E. W. Knightly. Tcp-lp: A distributed algorithm for
low priority data transfer. In In Proceedings of IEEE INFOCOM 2003, San
Francisco, CA, April 2003.

261

[116]

[117]

[118]

[119]

[120]

[121]

[122]

[123]

[124]

[125]

L. Lamport. Clocks and ordering of events in distributed systems. Commu-

nications of the ACM, 21(7):5568-565, July 1978.

L. Lamport. How to make a multiprocessor computer that correctly exe-
cutes multiprocess programs. programs. IEEE Transactions on Computers,

C-28(9):690-691, 1979.

Leslie Lamport. The part-time parliament. ACM Transactions on Computer

Systems, 16(2):133-169, 1998.
W. LeFebvre. Cnn.com: Facing a world crisis, December 2001.

A. Leff, J. L. Wolf, and P. S. Yu. Replication algorithms in a remote
caching architecture. IEEE Transactions on Parallel and Distributed Systems,

4(11):1185-1204, 1993.

D. Li and D. R. Cheriton. Scalable web caching of frequently updated objects
using reliable multicast. In Proceedings of USITS’99, 1999.

W.F. Lin, S.K. Reinhardt, and D. Burger. Designing a modern memory hier-
archy with hardware prefetching. In IEEE Transactions on Computers special

issue on computer systems, volume Vol.50 NO.11, November 2001.

C. Liu and P. Cao. Maintaining Strong Cache Consistency in the World-
Wide Web. In Proceedings of the Seventeenth International Conference on

Distributed Computing Systems, May 1997.

C. Lumb, J. Schindler, G. Ganger, D. Nagle, and E. Riedel. Towards higher
disk head utilization: Extracting free bandwidth from busy disk drives. In
0SDI, 2000.

Christopher Lumb, Jiri Schindler, Gregory R. Ganger, Erik Riedel, and

262

[126]

[127]

[128]

[129]

[130]

[131]

[132]

[133]

David F. Nagle. Towards higher disk head utilization: Extracting “free” band-
width from busy disk drives. In OSDI, 2000.

Korupolu M., G. Plaxton, and R. Rajaraman. Placement algorithms for hier-
archical cooperative caching. In Proceedings of the 10th Annual ACM-SIAM

Symposium on Discrete Algorithms, pages 586-595, January 1999.

B. M. Maggs, F. Meyer auf der Heide, B. Vocking, and M. Westermann.
Exploiting locality for data management in systems of limited bandwidth. In
Proceedings of the 38th Annual IEEE Symposium on Foundations of Computer
Science, pages 284-293, October 1997.

C. Maltzahn, K. Richardson, D. Grunwald, and J. Martin. On bandwidth
smoothing. In 4th International Web Caching Workshop, 1999.

E. Markatos and C. Chronaki. A Top-10 Approach to Prefetching on the Web.
In INET, 1998.

J. C. Mogul. Network Behavior of a Busy Web Server and its Clients. Technical
Report WRL 95/5, DEC Western Research Laboratory, Palo Alto, California,
1995.

R. Morris. Tcp behavior with many flows. In International Conference on

Network Protocols, 1997.

David Mosberger and Tai Jin. httperf: A tool for measuring web server per-
formance. In First Workshop on Internet Server Performance, pages 59—67.

ACM, June 1998.

D. Muntz and P. Honeyman. Multi-level caching in distributed file systems -
or - your cache ain’t nuthin’ but trash. Proceedings of the USENIX Winter

Conference, pages 305-313, January 1992.

263

[134]

[135]

[136]

137]

[138]

[139]

[140]

[141]

[142]

[143]

[144]

[145]

Naviscope. http://www.naviscope.com, Last known to have existed in 2001.

A. Nayate and M. Dahlin. Transparent replication through invalidation and
prefetching. Technical Report TR-03-XX, Computer Sciences, UT Austin,
September 2003.

Michael N. Nelson, Brent B. Welch, and John K. Ousterhout. Caching in
the Sprite network file system. ACM Transactions on Computer Systems,
6(1):134-154, 1988.

Netscape Communications Corporation. Javascript security.

The network simulator — ns-2. http://www.isi.edu/

nsnam/ns.

A. Odlyzko. Internet growth: Myth and reality, use and abuse. Journal of
Computer Resource Management, pages 23-27, 2001.

V. N. Padmanabhan and J. C. Mogul. Using predictive prefetching to improve
World-Wide Web latency. In SIGCOMMY96, 1996.

Vivek S. Pai, Peter Druschel, and Willy Zwaenepoel. Flash: An efficient and
portable Web server. In USENIX Annual Technical Conference, 1999.

T. Palpanas. Web prefetching using partial match prediction, 1998.

R. Hugo Patterson, Garth A. Gibson, Eka Ginting, Daniel Stodolsky, and Jim
Zelenka. Informed prefetching and caching. In SOSP, 1995.

V. Paxson. End-to-end Routing Behavior in the Internet. In SIGCOMMI6,
1996.

Karin Petersen, Mike J. Spreitzer, Douglas B. Terry, Marvin M. Theimer, and

Alan J. Demers. Flexible update propagation for weakly consistent replication.

264

[146]

[147]

[148]

[149]

[150]

[151]

[152]

[153]

[154]

In Proceedings of the 16th ACM Symposium on Operating SystemsPrinciples
(SOSP-16), Saint Malo, France, 1997.

G. Popek, R. Guy, T. Page, and J. Heidemann. Replication in the Ficus
Distributed File System. In Workshop on the Management of Replicated Data,
pages 5-10, November 1990.

R. Prasad, M. Jain, and C. Dovrolis. On the effectiveness of delay-based
congestion control. In Proceedings of the Second International Workshop on

Protocols for Fast Long-Distance Networks, February 2004.

M. Rabinovich, I. Rabinovich, and R. Rajaraman. Dynamic replication on the

internet. Technical report, AT&T Labs — Research, April 1998.

R. Rajamony and M. Elnozahy. Measuring Client-Perceived Resonse Times

on the WWW. In USITS, 2001.

Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard Karp, and Scott
Shenker. A scalable content addressable network. In Proceedings of ACM
SIGCOMM 2001, 2001.

R. Rejaie, M. Handley, and D. Estrin. RAP: An end-to-end rate-based con-
gestion control mechanism for realtime streams in the internet. In Infocom,

1999.
Resonate Inc.

Winter Corporation Richard Winter. Intelligent enterprise.

http://www.wintercorp.com/rwintercolumns/ie_9904.html, 1999.

Chief Architect Robert Blumofe. The challenges of delivering content and
applications on the internet, October 2002.

265

[155]

[156]

[157]

[158]

[159)]

[160]

[161]

[162]

[163]

A. Rousskov and D. Wessels. Cache digests. In Proceed-
ings of the 8rd Intl. WWW Caching Workshop, June 1998.
http://wwwcache.ja.net/events/workshop/.

M. Roussopoulos and M. Baker. Cup: Controlled update propagation in peer
to peer networks. In Proceedings of the 2008 USENIX Annual Technical Con-
ference, June 2003.

A. Rowstron and P. Druschel. Storage management and caching in PAST, a

large-scale, persistent peer-to-peer storage utility. In SOSP, 2001.

Yasushi Saito, Christos Karamanolis, Magnus Karlsson, and Mallik Ma-

halingam. Taming aggressive replication in the pangaea wide-area file system.

In OSDI, 2002.

Dheeraj Sanghi, Ashok K. Agrawala, Olafur Gudmundsson, and Bijendra N.
Jain. Experimental assessment of end-to-end behavior on internet. In Infocom

(2), pages 867-874, 1993.

Stefan Savage, Tom Anderson, Amit Aggarwal, David Becker, Neal Cardwell,
Andy Collins, Eric Hoffman, John Snell, Amin Vahdat, Geoff Voelker, and
John Zahorjan. Detour: a case for informed internet routing and transport.

IEEE Micro, 19(1):50-59, January 1999.

P. Shenoy and H. Vin. Cello: A disk scheduling framework for next-generation

operating systems. In SIGMETRICS, 1998.

D. D. Sleator and R. E. Tarjan. Amortized efficiency of list update and paging
rules. Communications of the ACM, 28(2):202-208, 1985.

Neil T. Spring, Maureen Chesire, Mark Berryman, Vivek Sahasranaman,
Thomas Anderson, and Brian N. Bershad. Receiver based management of

low bandwidth access links. In Infocom, 2000.

266

[164]

[165]

[166]

[167]

[168]

[169]

[170]

[171]

[172]

Van Steen, F. J. Hauck, and A. S. Tanenbaum. A model for worldwide track-
ing of distributed objects. In Proceedings of the 1996 Conference for Telecom-
munications Information Networking Architecture (TINA’96), pages 203-212,
September 1996.

I. Stoica, R. Morris, D. Karger, M. Kaashock, and H. Balakrishman. Chord:

A scalable peer-to-peer lookup protocol for internet applications, 2001.

Lakshminarayanan Subramanian, Ion Stoica, Hari Balakrishnan, and Randy
Katz. Overqos: An overlay based architecture for enhancing internet qos. In

Proceedings of NSDI ’04, March 2004.
Cheetah Software Systems.

D. Terry, M. Theimer, K. Petersen, A. Demers, M. Spreitzer, and C. Hauser.
Managing Update Conflicts in Bayou, a Weakly Connected Replicated Storage
System. In SOSP, 1995.

R. Tewari, M. Dahlin, H. M. Vin, and J. S. Kay. Design considerations for
distributed caching on the internet. In Proceedings of the 19th Intl. Conference
on Distributed Computing Systems, 1999. To appear.

The ICAP Protocol Group. Icap the internet content adaptation protocol.
Technical Report draft-opes-icap-00.txt, IETF, December 2000.

A. Vahdat, M. Dahlin, T. Anderson, and A. Aggarwal. Active names: Flexible
location and transport of wide-area resources. In USENIX Symposium on

Internet Technologies and Systems, 1999.

A. Venkataramani, M. Dahlin, and P. Weidmann. Bandwidth constrained
placement in a WAN. In PODC, 2001.

267

[173]

[174]

[175]

[176]

[177]

[17§]

[179]

[180]

[181]

[182]

[183]

A. Venkataramani, R. Kokku, and M. Dahlin. TCP-Nice: A Mechanism for
Background Transfers. In OSDI, December 2002.

A. Venkataramani, P. Yalagandula, R. Kokku, S. Sharif, and M. Dahlin. Po-
tential costs and benefits of long-term prefetching for content-distribution.

Computer Communications Journal, 25(4):367-375, 2002.
Arun Venkataramani. Technology trends.

Z. Wang. Internet QoS: Architectures and Mechanisms for Quality of Service.
Morgan Kaufmann Publishers, March 2001.

Weol.
http://shika.aist-nara.ac.jp/products/wcol/wcol.html, Last known to have ex-
isted in 2001.

Matt Welsh, David E. Culler, and Eric A. Brewer. SEDA: An architecture for

well-conditioned, scalable internet service. In SOSP, 2001.

D. Wessels. Squid Internet object cache. http://squid.nlanr.net/Squid, Jan
1998.

D. Wessels and K. Cla. RFC 2187: Appliation of Internet Cache Protocol,
1997.

S. Williams, M. Abrams, C. R. Standridge, G. Abdulla, and E. A. Fox. Re-
moval policies in network caches for World-Wide Web documents. In Proced-

ings of the ACM SIGCOMM’96 conference, 1996.

O. Wolfson, S. Jajodia, and Y. Huang. An adaptive data replication algorithm.
ACM Transactions on Database Systems, 22(4):255-314, 1997.

Yahoo.

268

[184]

[185]

[186]

[187]

[188]

[189]

[190]

[191]

[192]

Y. Yang and S. Lam. General AIMD Congestion Control. In ICNP, 2000.

J. Yin, L. Alvisi, M. Dahlin, and C. Lin. Using Leases to Support Server-
Driven Consistency in Large-Scale Systems. In Proceedings of the Eighteenth
International Conference on Distributed Computing Systems, May 1998.

N. E. Young. On-line file caching. In Proceedings of the 9th Annual ACM-

SIAM Symposium on Discrete Algorithms, pages 82—86, January 1998.
N. E. Young. On-line file caching. Algorithmica, 33:371-383, 2002.

H. Yu and A. Vahdat. The costs and limits of availability for replicated
services. In SOSP, 2001.

Zeus Technology.

L. Zhang, S. Michel, Nguyen K., Rosenstein A., S. Floyd, and V. Jacobson.
Adaptive web caching. In Proceedings of the 3rd Internation WWW Caching
Workshop, June 1998.

Lixia Zhang, Sally Floyd, and Van Jacobson. Adaptive Web Caching. In
Proceedings of the 1997 NLANR Web Cache Workshop, 1997.

Y. Zhang, V. Paxson, and S. Shenkar. The Stationarity of Internet Path
Properties: Routing, Loss, and Throughput. Technical report, ICSI Center
for Internet Research, May 2000.

269

Vita

Arunkumar Venkataramani was born on May 4, 1978 in Chennai, India, the son
of Vishwanatha Sarma Venkataramani and Chandra Venkataramani. He received
the Bachelor of Technology degree in Computer Science and Engineering from the
Indian Institute of of Technology at Bombay in May 1999. Thereafter, he received
the Master of Sciences degree in Computer Sciences from the University of Texas at
Austin in December 2000. He was awarded the J.C. Browne graduate fellowship in

December 2002.

Permanent Address: C/O V. Venkataramani
E-14, Note Mudran Nagar,
BRBNMPL Township,
Mysore Pin: 570003
Karnataka State, INDIA

This dissertation was typeset with IXTEX 2! by the author.

'IATREX 2¢ is an extension of WIEX. I¥TEX is a collection of macros for TEX. TEX is a trademark of
the American Mathematical Society. The macros used in formatting this dissertation were written
by Dinesh Das, Department of Computer Sciences, The University of Texas at Austin, and extended
by Bert Kay and James A. Bednar.

270

