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1 Introduction

The design and verification of fault-tolerant distributed applications is widely viewed as a
complex endeavor. To a large extent this is due to the fact that the communication prim-
itives available in distributed systems are too weak. For example, many systems support
primitives that allow a process to send a message to only one other process. If a process p
wishes to send a message m to all processes, it must do so by sending m to each one sepa-
rately. Should p fail in the middle of this activity, it is possible that some of the processes
receive m while others do not. Similar inconsistencies may arise even in networks such
as Ethernet that support broadcast as a low-level communication primitive: failures can
cause a message to be received by some processes but not by others. Such inconsistencies
complicate the task of building fault-tolerant distributed software.

Fault-tolerant broadcasts are communication primitives that facilitate the development
of fault-tolerant applications. The weakest among these is Reliable Broadcast. Roughly
speaking, this allows processes to broadcast messages such that all processes agree on the set
of messages they deliver, despite failures. Stronger variants of Reliable Broadcast impose ad-
ditional requirements on the order in which messages are delivered. For example, processes
may have to deliver all messages in the same order. Systems and applications based on fault-
tolerant broadcasts include SIFT [WLG 78], State Machines [Lam78a,Sch90], Atomic Com-
mitment [BT93], Isis [BJ87,BCJIT90], Psync [PBS89], Amoeba [Kaa92], Delta-4 [VM90],
Transis [ADKM92], Highly Available System [Cri87], and Advanced Automation System
[CDD90].

Another paradigm that simplifies the task of designing fault-tolerant distributed ap-
plications is Consensus. Roughly speaking, Consensus allows processes to reach a common
decision that depends on their initial inputs, despite failures. Consensus algorithms can
be used to solve many problems such as electing a leader or agreeing on the value of a
replicated sensor. Theoretical research on fault-tolerant distributed computing has largely
centered on Consensus, while applied research has focused on Reliable Broadcast and its
variants. In fact, as we shall see in this paper, the two problems are closely related.

Given their wide applicability, fault-tolerant broadcasts and Consensus have been ex-
tensively studied for over a decade. This has resulted in a voluminous literature which,
unfortunately, is not distinguished for its coherence. The differences in notation and the
haphazard nature of the assumptions obfuscates the close relationship among these prob-
lems.

Our primary goal here is to develop this material in a coherent way so as to expose its
intrinsic unity. We also strive to make it as simple as possible, without sacrificing precision
or rigor. Our approach consists of the following elements. First, we draw a sharp line
between the specification of problems and the algorithms that solve them. Second, we
give modular specifications of the various types of fault-tolerant broadcasts: Starting with
Reliable Broadcast we define progressively stronger types of broadcasts by adding one or
more requirements on the order of message delivery. Third, we also derive algorithms for
each of these broadcasts in a modular way: We first give an algorithm for Reliable Broadcast,
and then describe a set of transformations that can be used to convert weaker broadcast



algorithms into stronger ones. Each of the transformations enforces one of the message
delivery order requirements. In this way, the modular derivation of algorithms parallels our
modular specification of broadcasts. A crucial and novel feature of our methodology is that
these transformations are generic: they work for a large class of failures, and regardless of
the type or synchrony of the communication network.

The rest of this paper is organized as follows. In Section 2 we describe commonly used
models of computation. In Section 3 we give modular specifications for Reliable Broadcast
and its variants. Our development of broadcast algorithms follows a particular methodology,
explained in Section 4. In Section 5 we exhibit our generic transformations that can be
used to convert weaker broadcast algorithms into stronger ones. In Section 6 we focus on a
particular type of system, namely point-to-point networks, and derive Reliable Broadcast
algorithms for such a system. Applying the transformations of Section 5 to these algorithms
results in a suite of broadcast algorithms of various strengths for point-to-point networks. In
Section 7, we first define the Consensus problem, and then determine its relation to Atomic
Broadcast, one of the broadcasts that we consider here. In Section 8 we define a variant
of Reliable Broadcast and explain its relation to the Consensus problem. A variation of
broadcast where a process can target its messages to a specified subset of the processes is
called a multicast. In Section 9, we give modular specifications for various types of fault-
tolerant multicasts.

To enhance the readability of this paper, many references, historical notes, and other
tangential and potentially distracting material are collected at the end of each section. Given
the vastness of the literature on this subject, the bibliographic references are extensive, but
incomplete. A more comprehensive treatment of the subject matter of this paper, including
many results that are not presented here, will be found in the forthcoming book [HJT].

2 Preliminaries

Several computational models of distributed computing have been studied. Such models fall
into two broad categories, message-passing and shared-memory. In the former, processes
communicate by exchanging messages; in the latter, they communicate by accessing shared
objects, such as registers, queues, etc. In this paper we focus on message-passing models.

The chief characteristics of a message-passing model are: the type of communication
network, the model of process and communication failures that may occur, and the syn-
chrony of the system.

2.1 Types of Communication Networks

The type of network determines how processes communicate. In a point-to-point network
communication takes place over links that connect pairs of processes. In this type of network
a process can send a message to a single process through a link. In a broadcast channel
network communication takes place over a single shared channel that connects all processes.
In such a network a process can broadcast a message to all other processes. Examples are



Ethernet, Token Bus, Token Ring, and FDDI networks. Other types of networks include
redundant broadcast channel networks (e.g., Delta-4 [VM90] and [Cri90b]), packet radio
networks (e.g., ALOHA [Abr85]), switch-based networks (e.g., AN2 [Owi93]), etc.

Many of the results in this paper are independent of the type of communication network.
When we need to focus on a particular type of network we concentrate on point-to-point
ones. This is because this is the most basic type, in the sense that it supports the most
limited communication primitives and can be easily emulated by the other types of networks.

We now turn our attention to the remaining characteristics of a message-passing system,
namely types of failure and synchrony. Since these depend on the network type, we focus on
point-to-point networks (similar definitions exist for other types of networks as well). Our
treatment in this section is informal; a more precise and detailed exposition of point-to-point
networks is given in the Appendix.

2.2 Point-to-Point Networks

A point-to-point network can be modeled as a directed graph, with nodes representing pro-
cesses, and edges representing communication links between processes. In such a network,
any pair of processes that are connected by a link can communicate with each other by
sending and receiving messages, as described below.

Consider the link from a process p to a process ¢. Associated with this link are two
communication primitives, called send and receive. If p invokes send with a message m
as a parameter, we say that p sends m to g; when it returns from that invocation we say
that p completes the sending of m to ¢q. When a process ¢ returns from the execution of
receive with message m as the returned value, we say that g receives m (from p).

Also associated with the link from p to ¢ are an outgoing message buffer at p and an
imcoming message buffer at q. Informally, when p sends a message m to ¢, p inserts m into
its outgoing message buffer, the link transports m to ¢’s incoming message buffer, and m
is then removed and received by ¢. Thus, we assume that:

1. If p sends a message m to g then ¢ eventually receives m.!

Every process p executes a sequence of steps, where each step is the execution of an
operation such as the writing of a local variable, or the sending or receipt of a message. As-
sociated with p is an automaton, whose transition relation defines the set of legal sequences
of steps that p can execute. We assume that:

2. Every process executes an infinite sequence of steps.?

The preceding description of a point-to-point network assumes that no failures occur.
In the next section we consider some of the failures that can affect processes and links.

!Note that messages are not necessarily received in the order in which they are sent.
2A distributed system in which a process p can terminate (i.e., p’s automaton has a terminal state), can
be modeled by replacing each terminal state of p by a state with a single “no-op” transition to itself.



2.3 Some Failure Types

Failures can be defined as deviations from correct behavior. To model the violation of
Property 2, we introduce a special step called crash. Every process p can execute a crash
at any time, and after doing so it stops executing further steps. This is modeled by the
addition of a new terminal state to the automaton associated with p, and a transition from
every other state of p to that terminal state. The step associated with such a transition is
defined as a crash.

Following is a list of some types of process failures that have been studied:

e A process commits a crash failure if it executes a crash step.

e A process commits a send-omission failure on a message m if it completes the sending
of m but m is not inserted into its outgoing message buffer.

e A process commits a receive-omission failure on a message m if m is inserted into its
incoming message buffer but it does not receive m.

e A process commits an arbitrary (sometimes called Byzantine or malicious) failure if
the sequence of steps that it executes deviates arbitrarily from the sequence prescribed
by its associated automaton. Thus, it can exhibit any behavior whatsoever.

We also consider the following type of link failure:

e A link / from a process p to a process ¢ commits an omissiton failure on a message
m if m is inserted into p’s outgoing buffer buffer but ! does not transport m into ¢’s
incoming buffer.

If a process or a link commits a failure, we say that it is faulty; otherwise it is correct.
In a network with failures, Properties 1 and 2 hold only for correct processes and for correct
links that connect correct processes. In other words, they hold only in the subnetwork that
consists entirely of correct processes and links.

2.4 Synchronous and Asynchronous Networks

A point-to-point network is synchronous if it has the following properties (in addition to
the ones stated in Section 2.2):
3. There is a known upper bound on the time required by any process to execute a step.

4. Every process has a local clock with known bounded rate of drift with respect to real
time.

5. There is a known upper bound on message delay; this consists of the time it takes to
send, transport, and receive a message over any link.



It is important to realize that all of the above properties are necessary for the use of
timeouts to detect crash failures. If any of the three properties is violated, and a process p
times-out on a message expected from a process ¢, p cannot conclude that ¢ has crashed:
The message delay could have been longer than expected, the clock used by p to measure
the timeout could have been running too fast, or ¢ could be executing steps slower than
expected.

A point-to-point network is asynchronous if there are no timing assumptions whatso-
ever. In particular, there are no assumptions on the maximum message delay, clock drift, or
the time needed to execute a step. This model is attractive and has recently gained much
currency for several reasons: It has simple semantics; applications programmed on the basis
of this model are easier to port than those incorporating specific timing assumptions; and
in practice, variable or unexpected workloads are sources of asynchrony — thus synchrony
assumptions are at best probabilistic.

Synchronous and asynchronous point-to-point networks are the two extremes of a spec-
trum of possible models. Many intermediate models of partial synchrony have also been
studied. For example, there may be known bounds on clock drift and step execution time,
but message delays could be unbounded. Or there may be bounds on clock drift, step
execution time and message delay, but these bounds may be unknown.

2.5 Clock and Performance Failures in Synchronous Networks

The failure types described in Section 2.3 apply to both synchronous and asynchronous
networks. Certain failures, however, are only pertinent to synchronous networks; these
occur when the assumed bounds on clock drift, message delay, or the time needed to execute
a step are violated. Such failures are defined below.

Consider a synchronous network, i.e., one where processes and links are supposed to
satisfy timing Properties 3-5 (of Section 2.4). A process commits a clock failure if it violates
Property 4; i.e., there is some interval of time during which its clock drifts with respect to
real time at a rate that exceeds the specified maximum. A process commits a performance
failure if it violates Property 3; i.e., it completes a step in more time than the specified
maximum. Similarly, a link commits a performance failure if it transports some message
in more time than its specified bound. Recall that the message delay consists of the time
needed for the sender to send the message, the link to transport it, and the receiver to
receive it. Thus, a violation of Property 5 may be due to a performance failure of the
sender, the receiver, or the link between them.

In a synchronous network with clock and performance failures, the bounds on the time
to execute a step and on clock drift apply only to correct processes. Similarly, the bound on
message delay applies only to messages sent between correct processes over correct links. In
other words, only the subnetwork consisting entirely of correct processes and links is really
synchronous.



2.6 Classification of Failures and Terminology

It is convenient to group failures into two classes that include both process and link failures:

e omission fatlures consist of crash, send-omission, and receive-omission failures of pro-
cesses, as well as link omission failures.

e timing failures consist of omission, clock and performance failures.

A network with a certain class of failures, is one where processes and links may commit any
of the failures included in that class, but no other failures. Thus, a network with omission
failures is not subject to clock, performance, or arbitrary failures. Similarly, one with timing
failures is not subject to arbitrary failures.

Benign failures is synonymous to omission failures in asynchronous networks and to
timing failures in synchronous networks. In a system with benign failures, processes do not
commit arbitrary failures. Thus, the sequence of steps executed by every process, whether
correct or faulty, is always consistent with the automaton associated with that process. In
particular, a faulty process does not change its state arbitrarily, or send a message that it
was not supposed to send — two behaviors allowed by arbitrary failures. Benign failures
are the most common in practice, and in this paper we focus almost exclusively on them.

2.7 Causal Precedence

We can view the computation of a distributed system as a partial order on a set of steps
that processes execute, including communication steps. For example, consider systems
where processes communicate by broadcasting and delivering messages. In such systems, a
step is any operation executed by a process, such as the writing of a local variable, or the
broadcast or delivery of a message. A given subset of steps (“the steps of interest”) induces
a partial order as follows. Step e causally precedes step f, denoted e — f, if and only if:

1. the same process executes both e and f, in that order, or
2. e is the broadcast of some message m and f is the delivery of m, or

3. there is a step h, such that e — h and h — f.

The causal precedence relation — is acyclic because the broadcast of a message always
precedes (in real time) the delivery of that message. By Clause 3, — is also transitive, and
hence a partial order.

This causal precedence relation plays a central role in distributed computing: In asyn-
chronous message-passing systems, step e can “influence” step f only if there is a sequence
of steps starting with e and ending with f such that consecutive steps are related as in (1)
or (2) above, i.e., only if e — f.
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2.8 Properties of clocks

Even in asynchronous systems, processes may have access to local clocks. Although such
clocks do not measure real time, they can still be useful by capturing some temporal infor-
mation. The minimum requirement for a local clock is that its values are non-decreasing in
real time. Of course, to be useful, local clocks must satisfy stronger properties. One such
property is:

e Clock Monotonicity: The local clock of a process p (whether correct or faulty) never
decreases or skips values. Furthermore, if p is correct then its clock eventually reaches
¢, for any time c.

Another useful property for clocks is that they be consistent with the causal precedence
relation — defined in Section 2.7. More precisely, let p be any process and e be a step that
occurs at p; let Cp(e) denote the value of p’s local clock when e occurs. We say that the
local clocks are consistent with — if they satisfy the following property:

e Logical Clocks: For any processes p and ¢, and any steps e and f that occur at p and
g, respectively, if e — f then Cp(e) < Cy(f).

In other words, if e can influence f then the time at which e occurs is before the time at
which f occurs according to the local clocks.

Recall that in a synchronous system the clocks of correct processes have a bounded
rate of drift with respect to real time. As time progresses, however, the actual values of
the clocks may drift arbitrarily far apart. It turns out that in synchronous systems it is
possible to implement approximately synchronized clocks, which not only have a bounded
rate of drift with respect to real time, but also satisfy the following property:

o c-Synchronized Clocks: The clock values of correct processes at any real time ¢ differ
by at most a known constant e.

Note that such clocks may violate the Clock Monotonicity and Logical Clock properties. It
is possible, however, to implement approximately synchronized clocks that satisfy both of
these properties.

Bibliographic Notes

Crash failures, in the context of broadcast and Consensus problems, were first considered
in [LF82]. [SS83] defined a more restricted type of process failure, referred to as fail-stop.
A fail-stop process fails by crashing but, in addition, all correct processes are informed of
the crash, and they have access to any information written by the faulty process in its
stable storage before it crashed. Send-omission failures were introduced in [Had84]. [PT86]
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introduced the class of general-omission failures consisting of crash, send- and receive-
omission failures. Timing failures were first considered in [CASD85], and arbitrary failures
in [PSL80,LSP82|. [PSL80,LSP82] also consider message authentication, a mechanism that
restricts the faulty behavior of processes that are subject to arbitrary failures. A precise
definition of the properties of message authentication, and a mechanism for providing them
without digital signatures in point-to-point networks appears in [ST87b].

There are methods for automatically increasing the fault-tolerance of algorithms. This
is achieved by translations that transform any given algorithm tolerant of a certain type of
failure into an algorithm that tolerates a more severe type of failure. Such translations are
given in [Bra87,C0a87,ST87b,NT90,BN91,BN92]. They can be used to transform any algo-
rithm tolerant of crash failures into one tolerant of arbitrary failures, in both synchronous
and asynchronous systems.

Much of the theoretical work on fault-tolerant algorithms focused on synchronous mod-
els, including the so-called “synchronous round model” where processes execute in lock-step
fashion. The asynchronous model has been adopted by many systems, such as those de-
scribed in [BJ87,PBS89,ADKM92]. Theoretical investigation of this model was spurred by
the surprising result of Fischer, Lynch and Paterson, stating that Consensus cannot be
solved deterministically in this model [FLP85]. A variety of models of partial synchrony
are studied in [DDS87,DLS88|.

The causal precedence relation, which is widely viewed as one of the most fundamental
concepts in distributed computing, was introduced by Lamport in a seminal paper [Lam78b].
(The relation was called “happens-before” in [Lam78b], and was defined in terms of send and
receive communication primitives, instead of the broadcast and deliver primitives we used in
our definition.) In that paper Lamport also defined logical clocks and showed how to imple-
ment them. [NT87,Wel87] show that, for a large class of problems, access to logical clocks
is as good as access to real-time clocks. Many clock synchronization algorithms are known,
including [Lam78b,HSSD84,L.M85,CAS86,DHS86,BD87,KO87,ST87a,WL88,Crig89].

3 Broadcast Specifications

Roughly speaking, Reliable Broadcast — the weakest type of of fault-tolerant broadcast
that we consider — guarantees three properties: (1) all correct processes agree on the set of
messages they deliver, (2) all messages broadcast by correct processes are delivered, and (3)
no spurious messages are ever delivered. While these properties may be sufficient for some
applications, Reliable Broadcast imposes no restriction on the order in which the messages
are delivered. In some applications this order is important. Thus, we define a collection of
stronger broadcasts, differing in the guarantees they provide on message delivery order.

Informally, FIFO Broadcast is a Reliable Broadcast that guarantees that messages
broadcast by the same sender are delivered in the order they were broadcast. Causal
Broadcast, a strengthening of FIFO Broadcast, requires that messages be delivered according
to the causal precedence relation discussed in Section 2.7: Roughly speaking, if the broadcast
of m causally precedes the broadcast of m/, then m must be delivered before m'. If two
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messages are not causally related, however, different processes can deliver them in different
orders. Atomic Broadcast prevents this undesirable behavior by requiring processes to
deliver all messages in the same order. Finally, FIFO Atomic Broadcast combines the
requirements of FIFO Broadcast and Atomic Broadcast, and Causal Atomic Broadcast
combines the requirements of Causal Broadcast and Atomic Broadcast.

In our definitions of the various types of broadcast, we assume that we are only dealing
with benign failures. This not only simplifies the definitions, but also makes it possible
to strengthen the properties of broadcasts in ways that are important in practice. In
Section 3.10, we shall describe the few modifications necessary for arbitrary failures.

3.1 Reliable Broadcast

Informally, Reliable Broadcast requires that all correct processes deliver the same set of
messages (Agreement), and that this set include all the messages broadcast by correct
processes (Validity) but no spurious messages (Integrity). Formally, Reliable Broadcast is
defined in terms of two primitives: broadcast and deliver. When a process p invokes
broadcast with a message m as a parameter, we say that p broadcasts m. We assume that
m is taken from a set a set M of possible messages. When a process ¢ returns from the
execution of deliver with message m as the returned value, we say that ¢ delivers m.

Since every process can broadcast several messages, it is important to be able to deter-
mine the identity of a message’s sender, and to distinguish the different messages broadcast
by a particular sender. Thus, we assume that every message m includes the following fields:
the identity of its sender, denoted sender(m), and a sequence number, denoted seq#(m).
If sender(m) = p and seq#(m) = i, then m is the ith message broadcast by p. These fields
make every message unique.

Reliable Broadcast is a broadcast that satisfies the following three properties:

o Validity: If a correct process broadcasts a message m, then it eventually delivers m.

o Agreement: If a correct process delivers a message m, then all correct processes even-
tually deliver m.

e Integrity: For any message m, every correct process delivers m at most once, and only
if m was previously broadcast by sender(m).

Validity together with Agreement ensures that a message broadcast by a correct process
is delivered by all correct processes. It is important to realize that if the sender of a
message m is faulty, the specification of Reliable Broadcast allows two possible outcomes:
either m is delivered by all correct processes or by none. For example, if a process p
crashes immediately after invoking broadcast(m), correct processes will never be aware
of p’s intention to broadcast m, and thus cannot deliver anything. On the other hand, if
p invokes broadcast(m) and fails during the execution of this primitive after having sent
enough information about m, then correct processes may be able to deliver m.

13



3.2 FIFO Broadcast

In general, each message has a context without which it may be misinterpreted. Such a
message should not be delivered by a process that does not know its context. In some
applications, the context of a message m consists of the messages previously broadcast by
the sender of m. For example, in an airline reservation system, the context of a message
cancelling a reservation consists of the message that previously established that reservation:
the cancellation message should not be delivered at a site that has not yet “seen” the
reservation message. Such applications require the semantics of FIFO Broadcast, a Reliable
Broadcast that satisfies the following requirement on message delivery:

e FIFO Order: If a process broadcasts a message m before it broadcasts a message m/,
then no correct process delivers m' unless it has previously delivered m.

Our definition of FIFO Order is subtler than meets the eye. Some alternative formu-
lations of FIFO Broadcast which have appeared in the literature have a similar flavor, but
are ambiguous or do not fully capture the desirable property described above. For example,
consider the following definition: “all messages broadcast by the same process are delivered
to all processes in the order they are sent.” Suppose process p broadcasts messages my, ma,
and mg3 in that order, and correct process ¢ delivers m; and then mg (but never delivers
mg). This scenario could happen if p suffers a transient failure while broadcasting ms. Note
that ms3 was delivered without its proper context, namely mgo. This undesirable behavior
is allowed by the alternative definition (since m; and mg are indeed delivered in the order
they are broadcast), but not by our definition of FIFO Order.?

3.3 Causal Broadcast

FIFO Order is adequate when the context of a message m consists only of the messages that
the sender of m broadcast before m. A message m, however, may also depend on messages
that the sender of m delivered before broadcasting m. In this case, the message delivery
order guaranteed by FIFO Broadcast is not sufficient. For example, in a network news
application, if users distribute their articles with FIFO Broadcast, the following undesirable
scenario could occur. User A broadcasts an article. User B, at a different site, delivers that
article and broadcasts a response that can only be understood by a user who has already seen
the original article. User C delivers B’s response before delivering the original article from A
and so misinterprets the response. Causal Broadcast is a strengthening of FIFO Broadcast
that prevents the above problem by generalizing the notion of a message “depending” on
another one, and ensuring that a message is not delivered until all the messages it depends
on have been delivered. We capture this more general notion of dependence with the causal
precedence relation on message broadcasts and deliveries defined in Section 2.7.

Given a causal precedence relation (induced by broadcasts and deliveries), we define
Causal Broadcast to be a Reliable Broadcast that satisfies:

3This alternative definition, taken from the literature, is also flawed in another way: it requires messages
be delivered by all processes. Clearly, this is impossible, since a faulty process cannot be forced to deliver
any message.
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e Causal Order: If the broadcast of a message m causally precedes the broadcast of a
message m’, then no correct process delivers m’ unless it has previously delivered m.

The following alternative formulation of Causal Order has appeared in the literature:
if the broadcast of m causally precedes the broadcast of m’, then every correct process that
delivers both messages must deliver m before m/. In a system with failures, this definition
of Causal Order is flawed. In fact, it allows the same non-FIFO execution described in the
previous section, where a faulty process broadcasts mj, meo, and mg, and a correct process
delivers m; and then mgs. This alternative definition also allows the following undesirable
scenario from our network news example. Faulty user A broadcasts an article; faulty user
B, who is the only one to deliver that message, broadcasts a response. Correct user C
delivers B’s response, although it never delivers A’s original article. It is easy to see that
this scenario satisfies all the properties of Reliable Broadcast, namely Validity, Agreement
and Integrity, as well as the alternative definition of Causal Order (but not our definition
of Causal Order). Note that defining Causal Order as “messages that are causally related
are delivered in the causal order” is also flawed.

Causal Order is a generalization of FIFO Order; in fact, as we show below it is equivalent
to the conjunction of FIFO Order and the following property:

e Local Order: If a process broadcasts a message m and a process delivers m before
broadcasting m', then no correct process delivers m’ unless it has previously delivered
m.

Theorem 1 Causal Order is equivalent to FIFO Order and Local Order.

Proof: It is obvious that Causal Order implies FIFO Order and Local Order. We now show
that FIFO Order and Local Order imply Causal Order. Let m and m' be messages such
that the broadcast of m causally precedes the broadcast of m’. Consider any correct process
p that delivers m/. We must show that p delivers m before m'. If m and m' are broadcast
by the same process, this follows immediately by FIFO Order. Now assume that m and m’
are broadcast by different processes. From the definition of the causal precedence relation
it is easy to see that there exist processes pi1,p2,...,pr and messages my,ma,...,mE =m’
(k > 2) such that:

e p1 = sender(m);

p; broadcasts m;, for all 1 <7 < k;

either m = my or p; broadcasts m before it broadcasts mi; and

p; delivers m;_1 before it broadcasts m;, for all 2 < i < k;

By Local Order (applied to pg, mg_1, mg and p), p delivers my_; before my = m'. By
applying Local Order again (t0 pr—1, mr—2, mg—1 and p), p delivers mg_o before my_;1. In
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general, an easy induction shows that p delivers m;_; before m; for all 1 < ¢ < k. Thus p
delivers my before mj; = m'. Recall that either m = mq, or p; broadcasts m before mi. In
the former case, we immediately have that p delivers m before m'. In the latter case, FIFO
Order ensures that p delivers m before mj. Thus, in both cases, p delivers m before m/, as
we wanted to show. O

By Theorem 1, we can show that a broadcast algorithm satisfies Causal Order by prov-
ing that it satisfies FIFO Order and Local Order. This is easier than proving Causal Order
directly: in general, the causal precedence between two broadcasts involves an arbitrarily
long chain of intermediate broadcasts and deliveries. A direct proof of Causal Order requires
a tedious induction on the length of this chain analogous to that in the proof of Theorem 1.
In contrast, FIFO and Local Order involve chains of length one and two, respectively. Their
proofs do not require induction, and so they are simpler. This is illustrated in the proofs
of Theorems 3, 5, 6, 7, and 9.

3.4 Atomic Broadcast

If the broadcasts of two messages are not related by causal precedence, Causal Broadcast
does not impose any requirement on the order they can be delivered. In particular, two
correct processes may deliver them in different orders. This disagreement on message deliv-
ery order is undesirable in some applications. For example, consider a replicated database
with two copies of a bank account z residing at different sites. Initially, 2 has a value of
$100. A user deposits $20, triggering a broadcast of “add $20 to z” to the two copies of z.
At the same time, at a different site, the bank initiates a broadcast of “add 10% interest
to «”. Because these two broadcasts are not causally related, Causal Broadcast allows the
two copies of z to deliver these update messages in different orders. This results in the two
copies of 2 having different values, creating an inconsistency in the database.

To prevent such problems, Atomic Broadcast requires that all correct processes deliver
all messages in the same order. This total order on message delivery ensures that all correct
processes have the same “view” of the system; hence they can act consistently without any
additional communication. Formally, an Atomic Broadcast is a Reliable Broadcast that
satisfies the following requirement:

e Total Order: If correct processes p and ¢ both deliver messages m and m/, then p
delivers m before m’ if and only if ¢ delivers m before m/.

The Agreement and Total Order requirements of Atomic Broadcast imply that correct
processes eventually deliver the same sequence of messages.

3.5 FIFO Atomic Broadcast

Atomic Broadcast does not require that messages be delivered in FIFO Order. For example,
Atomic Broadcast allows the following scenario: a process suffers a transient failure during
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the broadcast of a message m, and then broadcasts m’, and correct processes only deliver
m'. Thus, Atomic Broadcast is not stronger than FIFO Broadcast.

‘We therefore define FIFO Atomic Broadcast which is a Reliable Broadcast that satisfies
both FIFO Order and Total Order. FIFO Atomic Broadcast is stronger than both Atomic
Broadcast and FIFO Broadcast.

3.6 Causal Atomic Broadcast

FIFO Atomic Broadcast does not require that messages be delivered in Causal Order. Re-
consider the earlier network news example, and suppose FIFO Atomic Broadcast is used to
disseminate articles. The following undesirable scenario is possible. Faulty user A broad-
casts an article; faulty user B, who is the only one to deliver that message, broadcasts a
response and then immediately crashes (before delivering its own response). Correct user
C delivers the response, although it never delivers the original article. Thus, FIFO Atomic
Broadcast does not necessarily satisfy Causal Order.

We therefore define Causal Atomic Broadcast which is a Reliable Broadcast that sat-
isfies both Causal Order and Total Order. Causal Atomic Broadcast is stronger than both
FIFO Atomic Broadcast and Causal Broadcast. This type of broadcast is the key mecha-
nism of the State Machine approach to fault-tolerance [Lam78a,Sch90].

3.7 Timed Broadcasts

Many applications require that if a message is delivered at all, it is delivered within a
bounded time after it was broadcast. This property is called A-Timeliness. As usual,
in a distributed system elapsed time can be interpreted in two different ways: real time,
as measured by an external observer, or local time, as measured by the local clocks of
processes. This gives rise to two different ways of defining the A-Timeliness property. The
one corresponding to real time is:

o Real-Time A-Timeliness: There is a known constant A such that if a message m is
broadcast at real time ¢, then no correct process delivers m after real time ¢t + A.

On the other hand, the definition of A-Timeliness in terms of local clocks bounds
the difference between the local broadcasting time and the local delivery time. To formally
specify such a bound, we assume that each message m contains a timestamp ts(m) denoting
the local time at which m was broadcast according to the sender’s clock. That is, if a
process p wishes to broadcast a message m when its local clock shows ¢, then p tags m with
ts(m) = ¢. The definition of A-Timeliness that corresponds to local time is:

e Local-Time A-Timeliness: There is a known constant A such that no correct process
p delivers a message m after local time ¢s(m) + A on p’s clock.

A broadcast that satisfies either version of the A-Timeliness property is called a Timed
Broadcast. For example, Timed Reliable Broadcast is a Reliable Broadcast that satisfies

17



Local- or Real-Time A-Timeliness. When referring to a Timed Broadcast, one must explic-
itly state which of the two Timeliness properties is assumed. The parameter A is called the
latency of the Timed Broadcast.

3.8 Uniform Broadcasts

The Agreement, Integrity, Order, and A-Timeliness properties of the broadcasts defined
so far place no restrictions on the messages delivered by faulty processes. Since we are
dealing with benign failures, such restrictions are desirable and achievable. For example,
the Agreement property states that if a correct process delivers a message m, then all correct
processes eventually deliver m. This requirement allows a faulty process to deliver a message
that is never delivered by the correct processes. This behavior is undesirable in many
applications, such as Atomic Commitment in distributed databases [Gra78,BHG87,BT93],
and can be avoided if the failures are benign. For such failures, we can strengthen the
Agreement property to:

o Uniform Agreement: If a process (whether correct or faulty) delivers a message m,
then all correct processes eventually deliver m.

Similarly, Integrity allows a faulty process to deliver a message more than once, and to
deliver messages “out of thin air” (i.e., messages that were not previously broadcast). If
failures are benign, this behavior can be avoided and we can strengthen the Integrity prop-
erty as follows:

e Uniform Integrity: For any message m, every process (whether correct or faulty)
delivers m at most once, and only if m was previously broadcast by sender(m).

We can also strengthen each version of the A-Timeliness property by requiring that even
faulty processes respect the bound on the broadcast latency:

o Uniform Real-Time A-Timeliness: There is a known constant A such that if a message
m is broadcast at real time ¢, then no process (whether correct or faulty) delivers m
after real time ¢ + A.

e Uniform Local-Time A-Timeliness: There is a known constant A such that no process
p (whether correct or faulty) delivers a message m after local time ts(m) + A on p’s
clock.

Likewise, we can strengthen each of the Order properties, by requiring that even faulty
processes do not violate them. Specifically, we define:

o Uniform FIFO Order: If a process broadcasts a message m before it broadcasts a
message m', then no process (whether correct or faulty) delivers m’ unless it has

previously delivered m.
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e Uniform Local Order: If a process broadcasts a message m and a process delivers m
before broadcasting m’, then no process (whether correct or faulty) delivers m’ unless
it has previously delivered m.

o Uniform Causal Order: If the broadcast of a message m causally precedes the broad-
cast of a message m', then no process (whether correct or faulty) delivers m’ unless
it has previously delivered m.

e Uniform Total Order: If any processes p and g (whether correct or faulty) both deliver
messages m and m/, then p delivers m before m/ if and only if ¢ delivers m before m/'.

We can now state the uniform counterpart of Theorem 1 (the proof is omitted as it is almost
identical to that of Theorem 1):

Theorem 2 Uniform Causal Order is equivalent to Uniform FIFO Order and Uniform
Local Order.

Each broadcast type T has a Uniform counterpart obtained by replacing every one of
the properties of T (except Validity) with the corresponding uniform version. For example,
Uniform Reliable Broadcast satisfies Validity, Uniform Agreement, and Uniform Integrity.

3.9 Summary of Broadcast Specifications

All the broadcasts that we defined satisfy the properties of Reliable Broadcast, namely:

o Validity: If a correct process broadcasts a message m, then it eventually delivers m.

o Agreement: If a correct process delivers a message m, then all correct processes even-
tually deliver m.

e Integrity: For any message m, every correct process delivers m at most once, and only
if m was previously broadcast by sender(m).

They only differ by the strength of their requirements for message delivery order. There
are three such requirements:

e FIFO Order: If a process broadcasts a message m before it broadcasts a message m/,
then no correct process delivers m’ unless it has previously delivered m.

e Causal Order: If the broadcast of a message m causally precedes the broadcast of a
message m’, then no correct process delivers m’ unless it has previously delivered m.

e Total Order: If correct processes p and ¢ both deliver messages m and m', then p
delivers m before m' if and only if ¢ delivers m before m/.

Thus we have:
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e Reliable Broadcast = Validity + Agreement + Integrity
e FIFO Broadcast = Reliable Broadcast + FIFO Order

e Causal Broadcast = Reliable Broadcast + Causal Order
Each of these broadcast types has an Atomic counterpart:

e Atomic Broadcast = Reliable Broadcast + Total Order
e FIFO Atomic Broadcast = FIFO Broadcast + Total Order
e Causal Atomic Broadcast = Causal Broadcast + Total Order

The relations among these six types of broadcasts, in terms of their order properties, is
illustrated in Figure 1.

Reliable Total Order Atomic
Broadcast Broadcast
FIFO Order FIFO Order

FIFO Total Order FIFO Atomic

Broadcast Broadcast

Causal Order Causal Order

Causal Total Order Causal Atomic

Broadcast Broadcast

Figure 1: Relationship among Broadcast Primitives

The above broadcasts do not place any bound on message delivery time. A Timed
broadcast requires such a bound by having one of the following two properties:

o Real-Time A-Timeliness: There is a known constant A such that if a message m is
broadcast at real time ¢, then no correct process delivers m after real time ¢t + A.
o Local-Time A-Timeliness: There is a known constant A such that no correct process

p delivers a message m after local time ts(m) + A on p’s clock.

Finally, we saw that every broadcast property (except Validity) has a uniform coun-
terpart, which is defined by imposing the corresponding requirement even on messages
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delivered by faulty processes. A broadcast is Uniform if all its properties (except Validity)
are uniform.

In the next section, we consider the above broadcast specifications in the context of
arbitrary failures. This section can be skipped without loss of continuity.

3.10 Broadcast Specifications for Arbitrary Failures

The broadcast specifications given so far, were written with the assumption that only benign
failures occur. When dealing with arbitrary failures, some minor modifications to these
specifications are required.

Recall that any message m € M that processes are allowed to broadcast and deliver
must include some fields, such as a sender’s id, sender(m), a sequence number, seq#(m),
and possibly a timestamp, ts(m). In a system with arbitrary failures, we cannot assume
that messages broadcast by processes that commit arbitrary failures are in M; for example
they may not have the appropriate fields. We assume that correct processes ignore (and
thus never deliver) such messages. With this assumption, a correct process can always
extract sender(m), seq#(m), and when appropriate, ts(m), from any message m that it
delivers. It is important to realize that a process p that commits arbitrary failures may
broadcast a message m with sender(m) # p, or with the wrong sequence number, or with
a totally arbitrary timestamp.

Now consider Reliable Broadcast with arbitrary failures. The definitions of Validity
and Agreement only refer to messages broadcast and delivered by correct processes. Since
the meaning of such broadcasts and deliveries is unambiguous no matter what the failure
model is, the definitions of these two properties do not change. The same is true about
the first clause of Integrity. The second clause of Integrity, however, is problematic: Since
sender(m) may commit arbitrary failures, the meaning of “m was previously broadcast by
sender(m)” is not clear. Even if the sender invokes broadcast(m), the external behavior of
this invocation may look like an invocation of broadcast(m’) to some or all other processes.
The natural way to circumvent this problem is to redefine Integrity (for arbitrary failures)
as follows:

o Integrity: For any message m, every correct process delivers m at most once, and if
sender(m) is correct then m was previously broadcast by sender(m).

Integrity now refers only to broadcast and deliveries of correct processes.* This definition
preserves the intended meaning of Integrity, restricted to the broadcasts of correct processes:
No correct process can deliver a message m “out of thin air” if its field sender(m) contains
the identity of a correct process. In other words, faulty processes cannot “fool” correct
ones into delivering a message m from a correct process that has not (yet) broadcast m.
Thus, this formulation of Integrity guarantees the authentication of broadcasts. This is

“Instead of reformulating Integrity, we could use the original definition with the convention that if a
faulty process p is subject to arbitrary failures then the statement “p broadcasts m” is true for all m € M.
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the broadcast/deliver counterpart of the send/receive message authentication discussed in
Section 2.3.

Now consider FIFO Broadcast. The benign failure version of FIFO Order imposes an
order on the delivery of messages broadcast by a process p that may be faulty. However, if
p commits arbitrary failures, such an order is not meaningful. Thus, in the case of arbitrary
failures, we weaken the order requirement by restricting its application only to messages
broadcast by correct processes:

e FIFO Order: If a correct process broadcasts a message m before it broadcasts a
message m', then no correct process delivers m/ unless it has previously delivered m.?

A proper definition of Causal Broadcast in the presence of arbitrary failures is subtle
and more complex. Moreover, the utility of such a broadcast is questionable: The context
of a message broadcast by a correct process, i.e., its “causal past”, may include the delivery
of a message from a process that committed arbitrary failures. Thus, we do not pursue
Causal Broadcast with such failures.

Next consider Atomic Broadcast, i.e., Reliable Broadcast with Total Order, for arbi-
trary failures. We have already given the definition of Reliable Broadcast in that case. The
definition of Total Order refers only to deliveries by correct processes, and hence remains
unchanged.

Finally, we consider each version of A-Timeliness. The definition of Local-Time A-
Timeliness refers only to actions of correct processes, and remains unchanged. Real-Time
A-Timeliness, however, refers to the real time at which a message is broadcast; this is
now ambiguous as the sender of that message may be subject to arbitrary failures. We
circumvent this problem by restricting the requirement to messages broadcast by correct
processes only:

o Real-Time A-Timeliness: There is a known constant A such that if a message m is
broadcast by a correct process at real time ¢, then no correct process delivers m after
real time ¢ + A.

With benign failures, every broadcast property (except Validity) has a uniform version
that imposes some requirements on the messages that faulty processes deliver. With arbi-
trary failures, however, it is not possible to enforce any such requirement, so uniformity is
a meaningless concept in this case.

3.11 Inconsistency and Contamination

Consider an application where processes communicate via fault-tolerant broadcasts (Fig-
ure 2). Assume that only benign failures may occur; thus, the current state of every process

This reformulation of FIFO Order allows correct processes to deliver messages broadcast by the same
faulty sender in different orders. If desired, a stronger definition of FIFO Order can exclude this behavior.
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(whether correct or faulty) depends on the messages that it has delivered so far. This
state, and the application protocol that the process executes, determines whether it should
broadcast a message, and if so, the contents of that message.

p q
Application Protocol Application Protocol
broadcast(m) deliver(m)
ﬁ ‘ ﬁ ‘ Broadcast/

r - - ~<— Delivery

1 ‘ ¢ ‘ ¢ 1 Interface

| |

: Communications Subsystem :

Figure 2: Application Protocol using Broadcasts

Suppose that a process p is faulty and omits to deliver a message that is delivered by
all the correct processes. The state of p may now be “inconsistent” with respect to the state
of correct processes. Suppose further that p continues to execute, and then, based on its
inconsistent state, p broadcasts a message m that is delivered by all the correct processes.
Note that m is “corrupted”, i.e., its contents reflect p’s erroneous state. Thus, by delivering
m and changing state accordingly, the correct processes incorporate p’s inconsistency into
their own state — correct processes are now “contaminated.” We come to the disconcerting
conclusion that, even with benign failures, broadcasts can easily lead to the corruption of
the entire system!

Unfortunately, the traditional specifications of most broadcasts, including Uniform
broadcasts, allow the inconsistency of faulty processes, and the subsequent contamination
of correct processes. For example, with Atomic Broadcast a faulty process may reach an
inconsistent state in several ways: e.g., by omitting to deliver a message m that is delivered
by all correct processes, or by delivering an extra message m that is not delivered by any
correct process, or by delivering messages out-of-order. With Uniform Atomic Broadcast,
inconsistency may only result from skipping a message that is delivered by all correct
processes. Once a faulty process becomes inconsistent, contamination can then follow. An
example of inconsistency with respect to (Uniform) Atomic Broadcast is explained below.

A variable z with initial value 5 is replicated at three processes, p, ¢, and r. Process
p atomically broadcasts an instruction to increment x, and ¢ atomically broadcasts an
instruction to double . Processes p and ¢ are correct, and they deliver the instructions to
increment z and to double z, in that order. Their value of z is now 12. However, r is faulty:
it first omits to deliver p’s instruction to increment x, and then delivers ¢’s instruction to
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double z. By skipping the increment  instruction, » becomes inconsistent — its new value
of z (namely, 10) is now incorrect. Note that since r is faulty, this execution does indeed
satisfy the usual specification of Atomic Broadcast. In fact, this particular execution can
occur even with a Uniform Atomic Broadcast.

Once r is inconsistent, it can broadcast messages that are based on its erroneous state
and thus contaminate all the correct processes. For example, suppose process r uses its
new value of z to compute and broadcast the value of the replicated variable y, which is
supposed to be 3z everywhere. Since r is inconsistent and has incorrectly computed x to be
10, r broadcasts y := 30, instead of the correct y := 36. When p and ¢ deliver the message
y := 30 and update their copies of y to be 30, they become contaminated.

Note that r becomes inconsistent by committing a simple “benign” failure — just
skipping the delivery of a single message. However, as a result of this undetected failure,
r subsequently broadcasts an incorrect message, and this broadcast “spreads” r’s error to
the rest of the system. At this point, it is almost as if » commits an “arbitrary-like” failure,
even though it only fails by omission. Worse yet, r’s failure corrupts the whole system.

It should be clear that preventing the inconsistency of faulty processes, or at least the
contamination of correct ones, is desirable in many situations. Fortunately, this is possi-
ble with all the broadcasts that we considered in this paper, and for all benign failures.®
Intuitively, a process can prevent its contamination by refusing to deliver messages from
processes whose previous deliveries are not compatible with its own. The amount of infor-
mation that each message should carry, so that every process can determine whether it is
safe to deliver it, depends on the type of broadcast (e.g., FIFO Broadcast or Causal Atomic
Broadcast), and on the failure assumptions. Preventing inconsistency is, however, more
difficult and costly. Roughly speaking, it requires techniques that allow a faulty process to
detect whether it is about to make a message delivery error, and, if so, to immediately stop.

A precise definition of inconsistency and contamination with respect to broadcasts is
beyond the scope of this paper. We also omit the description of algorithms that prevent
inconsistency and/or contamination. For a more complete treatment of this subject the
reader is referred to [GT91,Gop92].

3.12 Amplification of Failures

A fault-tolerant broadcast is usually implemented by a broadcast algorithm that uses lower-
level communication primitives, such as send and receive (Figure 3). With such a broad-
cast algorithm, the broadcasting or delivery of a message requires the execution of several
instructions, and may include several sends and receives.

The models of failures commonly considered in the literature are defined in terms of
failures that occur at the level of send and receive primitives, e.g., omissions to receive
messages (Section 2.3). How do these failures affect the execution of higher-level primitives,

6With arbitrary failures, neither inconsistency nor contamination can be prevented. This is because the
state of a faulty process may be inconsistent even if it delivers all messages correctly. This proces may
then contaminate the rest of the system by broadcasting an erroneous message that seems correct to every
process.
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Figure 3: Application/Broadcast Layering

such as broadcasts and deliveries? In particular, can we assume that if a process suffers
a certain type of failure at the send/receive level, then it will always suffer the same type
of failure at the broadcast/delivery level? For example, if a faulty process omits to receive
messages, will it simply omit to deliver messages? Unfortunately, this is not always so.
In general a broadcast algorithm is likely to amplify the severity of failures that occur at
the low level. For example, there are Atomic Broadcast algorithms where the omission to
receive messages causes a faulty process to deliver messages in the wrong order [Gop92].

But what if processes are only subject to crash failures? Can we assume that the
message deliveries that a process makes before crashing are always “correct” (i.e., consistent
with those of correct processes)? Intuitively, this seems very reasonable, since by definition
a process that crashes executes perfectly until the moment it crashes. In other words,
it seems impossible for such a process to make “mistakes” in its message deliveries before
crashing. However, this intuition is wrong. We illustrate this by a coordinator-based Atomic
Broadcast algorithm that exhibits a surprising behavior: even if a faulty process behaves
correctly until it crashes, it may still deliver messages out-of-order before it crashes! This
algorithm, which satisfies the specification of Atomic Broadcast, is sketched below.

When a process intends to broadcast a message m, it first sends m to a coordinator.
The coordinator delivers messages in the order in which it receives them, and periodically
informs the other processes of this message delivery order. Other processes deliver messages
according to this order. If the coordinator crashes, another process takes over as coordinator.
Now, suppose a coordinator delivers m before m', and then crashes before informing any
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other process that m should be delivered before m’. The new coordinator cannot determine
the order chosen by the faulty coordinator, and may decide that m' should be delivered
before m. In this scenario, all correct processes follow the new coordinator and deliver m’
before m. Thus, the faulty coordinator delivered messages out-of-order before crashing,
even though it executed its protocol perfectly until it crashed.

The above example shows that even if a process is only subject to crash failures, it may
become inconsistent before crashing. In other words, crash failures just by themselves do
not guarantee reasonable behavior at the broadcast/delivery level. Furthermore, from the
time that such a process becomes inconsistent to the time that it crashes, it may broadcast
messages and thus contaminate all correct processes. Thus, even if processes can only fail
by crashing, inconsistency and contamination can occur.”

These observations have subtle but important consequences. In particular, consider
the State Machine approach to fault-tolerance (cf. [Lam84,Sch90]). This is a client/server
system, where the server is replicated, and clients broadcast their requests to all servers
using Causal Atomic Broadcast. Thus, all correct servers deliver the same set of requests,
in the same causal order, and so they have identical state. When a server delivers a request
from a client, it computes the appropriate reply to that request, and sends it to the client.
Suppose that up to f servers are subject to general-omission failures. Clearly, the state of
such a server can be erroneous, and so it may send incorrect replies. How many servers
are needed to implement a fault-tolerant service? It is easy to see that 2f + 1 servers are
sufficient: a client is guaranteed to receive at least f + 1 identical replies (a majority) from
correct servers. This scheme works even when servers are subject to arbitrary failures.
However, requiring 2f + 1 servers and computing the majority reply is expensive. Can we
implement a fault-tolerant service with fewer servers if failures are less severe?

In particular, suppose that the f faulty servers are subject to crash failures only. In
that case, it seems that f 4+ 1 servers would now suffice: Since a faulty server executes
correctly until it crashes, it is tempting to conclude that if any server sends a reply, that
reply must be correct. And, since we have f + 1 servers, at least one of them will reply.
Unfortunately, this reasoning is flawed. A reply may originate from a server s that will
later crash. As we saw in our previous example, the particular Causal Atomic Broadcast
algorithm used by clients to broadcast requests may be such that s delivers requests out-
of-order before crashing. In other words, s could be in an inconsistent state and send the
wrong reply before crashing! A single reply is guaranteed to be correct if and only if the
Causal Atomic Broadcast used is specifically designed to prevent inconsistency, as discussed
in the previous section.
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4 Broadcast Algorithms I — Methodology

In the following two sections, we derive algorithms for the six types of broadcasts introduced
in Section 3: Reliable, FIFO, Causal Broadcast, and their three Atomic counterparts.

Our derivation and exposition of broadcast algorithms follows a particular methodology
which is made possible by the modularity of our broadcast specifications. In Section 3 we
defined six types of broadcasts by adding FIFO, Causal, or Total Order to the specification
of Reliable Broadcast, the weakest type of broadcast that we consider (see Figure 1). We
derive broadcast algorithms by following the same modular paradigm: We start with any
given Reliable Broadcast algorithm, and show how to achieve each one of these three order
properties by a corresponding algorithmic transformation.

More precisely, we exhibit three transformations: one adds FIFO Order, i.e., it converts
any Reliable Broadcast algorithm into a FIFO Broadcast; one adds Causal Order, i.e., it
converts any FIFO Broadcast algorithm into a Causal Broadcast; and one adds Total Order,
i.e., it converts any Reliable, FIFO, or Causal Broadcast algorithm (that satisfies Local-
Time A-Timeliness) into its Atomic counterpart. These three transformations correspond
to the arrows of Figure 1: The first one corresponds to the two top vertical arrows, the
second one to the two bottom vertical arrows, and the last one to the three horizontal
arrows.

Given any Reliable Broadcast algorithm, we can now obtain algorithms for every other
type of broadcast by successively applying our transformations. For example, suppose we
want to derive a Causal Atomic Broadcast algorithm. To do so, we can select any path from
Reliable Broadcast to Causal Atomic Broadcast in Figure 1 (there are three such paths) and
apply to the given Reliable Broadcast algorithm the transformations that correspond to the
arrows along that path. Since for some of the arrows we actually give several alternative
transformations, there are many different Causal Atomic Broadcast algorithms that we can
obtain from the given Reliable Broadcast in this manner.®

It is important to note that all our transformations are generic, i.e., they do not require
any assumptions on the type or synchrony of the underlying communication network, and
they work for any type and number of benign failures. Furthermore, all transformations
preserve Uniform Agreement and, under certain assumptions, both versions of A-Timeliness:
If the given broadcast algorithm satisfies any of these desirable properties, then so does the
algorithm that results from the transformation.

8In this example, the given Reliable Broadcast must satisfy Local-Time A-Timeliness. This is because
the transformation that adds Total Order requires the given broadcast algorithm to satisfy this property.
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This methodology of deriving broadcast algorithms by generic transformations has sev-
eral advantages. The algorithms are developed modularly — thus, they are smaller, simpler,
and easier to understand. The techniques required to achieve each one of the three order
properties (FIFO, Causal, and Total Order) are shown separately, and independently from
the characteristics of the underlying communication network. The proofs are also modular,
easier, and “safer”: a broadcast algorithm that invokes a weaker broadcast primitive as a
“black box” can only rely on the specification of that “box”, so its proof cannot erroneously
rely on a property that is only true for a particular implementation of that “box”.

A modular implementation of stronger broadcasts in terms of weaker ones also increases
the portability of the broadcast software. Whenever we wish to develop a suite of fault-
tolerant broadcast algorithms for a specific system S, all we have to do is provide an
implementation for Reliable Broadcast that works in S (this implementation must provide
A-Timeliness if we wish to obtain an Atomic Broadcast). Because all our transformations
work for any type and number of benign failures, and do not rely on any assumptions about
the underlying network, these will automatically yield broadcast algorithms that also work
in S. Thus, if we consider our suite of algorithms to be a software package for fault-tolerant
broadcasts, the layered construction allows us to port this package from one system to
another by reimplementing and fine-tuning only Reliable Broadcast. On the other hand,
layered implementations do have a disadvantage: They may lead to a decrease in efficiency,
because they hide specific features of the underlying communications network that may be
exploited by certain algorithms.

In Section 5 we present our system-independent transformations. In Section 6 we focus
on a particular type of system, namely point-to-point networks, and describe a Reliable
Broadcast algorithm for such a system. We also determine the conditions under which this
algorithm achieves Uniform Agreement and Real-Time A-Timeliness, and describe a simple
modification to achieve Local-Time A-Timeliness. By applying our system-independent
transformations to this Reliable Broadcast algorithm, we immediately obtain broadcast
algorithms of all types for point-to-point networks.

5 Broadcast Algorithms IT — Transformations

5.1 Introduction

In this section we describe our transformations. These are based on a small number of
techniques, each of which enhances a given broadcast by adding FIFO, Causal, or Total
Order. Adding Total Order, which corresponds to the three horizontal arrows in Figure 1,
is effected by a single transformation (that works if the given broadcast satisfies Local-Time
A-Timeliness). Adding FIFO Order, which corresponds to the two top vertical arrows, is
also accomplished by one transformation. Adding Causal Order, which corresponds to the
two bottom vertical arrows, can be done by using either one of two transformations. We also
present a particularly efficient transformation for adding Causal Order to a FIFO Atomic
Broadcast (this corresponds to the bottom right vertical arrow).

All our transformations preserve Uniform Agreement, and, under some conditions, both
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versions of A-Timeliness. This means that if the given broadcast algorithm satisfies any of
these properties, then so does the resulting broadcast algorithm.

The transformations work for any type and number of benign failures, and regardless
of the type or synchrony of the network. Thus, the resulting algorithm works in whatever
system, and under whatever assumptions, the given algorithm works.

All the broadcasts that we consider here satisfy the Uniform version of Integrity. This
is important to our modular approach because to build stronger broadcast primitives from
weaker ones the latter are often required to satisfy Uniform Integrity. For the sake of brevity,
in the rest of this section, when we mention a type of broadcast we always assume that it
satisfies Uniform Integrity without explicitly saying so.

5.2 Definitions and Notation

Since we build our broadcast primitives in a layered fashion, it is typical for a higher-level
broadcast primitive to invoke a lower-level one as a procedure. To disambiguate between
the different broadcast primitives used in an algorithm, we introduce the following notation.
We first define a short-hand notation for the type of a broadcast. In particular, R stands for
Reliable Broadcast, F for FIFO Broadcast, and C for Causal Broadcast. Similarly, A stands
for Atomic Broadcast, FA for FIFO Atomic Broadcast, and CA for Causal Atomic Broadcast.
We denote by broadcast(T,m) and deliver(T,m), the two primitives corresponding to a
broadcast of type T. When a process invokes broadcast(T,m), we say that it T-broadcasts
m. When it returns from the execution of deliver(T,m), we say that it T-delivers m.
For example, broadcast(R,m) is the broadcast primitive for Reliable Broadcast, and if a
process invokes broadcast(R,m), we say that it R-broadcasts m. Similarly, deliver(CA,m)
is the delivery primitive for Causal Atomic Broadcast, and if a process returns from the
execution of deliver(CA,m), we say that it CA-delivers m.

Consider two problems denoted A and B. A transformation from A to B is an algorithm
T 4.5 that converts any algorithm A that solves A into an algorithm B that solves B.° We
say that A is the given algorithm and B the resulting algorithm of the transformation.
Transformation 74,5 preserves property P if it converts any algorithm for A that satisfies
P into an algorithm for B that also satisfies P.

For example, in Section 5.4 we present an algorithm that transforms any algorithm
for Reliable Broadcast into one for FIFO Broadcast. Roughly speaking it works as follows.
To F-broadcast a message, a process simply R-broadcasts it. When a process R-delivers
a message m, it delays the F-delivery of m, if necessary, until it has F-delivered all the
messages that the sender of m F-broadcast before m. As we will see, this transformation
also happens to preserve Total Order. This means that if the given Reliable Broadcast
satisfies Total Order, (i.e., it is actually an Atomic Broadcast), then so does the resulting
FIFO Broadcast (i.e., it is a FIFO Atomic Broadcast).

Informally, a transformation of one broadcast algorithm into another is blocking if the
resulting broadcast algorithm has an execution in which a process delays the delivery of

®We also say that T4_. 5 is a reduction of problem B to problem A.
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a message for a later time. For example, the transformation from Reliable Broadcast to
FIFO Broadcast outlined above is blocking: It is possible that when a process p R-delivers
a message m it has to delay the F-delivery of m while waiting for the F-delivery of some
earlier message from the sender of m. A transformation is non-blocking if it is not blocking.

When we present an algorithm we give the pseudo-code for a typical process. In
our algorithms every process executes the same code. Thus, different processes have local
variables with the same name, and this can lead to ambiguity. In such cases, we avoid
this problem by subscripting a variable local to a process with the identity of that process.
Thus, var, denotes the value of local variable var at process p.

5.3 Achieving Total Order

In this section we describe a single algorithm that can be used to transform a Reliable, FIFO
or Causal Broadcast that satisfies Local-Time A-Timeliness into its Atomic counterpart,
i.e., an Atomic, FIFO Atomic or Causal Atomic Broadcast. Thus, this transformation
corresponds to the three horizontal arrows in Figure 1. It is based on a very simple idea
which exploits the Timeliness property to guarantee Total Order, while preserving all the
other properties of interest.

The algorithm in Figure 4 shows how to transform any broadcast algorithm that sat-
isfies Local-Time A-Timeliness into one that satisfies both Total Order and Local-Time
A-Timeliness. In this figure, B denotes the type of the given broadcast, and BA denotes the
type of the broadcast that results from the transformation. This transformation preserves
Validity, Agreement, Integrity, FIFO Order and Causal Order (and their uniform counter-
parts): If the given broadcast algorithm satisfies any of these properties, then so does the
resulting broadcast algorithm.

The transformation works as follows. If p wishes to BA-broadcast m, it uses the given
broadcast primitive to B-broadcast m. When a process B-delivers m, it schedules the BA-
delivery of m at local-time ts(m)+A (recall that ts(m) is the sending time of m according to
the sender’s clock, and A is the bound on message latency guaranteed by the given broadcast
algorithm). If two or more messages are scheduled to be BA-delivered at the same local
time then they are BA-delivered in an a prior: agreed order, e.g., in increasing order of the
senders’ ids. If a process B-delivers m after local time ts(m) + A, then it never BA-delivers
m. This transformation assumes that local clocks satisfy the Clock Monotonicity property
(see Section 2.8).

Theorem 3 Suppose the Clock Monotonicity property holds. The algorithm in Figure 4
transforms any broadcast algorithm that satisfies Local-Time A-Timeliness into one that
satisfies (the uniform versions of) both Local-Time A-Timeliness and Total Order. This
transformation preserves Validity, Agreement, Integrity, FIFO Order and Causal Order,
and their uniform counterparts.

The significance of this theorem lies in the following:
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Algorithm for process p:
To execute broadcast(BA,m):
broadcast(B,m)

deliver(BA,m) occurs as follows:

upon deliver(B,m) do
schedule deliver(BA,m) at time ts(m) + A

Figure 4: Adding Total Order to Timed Broadcast

Corollary 1 Suppose the Clock Monotonicity property holds. The algorithm in Figure 4
transforms any Reliable, FIFO or Causal Broadcast algorithm that satisfies Local-Time A-
Timeliness into its Atomic counterpart.

Proof of Theorem 3: Assume that the given broadcast algorithm satisfies Local-Time A-
Timeliness. We first show that the broadcast algorithm that results from the transformation
satisfies the uniform versions of Local-Time A-Timeliness and Total Order.

Uniform Local-Time A-Timeliness: If any process (whether correct or faulty) BA-delivers
a message m, it does so at local time ts(m) + A.

Uniform Total Order: If any two processes p and ¢ (whether correct or faulty) BA-deliver m
and m/, they do so at local times ts(m)+ A and ts(m') + A, respectively. If ts(m) < ts(m'),
by Clock Monotonicity, both p and ¢ BA-deliver m before m'. Similarly, if ts(m') < ts(m),
they both BA-deliver m' before m. Finally, if ts(m) = ts(m'), they both BA-deliver the
messages in order of increasing sender ids. In all cases, p and ¢ BA-deliver m and m/ in the
same order.

We now show that the transformation preserves each property listed in the theorem; i.e., if
the given broadcast satisfies any of these properties then so does the resulting broadcast.

Validity: If a correct process p BA-broadcasts m, it B-broadcasts m. By Validity and Local-
Time A-Timeliness of the given broadcast algorithm, p B-delivers m by local time ts(m)+A,
and schedules the BA-delivery of m for local time ts(m) + A. By Clock Monotonicity, p
eventually BA-delivers m.

Agreement: If any correct process BA-delivers a message m, then it must have B-delivered
m. By Agreement and Local-Time A-Timeliness of the given broadcast algorithm, every
correct process also B-delivers m, and does so by local time ts(m) + A. By Clock Mono-
tonicity, every correct process eventually BA-delivers m at local time ts(m) + A.

Integrity: Immediate from Integrity of the given broadcast algorithm.

FIFO Order: Suppose a process ¢ BA-broadcasts m before m/. Consider a correct process
p that BA-delivers m’. We must show that p BA-delivers m before m’. By definition, ¢
BA-broadcast m and m’ at local times ts(m) and ts(m'). By Clock Monotonicity, ts(m) <

31



ts(m'), so ts(m)+ A < ts(m')+A. From the algorithm and the hypothesis, it is clear that ¢
B-broadcasts m before m/, and that p B-delivers m’. By FIFO Order of the given broadcast
algorithm, p B-delivers m before m’. By the algorithm, p schedules the BA-deliveries of
m and m’ at times ts(m) + A < ts(m') + A. Since p BA-delivers m/, its clock reached
ts(m') + A. By Clock Monotonicity, p’s clock reached ts(m) + A before ts(m’) + A. Thus,
p BA-delivers m before m/'.

By Theorem 1, Causal Order is equivalent to FIFO Order and Causal Order. Since we
already showed that the transformation preserves FIFO Order, to show that it also preserves
Causal Order it now suffices prove that it preserves Local Order.

Local Order: Suppose a process ¢ BA-delivers m before it BA-broadcasts m’. Consider a
correct process p that BA-delivers m’. We must show that p BA-delivers m before m’. By
the algorithm, ¢ BA-delivered m at local time ts(m)+ A, and later BA-broadcast m' at local
time ts(m'). By Clock Monotonicity, ts(m)+A < ts(m'), so ts(m)+ A < ts(m')+ A. From
the algorithm and the hypothesis, it is clear that ¢ B-delivers m before B-broadcasting m/,
and that p B-delivers m’. The proof now continues exactly as in the proof of FIFO Order.

It is easy to check that the transformation also preserves the uniform versions of Agreement,
Integrity, FIFO Order and Causal Order. O

Note the absence of any induction argument in the proof of Causal Order, despite the
fact that two broadcasts can be causally related by arbitrarily long chains of broadcasts
and deliveries. This is the consequence of Theorem 1 whose proof factorized this induction.

5.4 Achieving FIFO Order

In this section we describe a simple algorithm that transforms any Reliable Broadcast
algorithm into a FIFO Broadcast that satisfies Uniform FIFO Order. This transformation
preserves Total Order; thus, if the given Reliable Broadcast is actually an Atomic Broadcast,
the resulting algorithm is a FIFO Atomic Broadcast. In other words, this transformation
corresponds to the two top vertical arrows in Figure 1.

The transformation, shown in Figure 5, works as follows. To F-broadcast a message
m, a process s simply R-broadcasts m. Recall that if m is the ith message F-broadcast by
s, then m is tagged with sender(m) = s and seq#(m) = i. Every process p maintains a
vector of counters next, such that next[s] is the sequence number of the next F-broadcast
from s that p is ready to F-deliver. When a process p R-delivers m with sender(m) = s,
p checks whether m is F-deliverable immediately, i.e., whether next[s] = seq#(m). If m
is not F-deliverable when it is R-delivered, p inserts m into a msgSet, for possible future
F-delivery: m is now blocked. Otherwise, p F-delivers m right away and increments nezt[s]
to reflect that. This may cause previously blocked messages from s to become F-deliverable;
p scans msgSet, and F-delivers any such messages.

For example, suppose p already F-delivered messages tagged 1 and 2 from s (i.e.,
next[s] = 3), and p’s msgSet already contains messages tagged 4 and 8 from s. If p R-
delivers message m tagged 3 from s (i.e., sender(m) = s and seq#(m) = 3), p F-delivers
m immediately, and increments nezt[s| to 4. Now message tagged 4 from s in msgSet also
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becomes F-deliverable, and p delivers it.

Variables of process p:
{ msgSet: set of messages that p has R-delivered }
{ next[s]: sequence number of the next F-broadcast by s that p is ready to F-deliver }

Algorithm for process p:
Initialization:

msgSet := ()

next[s] := 1, for each process s

To execute broadcast(F,m):
broadcast(R,m)

deliver(F,—) occurs as follows:
upon deliver(R,m’) do
s := sender(m’)
if next[s] = seq#(m')
then
deliver(F,m’)
next[s] := next[s] + 1
while (Im € msgSet : sender(m) = s and next[s] = seq#(m)) do
deliver(F,m)
next[s] := next[s] + 1
else
msgSet := msgSet U {m'}

Figure 5: Transforming Reliable Broadcast into FIFO Broadcast

Theorem 4 The algorithm in Figure 5 transforms any Reliable Broadcast algorithm into
a FIFO Broadcast algorithm that satisfies Uniform FIFO Order. Furthermore, this trans-
formation preserves [Uniform] Total Order.

Proof: First we establish some basic facts about the transformation.

Claim 1: For any process p (whether correct or faulty), if nezt,[s] = k then the sequence
of messages that p has F-delivered so far is the sequence of the first £ — 1 messages F-
broadcast by s.

This claim can be easily shown by induction on k and using the Uniform Integrity of the
given Reliable Broadcast; the details are omited.
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Claim 2: Suppose a correct process p R-delivers a message m and F-delivers all the
messages that sender(m) F-broadcast before m. Then p also F-delivers m.

Proof of Claim 2: Suppose that p and m satisfy the hypothesis of the claim, and let
sender(m) = s and seq#(m) = k. By hypothesis, p F-delivers all the & — 1 messages that
s F-broadcast before m. Since p increments next,[s] for each one of these F-deliveries,
eventually next,[s] > k. There are two possible cases. (i) Eventually next,[s] reaches the
value £ + 1. By Claim 1, p F-delivers the first k¥ messages F-broadcast by s, including m.
(ii) Eventually nezt,[s| reaches the value k and then remains forever stuck at that value.
Let m' be the message whose F-delivery by p makes nezty[s] = k. By hypothesis, p R-
delivers m. If, when this occurs, m' has already been delivered, we have nezxt,[s] = k and
thus p will F-deliver m right away. Otherwise, p will insert m into msgSet, and when it
later F-delivers m' and sets next,[s] = k, it will also F-deliver m. Thus, in both cases p
F-delivers m, as wanted. O Claim 2

Using the above claims, we first show that the algorithm that results from the transformation
satisfies the properties of FIFO Broadcast.

Validity: Suppose that a correct process p F-broadcasts a message that it never F-delivers.
Let m be the first such message that p F-broadcasts. Since p F-broadcasts m, it previously
R-broadcast m. By Validity of Reliable Broadcast, p eventually R-delivers m. By the choice
of m, p F-delivers all the messages that it F-broadcast before m. By Claim 2, p F-delivers
m, contradicting the definition of m. Thus, a correct process F-delivers every message that
it F-broadcasts.

Uniform FIFO Order: Suppose a process p F-delivers a message m. Let sender(m) = s
and seq#(m) = k. By the algorithm, just before p F-delivers m, nezt,[s] = k. By Claim 1,
p has already F-delivered all the £ — 1 messages that s F-broadcast before m, as wanted.

Agreement: Suppose, for contradiction, that Agreement is violated. Thus, there are two
correct processes p and ¢ such that p F-delivers a message that ¢ does not. Let m be such a
message with the smallest possible sequence number. Since p F-delivers m, it previously R-
delivered m; by Agreement of Reliable Broadcast, ¢ also R-delivers m. Furthermore, by the
Uniform FIFO Order property shown above, p previously F-delivered all the messages that
sender(m) F-broadcast before m. By the choice of m, ¢ also F-delivers all these messages.
By Claim 2, ¢ F-delivers m, a contradiction.

Uniform Integrity: Suppose p F-delivers m with sender(m) = s and seq#(m) = k. By
the algorithm, p previously R-delivered m. By Uniform Integrity of the given Reliable
Broadcast, s R-broadcasts m. Therefore, s must have F-broadcast m. Furthermore, when
p F-delivers m, it increments nezt,[s| from k to k + 1. Since next,[s] never decreases, and
must be k& for m to be F-delivered, m is not F-delivered again.

Next we show that the transformation preserves [Uniform] Total Order.

Total Order: It is easy to see that the sequence of R-deliveries uniquely determines the
sequence of F-deliveries. By Agreement and Total Order of the given Reliable Broadcast,
all correct processes R-deliver the same sequence of messages. Hence, they all F-deliver the
same sequence of messages. Therefore, the resulting FIFO Broadcast satisfies Total Order.
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Uniform Total Order: For any message m, define Past(m) to be the set of messages F-
broadcast by sender(m) up to and including the F-broadcast of m. By Uniform FIFO
Order (shown above), if a process p F-delivers m then it must have previously F-delivered
and thus R-delivered all the messages in Past(m). Furthermore, it is clear that p F-delivers
m as soon as it has R-delivered those messages.

Consider any two processes p and ¢ that F-deliver messages m; and mg. By the above
argument, p and ¢ must each R-deliver all the messages in Past(m1) U Past(mz). Further-
more, the order in which each of p and ¢ F-delivers messages m; and mg is determined by
the order in which they R-deliver the messages in Past(m) U Past(mzg). By Uniform Total
Order of the given Reliable Broadcast, p and ¢ R-deliver these messages in the same order.
Since this order determines the order of F-delivering m; and mg, p and ¢ F-deliver m; and
mg in the same order. This shows that the resulting FIFO Broadcast satisfies Uniform
Total Order. O

Observation: This transformation also preserves Uniform Agreement and A-Timeliness
(both Real- and Local-Time, and their uniform versions).!°

The transformation has some straightforward optimizations. First, once p F-delivers m,
it can remove m from msgSet. This reduces the space needed for storing msgSet. Second,
since a message from s can become unblocked only as a result of the F-delivery of some
(earlier) message from s, it is more efficient to keep a separate msgSet|[s| for every process
s, containing the blocked messages F-broadcast by s.

5.5 Achieving Causal Order

In the next two sections we describe two transformations from FIFO Broadcast to Causal
Broadcast: one is blocking and the other not. Each of these preserves Total Order, i.e., if
the given FIFO Broadcast algorithm is Atomic, the resulting algorithm is a Causal Atomic
Broadcast. Thus, each transformation corresponds to the two bottom vertical arrows in
Figure 1.

Both transformations require that the given FIFO Broadcast algorithm satisfy Uniform
FIFO Order. Luckily, our transformation from Reliable Broadcast to FIFO Broadcast
does result in such an algorithm (see Theorem 4 in the previous section). Thus, these
transformations can be “chained” together.

5.5.1 Non-Blocking Transformation

In Figure 6, we give a non-blocking transformation of FIFO to Causal Broadcast. To C-
broadcast a message m, a process p uses the given FIFO Broadcast algorithm to F-broadcast
the sequence of messages rentDlvrs||m, where rentDlvrs is the sequence of messages that
p C-delivered since its previous C-broadcast (“||” is the concatenation operator). When a
process g F-delivers such a sequence, ¢ C-delivers all the messages in the sequence that it
did not previously C-deliver.

10The preservation of Local-Time A-Timeliness requires that local clocks never decrease (Section 2.8).
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Variable of process p:
{ rentDlvrs: sequence of messages that p C-delivered since its previous C-broadcast }

Algorithm for process p:
Initialization:
rentDlvrs := L

To execute broadcast(C,m):
broadcast(F, (rentDlvrs||m))
rentDlvrs := L

deliver(C,—) occurs as follows:

upon deliver(F,(mi, ma,...,m;)) for some [ do
for ¢ :=1..1 do
if p has not previously executed deliver(C,m;)
then

deliver(C,m;)
rentDlvrs := rentDlvrs || m;

Figure 6: Transforming FIFO Broadcast into Causal Broadcast: Non-Blocking Version
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Theorem 5 The algorithm in Figure 6 transforms any FIFO Broadcast algorithm that
satisfies Uniform FIFO Order into a Causal Broadcast algorithm that satisfies Uniform
Causal Order. Furthermore, this transformation preserves Total Order.

Proof: We first show that the algorithm that results from the transformation satisfies the
properties of Causal Broadcast.

Validity: Suppose p is correct and C-broadcasts m. Thus, p F-broadcasts (rentDlvrs || m),
and by Validity of FIFO Broadcast, p eventually F-delivers (rentDlvrs||m). From the
algorithm, p C-delivers m.

Agreement: Suppose p is correct and C-delivers m. From the algorithm, it is clear that

p F-delivered some sequence (mj, ma,...,m;) that contains m. From Agreement of FIFO
Broadcast, all correct processes eventually F-deliver (my, ma,...,m;), and thus C-deliver
m.

Uniform Integrity: From the algorithm, a process C-delivers a message m only if it has
not previously executed deliver(C,m). Thus, a process delivers m at most once. Consider
the first process that C-delivers message m. It must have F-delivered (rentDlvrs || m), for
some rcntDlvrs. By Uniform Integrity of FIFO Broadcast, some process p F-broadcast
(rentDlvrs || m). This occurred when p C-broadcast m.

To prove Uniform Causal Order it suffices to prove Uniform FIFO Order and Uniform Local
Order (see Theorem 2). To do so, we first show:

Claim: Suppose some process ¢ F-broadcasts (rentDlvrs’||m'), and either ¢ previously
F-broadcast (rentDlvrs||m) or m is in rentDlvrs’. Then no process (whether correct or
faulty) C-delivers m' unless it has previously C-delivered m.

Proof of Claim: The proof of this claim is by contradiction. Assume that the hypothesis
holds, and some process C-delivers m' but does not C-deliver m before m’. Let p be the
first process to do so (in real time). There are two cases depending on what caused p to
C-deliver m':

1. p F-delivered (rentDlvrs'||m'). By hypothesis, there are two possible subcases.
(a) Process ¢ F-broadcast (rentDlvrs||m) before (rentDlvrs’||m'). By Uniform
FIFO Order of FIFO Broadcast, p must have F-delivered (rentDlvrs||m) before
(rentDlvrs' ||m'). (b) m is in rentDlvrs’. In both subcases, it is clear from the
algorithm that p C-delivered m before m/, a contradiction.

2. p F-delivered a message (rentDlvrs” || m”), where m' is in rent Dlvrs” and m is not be-
fore m' in rentDlvrs”. Let s = sender({rentDlvrs" || m")). Since m' is in rentDlvrs”,
s C-delivered m' before F-broadcasting (rentDlvrs” ||m"). By Uniform FIFO Order
of FIFO Broadcast, p F-delivered all the previous F-broadcasts of s. Since p does not
C-deliver m before m’, m was not included in any of these F-broadcasts. Further-
more, m did not appear before m’ in rentDlvrs”. Thus, when s C-delivered m/, it
had not previously C-delivered m. Since s C-delivered m’ before p, this contradicts
the definition of p.
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Since both cases lead to a contradiction, the claim follows. O Claim

Uniform FIFO Order: Suppose a process ¢ C-broadcasts m before m’. From the algorithm,
it is clear that ¢ F-broadcast (rentDlvrs || m) before (rentDlvrs' || m'), for some rentDlvrs
and rentDlvrs’, respectively. By the above claim, no process C-delivers m’ unless it has
previously C-delivered m.

Uniform Local Order: Suppose a process g C-delivers m before it C-broadcasts m’, and a
process p C-delivers m'. We must show that p C-delivers m before m/. Let m” be the first
message that ¢ C-broadcast after it C-delivered m (m" could be m'). When ¢ C-broadcasts
m/, it F-broadcasts (rentDlvrs” || m') for some rentDlvrs”. By the definition of m” and
the algorithm, rentDlvrs” contains m. Thus, by the above claim, p C-delivers m before m”.
If the C-broadcasts of m” and m' are actually the same, then we are done. Otherwise, ¢ C-
broadcasts m” before m’. By the Uniform FIFO Order property shown above, p C-delivers
m' before m/. Thus, p C-delivers m before m/, as wanted.

Next we show that the transformation preserves Total Order (the argument is identical to
the one used in the corresponding result of Theorem 4).

Total Order: Tt is easy to see that the sequence of F-deliveries uniquely determines the
sequence of C-deliveries. By Agreement and Total Order of the given FIFO Broadcast, all
correct processes F-deliver the same sequence of messages. Hence, they all C-deliver the
same sequence of messages. Therefore, the resulting Causal Broadcast satisfies Total Order.
O

Observation: This transformation preserves Uniform Agreement. In general, it does not
preserve (Real- or Local-Time) A-Timeliness. If the given FIFO Broadcast satisfies Uni-
form Agreement, however, the transformation does preserve both versions of A-Timeliness.
Finally, although it preserves Total Order, it does not preserve Uniform Total Order.

5.5.2 Blocking Transformation

In Figure 7, we give a blocking transformation of FIFO to Causal Broadcast. Its advantage
over the non-blocking one just described is that it uses shorter messages. Like the non-
blocking transformation, this also requires that the given FIFO Broadcast satisfy Uniform
FIFO Order. It works as follows. Each process p maintains numO f AllDlvrs, a vector
of counters such that numO f AllDlvrs[s] is the number of C-broadcasts from s that p C-
delivered since the beginning. To C-broadcast a message m, a process p uses the given FIFO
Broadcast algorithm to F-broadcast m together with numO f AllDlvrs. When p F-delivers
a message m' from s with its corresponding vector numO f AllDlvrs', p checks whether m’
is C-deliverable immediately. This is the case if p has already C-delivered every message
that s had C-delivered at the time it C-broadcast m'. Process p checks this by testing
whether numO f AllDlvrs > numO f AllDlvrs'. 11

If m' is not C-deliverable immediately, then p inserts m’ and the associated vector
numO f AllDlvrs' in a msgList (where messages are kept in order of insertion) for possible

1 Given two n-vectors V and V', we say that V > V' if V[i| > V'[i] for all 1 > ¢ > n. Similarly, V + V'
denotes the vector whose i-th element is V[i] + V'[z].
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future C-delivery: The message m’ is now blocked. If, on the other hand, m' is C-deliverable,
then p C-delivers it right away and updates numO f AllDlvrs to reflect this fact. Since a
C-delivery may cause some blocked messages to become C-deliverable, p scans msgList
to C-deliver the first C-deliverable message on that list. It then repeats the scanning of
msgList for as long as there is a C-deliverable message in the list.

Variables of process p:
{ numO f AllDlvrs[s]: number of all the messages that p C-delivered from s }
{ msgList: list of messages that p F-delivered but not yet C-delivered }

Algorithm for process p:

Initialization:
numO f AllDlvrs[s] := 0, for each process s
msgList := L

To execute broadcast(C,m):
broadcast(F, (m,numQO f All Dlvrs))

deliver(C,—) occurs as follows:
upon deliver(F,(m',numO fAllDlvrs')) do
s := sender(m’)
if numO f AllDlvrs > numO f AllDlvrs'
then
deliver(C,m’)
numO f AllDlvrs[s] := numO f AllDlvrs[s] + 1
while (I(m, N) € msgList : numO f AllDlvrs > N) do
let (m, N) be the first message in msgList s.t. numO f AllDlvrs > N
deliver(C,m)
numO f All Dlvrs[sender(m)] := numO f All Dlvrs[sender(m)] + 1
msgList := msgList — (m, N)
else
msgList :==msgList || (m',numO f AllDlvrs'")

Figure 7: Transforming FIFO Broadcast into Causal Broadcast: Blocking Version

Theorem 6 The algorithm in Figure 7 transforms any FIFO Broadcast algorithm that
satisfies Uniform FIFO Order into a Causal Broadcast algorithm that satisfies Uniform
Causal Order. Furthermore, this transformation preserves [Uniform] Total Order.

Proof: We first show that the algorithm that results from the transformation satisfies the
properties of Causal Broadcast.
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Validity: Suppose p is correct and C-broadcasts m. Thus, p F-broadcasts (m, numO f All Dlvrs),
and by Validity of FIFO Broadcast, p eventually F-delivers (m,numO f AllDlvrs). Since

p’s vector of counters numO f AllDlvrs, never decreases, p C-delivers m.

Agreement: Suppose, for contradiction, that Agreement is violated. Thus, there are two
correct processes p and ¢ such that p C-delivers a message that ¢ does not C-deliver.
Consider the sequence of messages that p C-delivers, in the order they are C-delivered. Let m
be the first message on that sequence that ¢ does not C-deliver. From the algorithm, since p
C-delivered m, it must have previously F-delivered (m, N') for some vector N. By Agreement
of FIFO Broadcast, ¢ eventually F-delivers (m, N) as well. If this F-delivery occurs when
numO f AllDlvrs, > N, then ¢ immediately C-delivers m — a contradiction to the definition
of m. Thus, we may assume that when ¢ F-delivers (m, N), numO fAllDlvrsy 2 N and ¢
inserts (m, N) in msgList, for possible future C-delivery.

Let N, be the value of p’s vector numO f AllDlvrs when p C-delivered m. From the
algorithm, N, > N. Clearly, when p C-delivered m, it had previously C-delivered exactly
Np[r] messages that were C-broadcast by r, for every process r. By the definition of m, ¢
eventually C-delivers all these messages. Thus, ¢ eventually has numO f AllDlvrs, > N,.
Consider the message m” whose C-delivery by ¢ causes for the first time numO f All Dlvrs, >
N,. When ¢ C-delivers m”, (m, N) is already in msgList,. Immediately after the C-delivery
of m", numO f AllDlvrsy > N, > N, and thus g C-delivers m when it scans msgList; — a
contradiction to the definition of m.

Uniform Integrity: From the Uniform Integrity of the given FIFO Broadcast, it is easy to
see that a process C-delivers a message m only if sender(m) previously C-broadcast m. It
remains to show that no process p C-delivers m twice. To do so, we show that p does not
insert the messages (m, N) and (m, N'), for N # N, into msgList. This is true because,
otherwise, by the Uniform Integrity of the given FIFO Broadcast, both of these messages
would have been F-broadcast by the same process s, namely sender(m), at two different
times. Thus, s would have C-broadcast m twice, which is impossible.

To prove Uniform Causal Order it suffices to prove Uniform FIFO Order and Uniform Local
Order (see Theorem 2).

Uniform FIFO Order: Suppose that a process s C-broadcasts m before it C-broadcasts m’,
and a process p C-delivers m’. We show that p C-delivers m before m/'.

From the algorithm, s F-broadcasts (m, N) before it F-broadcasts (m', N'), and p must
have F-delivered (m/, N}, for some vectors N and N', with N’ > N. By Uniform FIFO
Order of the given FIFO Broadcast, p must have F-delivered (m, N) before (m', N'). If p
C-delivered m without blocking it, we are done. So we may assume that p inserted (m, N)
in msgList, before it F-delivered (m', N'). There are two cases:

e When p F-delivers (m/, N') it blocks m'. Thus, p inserts (m/, N') in msgList,. Since
(a) p C-delivers all the C-deliverable messages in msgList, in the order of they appear
in that list, (b) (m, N) is before (m/, N') in msgList,, (c) if m' is C-deliverable, so is
m (because N' > N), and (d) p C-delivers m’, we conclude that p C-delivers m before
m/, as wanted.
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e When p F-delivers (m/, N’} it C-delivers m' immediately. Thus, when this F-delivery
occurs numQO f AllDlvrs, > N'. Consider the message m"” whose C-delivery by p
first causes numO f AllDlvrs, > N'. The C-delivery of m” occurs after p F-delivered
(m, N) (because p blocked m), and before p F-delivered (m/, N') (because p did not
block m'). Thus, when p C-delivers m”, (m, N) is already in msgList,. Since the
C-delivery of m” results in numOfAllDlvrs, > N', and N' > N, p C-delivers m
when it scans msgList, immediately after it C-delivers of m”. Hence, p C-delivers m
before m’, as wanted.

Uniform Local Order: Suppose a process g C-delivers m before it C-broadcasts m/. By
Uniform Integrity shown above, m was C-broadcast by some process s. Suppose m was the
kth message C-broadcast by s. By Uniform FIFO shown above, when ¢ C-delivers m, this
is the kth message ¢ has C-delivered from s. Thus, immediately after the C-delivery of m,
¢ has numO fAllDlvrsq[s] = k. Therefore, when ¢ later C-broadcasts m’, it F-broadcasts
(m!,N') with N'[s] > k.

Suppose some process p C-delivers m/. This occurs after p F-delivers (m/, N') and
numO f All Dlvrs, > N'. Thus, when p C-delivers m/ it has numO f All Dlvrs,[s] > N'[s] >
k, and therefore p has already C-delivered at least k& messages C-broadcast by s. By Uniform
FIFO shown above, these include the first £ messages C-broadcast by s, and thus m. So p
C-delivers m before m/, as wanted.

Next we show that the transformation preserves [Uniform]| Total Order.

Total Order: This proof is identical to the one given in the corresponding result of Theo-
rem 5.

Uniform Total Order: This proof is the same as the one given in the corresponding result of
Theorem 4, except that Past(m) must be redefined. Let = be the causal precedence relation
induced by C-broadcasts and C-deliveries (see Section 2.7). We now define Past(m) =
{m/ | m' = m or broadcast(C, m') > broadcast(C, m)}; intuitively, Past(m) is the set of
messages in the “causal past” of m. With this definition, the argument follows along the
lines of the proof of Theorem 4. O

Observation: This transformation also preserves Uniform Agreement and Real-Time A-
Timeliness. Moreover, under some assumptions explained below, the transformation also
preserves Local-Time A-Timeliness. In Section 2.7, we defined the causal precedence re-
lation — induced by the broadcast and delivery events. In Section 2.8 we explained what
it means for local clocks to be consistent with —. When executing the transformation in
Figure 7, there are F-broadcasts and F-deliveries, which induce the causal precedence rela-
tion =, and also C-broadcast and C-deliveries, which induce the relation —. We can show
that if the local clocks are consistent with — then they are also consistent with <., and the
transformation in Figure 7 preserves Local-Time A-Timeliness.

This transformation can be improved in the following way. In its present form, each
process p keeps track of the number of all the messages it has C-delivered from every
process, and sends this information, in the form of a vector of counters, along with every
message it wishes to C-broadcast. Instead, p can send a vector containing only the number
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of new messages that p C-delivered from each process since p’s previous C-broadcast. These
vectors contain smaller numbers, so messages are shorter. By maintaining the right kind
of information, each process can use these vectors to determine if a message is immediately
C-deliverable or should be blocked. We desist from giving the details of this optimization,
as we shall describe in detail some transformations that use the same idea in Sections 5.6.2
and 5.6.3.

5.6 From FIFO Atomic to Causal Atomic Broadcast

In the previous section we described two different ways of transforming FIFO Broadcast into
Causal Broadcast while preserving Total Order. Each of these transformations corresponds
to both bottom vertical arrows in Figure 1. In this section, we describe three efficient
transformations that correspond to the right bottom arrow only: each of these add Causal
Order to a FIFO Atomic Broadcast. Surprisingly, these transformations are non-blocking
even though they tag each message with just a vector of counters (like the blocking algorithm
in Figure 7) rather than piggybacking a list of messages (like the non-blocking algorithm
in Figure 6). It is now possible to use vectors of counters to achieve Causal Order without
blocking because we start from a stronger broadcast algorithm — one that satisfies Total
Order.

5.6.1 Basic Transformation

In the blocking transformation from FIFO to Causal Broadcast that we saw in Figure 7,
if a process p F-delivers a message (m’/, —) and cannot C-deliver m' immediately, it inserts
(m!,—) in msgList for possible future C-delivery: m’ is now blocked. We can obtain a
non-blocking transformation from FIFO Atomic to Causal Atomic Broadcast with a simple
modification (see Figure 8). When p FA-delivers (m’, —) such that it cannot CA-deliver m/
immediately, p simply discards m’ and inserts sender (m') into suspects, — a set of processes
that p suspects to be faulty. Process p routinely discards every subsequent message that
originates from any process in that set. Thus, now p never saves any message for future
delivery and messages are never blocked. This eliminates msgList and the need to scan
this list for possible deliveries.

Theorem 7 The algorithm in Figure 8 transforms any FIFO Atomic Broadcast algorithm
that satisfies Uniform FIFO Order into a Causal Atomic Broadcast algorithm that satisfies
Uniform Causal Order.

Proof: We show that the algorithm that results from the transformation satisfies the prop-
erties of Causal Atomic Broadcast.

Validity: We first claim that for all processes p (whether correct or faulty), p is never in
suspects,. The proof is by contradiction. Consider the first time ¢ a process p inserts p into
suspects,. From the algorithm, it is clear that this occurs when p FA-delivers a message
(m/, N') such that p = sender(m') and N, 2 N', where N, is the value of numO f All Dlvrs,,
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Variables of process p:
{ numO f AllDlvrs[s]: number of all the messages that p C-delivered from s }
{ suspects: set of processes that p suspects to be faulty }

Algorithm for process p:

Initialization:
numO f AllDlvrs[s] := 0, for each process s
suspects = ()

To execute broadcast(CA,m):
broadcast(FA, (m,numO f AllDlvrs))

deliver(CA, —) occurs as follows:
upon deliver(FA, (m/,numO f AllDlvrs')) do
s := sender(m’)
if s ¢ suspects and numO f AllDlvrs > numO f AllDlvrs'
then
deliver(CA,m’)
numO f AllDlvrs[s] := numO f AllDlvrs[s] + 1
else
discard m/
suspects := suspects U {s}

Figure 8: Transforming FIFO Atomic Broadcast into Causal Atomic Broadcast: Basic
Version
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at time ¢. By Uniform Integrity of FIFO Atomic Broadcast, p must have previously FA-
broadcast (m', N'). Thus, N' is the value of numO f All Dlvrs,, at some time before ¢. Since

the elements of vector numO f All Dlvrs, never decrease, N, > N !, a contradiction.

We now show that if a correct process p CA-broadcasts m then it eventually CA-delivers
m. Suppose p CA-broadcasts m. By the algorithm, p FA-broadcasts (m, N) for some N.
By Validity of FIFO Atomic Broadcast, p eventually FA-delivers (m,N). If p does not
CA-deliver m, it inserts p in suspects,. Our previous claim shows that this cannot occur.
Thus, p CA-delivers m, as wanted.

Agreement: Suppose, for contradiction, that Agreement is violated. Thus, there are two
correct processes p and ¢ such that p CA-delivers a message that ¢ does not CA-deliver.
Consider the sequence of messages that p CA-delivers, in the order in which p CA-delivers
them. Let m be the first message on that sequence that ¢ does not CA-deliver. From
the algorithm, p CA-delivers m upon FA-delivering a message (m, N) for some vector of
counters N. By Agreement of FIFO Atomic Broadcast, ¢ eventually FA-delivers (m, N) as
well.

Let s = sender(m). Let S, and N, be the values of suspects, and numO f AllDlvrs,,
respectively, when p FA-delivered (m, N). Similarly, S, and N, are the values of suspects,
and numO f AllDlvrs,, respectively, when ¢ FA-delivered (m, N). Since p CA-delivers m,
s ¢ Sp and N, > N. Since g does not CA-deliver m, s € S, or Ny 2 N (*).

Consider the (possibly empty) sequence o of messages that p FA-delivers before (m, N).
By Agreement and Total Order of FIFO Atomic Broadcast, o is also the sequence of mes-
sages that ¢ FA-delivers before (m,N). For all 7, let o; = {m' | (m/,—) is in o and
sender(m') = i}. Note that N,[i] is the number of messages in o; that p CA-delivers.
Furthermore, ¢ ¢ S, if and only if p CA-delivers all the messages in ¢;. Symmetric remarks
hold for Ny[i] and S,.

By the definition of m, for all ¢, every message in o; that p CA-delivers is also CA-
delivered by ¢. Thus, for all ¢, Ny[i] > N,[i]. Since s & S, p CA-delivered all the messages
in o,. Thus, ¢q also CA-delivered all the messages in o,. So s ¢ S;. In summary, s ¢ S, and
Ny > N, — a contradiction to (*).

Uniform Integrity: The proof is immediate from the Uniform Integrity of the given FIFO
Atomic Broadcast and the observation that a process CA-delivers a message m only if it
previously FA-delivers some message (m, —).

To prove Uniform Causal Order it suffices to prove Uniform FIFO Order and Uniform Local
Order (see Theorem 2).

Uniform FIFO Order: Suppose that a process s CA-broadcasts m before it CA-broadcasts
m/, and a process p CA-delivers m'. We show that p CA-delivers m before m/. From
the algorithm, s FA-broadcasts (m, N) before it FA-broadcasts (m/, N'), and p FA-delivers
(m!, N'), for some vectors N and N'. By Uniform FIFO Order of the given FIFO Atomic
Broadcast, p FA-delivers (m, N) before (m’, N'). Assume, for contradiction, that when p FA-
delivers (m, N) it does not CA-deliver m. In this case, p immediately inserts s = sender(m)
in suspects,. Since s is also the sender of m' and it is now in suspects,, when p subsequently
FA-delivers (m/, N') p does not CA-deliver m’ — a contradiction to our initial assumption.
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Thus, p CA-delivers m immediately after it FA-delivers (m, N). This occurs before p FA-
delivers (m', N'), and thus before it CA-delivers m/.

Uniform Local Order: The proof is the same as the one given in Theorem 6. O

Observation: The transformation in Figure 8 preserves Uniform Agreement and both
versions of A-Timeliness.

5.6.2 First Optimization

In the basic transformation in Figure 8, when a process p wishes to CA-broadcast m, it FA-
broadcasts (m,numO f All Dlvrs), where numO f All Dlvrs is a vector of counters indicating
the number of all the messages that p CA-delivered from each process since the beginning.
In our first optimization (Figure 9), we seek to reduce the size of these counters: When
a process p wishes to CA-broadcast m, it FA-broadcasts (m,numO f RentDlvrs), where
numO f RentDlvrs is a vector indicating the number of messages that p CA-delivered from
each process since its previous CA-broadcast only. Clearly, numO f RentDlvrs is smaller
than numO f AllDlvrs.

Unfortunately, in order to piggyback numO f Rent Dlvrs rather than numO f AllDlvrs
onto messages, we need to increase the local space required by each process. Each process
p must now maintain a local matrix of counters, M,, which it uses to reconstruct the
information necessary to determine whether a message is CA-deliverable. The s-th row of
M)y, denoted Mpls, #], is defined as follows. Let ¢ be the time when s CA-broadcast the last
message that p CA-delivered from s. M,[s,*] is a vector of counters indicating the number
of messages that s CA-delivered from each process by time t.

The optimized transformation, shown in Figure 9, works as follows. When a pro-
cess p wishes to CA-broadcast m, it FA-broadcasts (m,numO f RentDlvrs), and resets
numO f RentDlvrs to (0,0,...,0). When p FA-delivers a message (m/, numO f RentDlvrs')
from some process s, p uses the matrix M to reconstruct numO f AllDlvrs’ — the vector
that s would have piggybacked onto m’ in the basic version of the transformation. Specif-
ically, p computes numO f AllDlvrs' by adding numO f RentDlvrs' to M|s,*]. Now p can
test whether m/ is CA-deliverable exactly as in the non-optimized version, namely by check-
ing whether s ¢ suspects and numO f AllDlvrs > numO f AllDlvrs'. If p CA-delivers m/,
it updates its local vectors numO f AllDlvrs and numO f RentDlvrs in the obvious way,
and sets M|[s,*] to numO f All Dlvrs'.

The correctness of the optimized version (Figure 9), follows from the correctness of
the basic version (Figure 8), and the fact that the value of the vector numO f AllDlvrs’,
(piggybacked in the first version and reconstructed in the second one) is the same in both
versions. So, the “CA-deliverability test” is actually the same in both versions.

5.6.3 Second Optimization

The first optimization requires each process p to maintain the vector numO f AllDlvrs,
where numO f All Dlvrs|s] indicates the total number of messages that p CA-delivered from
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Variables of process p:
{ numO f AllDlvrs[s]: number of all the messages that p CA-delivered from s }
{ numO f RentDlvrs(s]: number of messages that p CA-delivered from s }
{ since p’s previous CA-broadcast }
{ M[s,r]: number of messages that s CA-delivered from r by the time }
{ s CA-broadcast the last message that p CA-delivered }
{ suspects: set of processes that p suspects to be faulty }

Algorithm for process p:

Initialization:
numO f AllDlvrs[s] := 0, for each process s
numO f RentDlvrs[s] := 0, for each process s
M][s,r] :==0, for all processes s,r
suspects := ()

To execute broadcast(CA,m):
broadcast(FA, (m,numO f Rent Dlvrs))
numO f RentDlvrs == (0,0, ...,0)

deliver(CA,—) occurs as follows:
upon deliver(FA, (m',numO f RentDlvrs')) do
s := sender(m’)
numO f AllDlvrs' :== M|s, *] + numO f RentDlvrs'
if s ¢ suspects and numO f All Dlvrs > numO f All Dlvrs'
then
deliver(CA,m’)
numO f Rent Dlvrs(s] := numO f RentDlvrs[s] + 1
numO f AllDlvrs[s] := numO f AllDlvrs|s] + 1
M]s, *] := numO f All Dlvrs
else
discard m/
suspects := suspects U {s}

Figure 9: Transforming FIFO Atomic Broadcast into Causal Atomic Broadcast: First Op-
timization
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s since the beginning. It also requires p to maintain a local matrix M, where, roughly
speaking, M|[s,r] is a counter indicating the total number of messages that s CA-delivered
from r in p’s causal’s past. The elements of numO f AllDlvrs and M are monotonically
increasing, and may grow to be too large in practice. The second optimization replaces these
two data structures with a matrix that has smaller elements. More specifically, it maintains
the matrix numAhead, such that numAhead[s,r] = numO f All Dlvrs[r] — M|s,r].

We now describe how numAhead can be used to replace both M and numO f All Dlvrs.
In Figure 9, we use M and numO fAllDlvrs only to test whether numO fAllDlvrs >
numO f AllDlvrs'. Since numO f AllDlvrs' is set to M[s, x|+numO f Rent Dlvrs' just before
this test is executed, the test is equivalent to checking whether numO f AllDlvrs > M|s,*]|+
numO f RentDlvrs'. Since numAhead[s,*] = numO f AllDlvrs — M|s,*], the test is also
equivalent to checking whether num Ahead|s, *] > numO f RentDlvrs'. This is the test used
by our second optimization (Figure 10).

We now describe how p maintains numAhead. By definition, numAhead[s,r] =
numO f AllDlvrs|r] — M[s,r]. Thus, the second optimization must update numAhead ev-
ery time numO f AllDlvrs or M is updated in the first optimization. There are two such
updates (after the CA-delivery of a message m' in Figure 9):

e numO f AllDlvrs[s] is incremented by one. By definition, the corresponding update
is numAhead|[*, s] := numAhead[*, s] + (1,1,...,1).

e M]s, ] is set to M[s,*]+numO f RentDlvrs'. By definition, the corresponding update
is numAhead|s, ¥] := numAhead[s, x| — numO f RentDlvrs'.

The correctness of the second optimization (Figure 10), follows directly from the cor-
rectness of the first optimization (Figure 9), and the fact that it correctly maintains the
invariant numAhead[s, *| = numO f AllDlvrs — M|s, x| that links the second optimization
to the first one.

6 Broadcast Algorithms IIT — Point-to-Point Networks

In the preceding section, we described a set of system-independent transformations that can
convert Reliable Broadcast algorithms into algorithms for every other type of broadcast.
In this section, we describe a simple Reliable Broadcast algorithm for a particular type
of system, namely, point-to-point networks with benign process and link failures that do
not disconnect correct processes. This algorithm satisfies Uniform Integrity, a necessary
requirement for our transformations. Under some additional assumptions on the type of
failures, it also satisfies Uniform Agreement. Moreover, if the system is synchronous, this
Reliable Broadcast algorithm satisfies Real-Time A-Timeliness, and, with a simple modi-
fication, Local-Time A-Timeliness. Finally, if the links of the point-to-point network are
FIFO (an assumption that holds in many systems), it satisfies Causal Order, i.e., it is
actually a Causal Broadcast!
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Variables of process p:
{ numO f RentDlvrs(s]: number of messages that p CA-delivered from s }
{ since p’s previous CA-broadcast }
{ numAhead|s,r] = numO f AllDlvrs[r] — M|[s,r] }
{ suspects: set of processes that p suspects to be faulty }

Algorithm for process p:

Initialization:
numO f RentDlvrs[s] := 0, for each process s
numAhead|[s,r] := 0, for all processes s,r
suspects = ()

To execute broadcast(CA,m):
broadcast(FA, (m,numO f Rent Dlvrs))
numO f RentDlvrs := (0,0,...,0)

deliver(CA, —) occurs as follows:
upon deliver(FA, (m/,numO f RentDlvrs')) do
s := sender(m’)
if s ¢ suspects and numAhead|s,*] > numO f RentDlvrs'
then
deliver(CA,m’)
numO f Rent Dlvrs(s] := numO f RentDivrs(s] + 1
numAhead[*, s] := numAhead[*,s] + (1,1,...,1)
numAhead[s, ¥] := numAhead[s, *x] — numO f RentDlvrs'
else
discard m/
suspects := suspects U {s}

Figure 10: Transforming FIFO Atomic Broadcast into Causal Atomic Broadcast: Second
Optimization
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In asynchronous point-to-point networks, we can apply our transformations to this Reli-
able Broadcast algorithm, and automatically obtain FIFO and Causal Broadcast algorithms
for such systems. In synchronous point-to-point networks, we can apply the transformations
to the version of the Reliable Broadcast algorithm that satisfies Local-Time A-Timeliness,
to obtain algorithms for every one of the six types of broadcast. Since our transformations
preserve Uniform Agreement and, under some assumptions, both versions of A-Timeliness,
if we start from the Reliable Broadcast algorithm that satisfy some of these properties, the
resulting broadcast algorithms satisfy the same properties.

Note that the above approach does not yield an Atomic Broadcast algorithm (and a
fortiori a FIFO Atomic or Causal Atomic Broadcast algorithm) in asynchronous point-
to-point networks. This is not a limitation of this particular approach: Atomic Broadcast
cannot be solved in such a system. In fact, this impossibility result holds even if the network
is completely connected, has correct links, at most one process may fail, and it can only fail
by crashing (see Theorem 13 in Section 7.2.1).

6.1 Model of Point-to-Point Networks

Recall from Section 2.2 that in a point-to-point network, a pair of processes connected by
a link can communicate by means of send and receive primitives. We now establish some
terminology regarding these primitives and state two properties that they satisfy. (A more
detailed model of point-to-point networks is given in the Appendix.)

Consider the send and receive associated with the link from process p to process
g. If p invokes send with a message m as a parameter we say that p sends m to ¢; in
our algorithms we denote this invocation by “send(m) to ¢”. When p returns from that
invocation we say that p completes the sending of m to g. When a process ¢ returns from
the execution of receive with message m as the returned value, we say that g receives
m; we denote this by “receive(m)”. For convenience, we assume that every process can
“send” messages to itself, and that it “receives” such messages instantaneously. This is only
a fictional device, as a process does not really invoke the primitives send and receive for

such messages. These primitives satisfy the following two properties:2

o Validity: If p sends m to ¢, and both p and ¢ and the link from p to ¢ are correct,
then ¢ eventually receives m. (If p = ¢ then p receives m instantaneously.)

o Uniform Integrity: For any message m, g receives m at most once from p, and only if
p previously sent m to q.

6.2 Assumptions and Notation
All our Reliable Broadcast algorithms rely on the following two assumptions:

a. Benign Failures: Process and link failures are benign.

1276 simplify the formulation of these properties, we assume that each message sent from p to ¢ is unique.
This can be easily enforced by using link sequence numbers.
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b. No Partitioning: Every two correct processes are connected via a path consisting
entirely of correct processes and links.

In these algorithms, a process p is required to send a message m to every one of its
neighbors in the network (i.e., to every process ¢ that is connect to p by a link). We use
the notation “send(m) to all neighbors” as a short-hand for “for all ¢ such that ¢ is a
neighbor of p do send(m) to ¢.” If p fails while executing this for loop, it is possible that
some neighbors of p receive m while others do not.

In this section, instead of R-broadcasts and R-deliveries we refer simply to broadcasts
and deliveries: The algorithms do not use any other type of broadcast, and thus there is no
ambiguity.

6.3 Reliable Broadcast

With the above assumptions, Reliable Broadcast can be easily implemented as follows. To
broadcast a message, a process sends it to itself. When a process receives a message for the
first time, it sends this message to all its neighbors, and then delivers it. This “message
diffusion” algorithm is shown in Figure 11.

Some obvious optimizations are possible (e.g., if p receives m from ¢, it need not send
m to ¢), but we do not consider such details here. It is important to note that this algorithm
works even if the network is asynchronous.

Algorithm for process p:
To execute broadcast(R,m):
send(m) to p

deliver(R,m) occurs as follows:
upon receive(m) do
if p has not previously executed deliver(R,m)
then
send(m) to all neighbors
deliver(R,m)

Figure 11: Reliable Broadcast for Point-to-Point Networks

Theorem 8 The algorithm in Figure 11 is a Reliable Broadcast.'3

Proof: We have to show that the algorithm satisfies the three properties of Reliable Broad-
cast, namely, Validity, Agreement, and Uniform Integrity.

13 A1l the Reliable Broadcast algorithms in this section satisfy the Uniform version of Integrity. For brevity
we omit to state this in our theorems.
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Validity: If a correct process p broadcasts m, it sends m to itself. By Validity of send and
receive, p receives m. So p delivers m.

Agreement: Let p and ¢ be any correct processes. Suppose p delivers m. We must show
that ¢ also delivers m. By Assumption (b), there is a path p; = p,po,...,pr = ¢ consisting
entirely of correct processes and links. By induction on ¢ we prove that each p; delivers
m. The basis, ¢ = 1, is true by assumption. For the induction step, suppose p; delivers
m; we show that p,; ;1 also delivers m. By the algorithm, since p; delivers m, it must have
previously sent m to every one of its neighbors, including p,+1. By Validity of send and
receive, p;y1 receives m and, being correct, delivers m.

Uniform Integrity: From the algorithm, p delivers m only if it has not previously executed
deliver(R,m), i.e., p delivers m at most once. Suppose some process delivers m; we must
show that sender(m) did in fact broadcast m. This follows from the Uniform Integrity of
send and receive, and the fact that with benign failures if a process p broadcasts m then
sender(m) = p. O

If we make further assumptions about the given point-to-point network, the algorithm
in Figure 11 satisfies additional properties, namely, Uniform Causal Order, Uniform Agree-
ment and Real-Time A-Timeliness. With a modification, it can also satisfy Local-Time
A-Timeliness. This is shown in the next sections.

6.4 Achieving Uniform Causal Order

In many point-to-point networks, data-link layer transmission protocols provide reliable
FIFO links. More precisely, they provide send and receive primitives that satisfy Validity
and Uniform Integrity, as well as the following property:

e Uniform FIFO Order: If p sends m to g before it sends m' to ¢, then ¢ does not
receive m’ unless it has previously received m.

With such links the algorithm given in the previous section is actually a Causal Broadcast!

Theorem 9 Assume that the send and receive primitives satisfy Uniform FIFO Order
and the upon statement is indivisible.'* The Reliable Broadcast algorithm in Figure 11
satisfies Uniform Causal Order.

Proof: We say that a process p relays m when it begins executing the statement “send(m)
to all neighbors”. Since p could fail during the execution of this statement, saying that p
relayed m does not necessarily imply that all its correct neighbors will receive m.

Claim: For any messages m and m/, if sender(m’) relays m and m' in that order, then
no process relays m’ unless it has previously relayed m.

4That is, each execution of the upon statement cannot be interrupted by another execution of this
statement.
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Proof of Claim: Suppose sender(m’) relays m and m’, in that order. Assume, for
contradiction, that some process relays m’ without having previously relayed m. Let ¢
be the first process to do so (in real time). Clearly, ¢ # sender(m’). Thus ¢ relayed m’
because it previously received m’ from a process s # ¢q. By the Uniform Integrity of send
and receive, s must have relayed m’ to ¢. Note that the relay of m’ by s precedes the one
by ¢g. By the choice of g, s relayed m before m'. So, s sent m to ¢ before m’. By Uniform
FIFO Order of send and receive, g received m before receiving m’. By the indivisibility
of the upon statement, ¢ relayed m before receiving m/, and therefore before relaying m/'.
This contradicts the definition of g. O Claim

We now show that the algorithm satisfies Uniform Causal Order by proving that it
satisfies Uniform FIFO Order and Uniform Local Order (see Theorem 2). Suppose that
sender(m') broadcasts m or delivers m, before it broadcasts m'. We must show that no
process delivers m’ unless it has previously delivered m. We first prove that:

If sender(m') relays m/, then no process relays m' unless it has previously relayed m.
(*)
Assume that sender(m') relays m/. By the above claim, it is sufficient to show that
sender(m') relayed m before m’. There are two cases to consider:

e sender(m') delivers m before it broadcasts m’. From the algorithm, sender(m’) re-
layed m before delivering m, and it relayed m' after broadcasting m’. Thus, it relayed
m before m/'.

e sender(m') broadcasts m before it broadcasts m'. From the algorithm, sender(m’)
sends m to itself before m’. By the Uniform FIFO Order of send and receive,
sender(m’) receives m before m’. By the indivisibility of the upon statement, sender(m’)
relays m before m/.

This concludes the proof of (). Now consider a process ¢ that delivers m’. We show that
g delivers m before m/. Since ¢ delivered m/, it must have previously received and relayed
m’. By Uniform Integrity of send and receive, it is easy to show that sender(m’) relayed
m'. By (*), ¢ relayed m before m/. By the indivisibility of the upon statement, ¢ delivered
m before m/, as wanted. O

Note that the Uniform FIFO Order property of send and receive, applies even be-
tween two faulty processes (that is why we call it Uniform). This uniformity is crucial
to Theorem 9: without it, the Reliable Broadcast algorithm in Figure 11 would not even
satisfy FIFO Order, let alone Uniform Causal Order. The same is true about the required
indivisibility of the upon statement.

6.5 Achieving Uniform Agreement

The Reliable Broadcast algorithm in Figure 11 works for any type of benign failures, pro-
vided that correct processes remain connected (see Assumption (b)). We now show that if
we restrict the type of failures and strengthen the connectivity assumption, this algorithm
also satisfies Uniform Agreement.
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Consider a point-to-point network where processes do not commit send-omission fail-
ures. With this restriction, the send and receive primitives satisfy a stronger Validity
property than the one given in Section 6.1. If send-omission failures cannot occur then the
following property holds (see Appendix):

e Strong Validity: If a process p (whether correct or faulty) completes the sending of a
message m to a correct process ¢, and the link from p to ¢ is correct, then ¢ eventually
receives m.

We can now show the following:

Theorem 10 Consider a network such that: (1) processes do not commit send-omission
failures, and (2) every process p (whether correct or faulty) is connected to every correct pro-
cess via a path consisting entirely of correct processes and links (with the possible exception
of p itself). The Reliable Broadcast algorithm in Figure 11 satisfies Uniform Agreement.

Proof: We have already proved that the algorithm satisfies Validity and Uniform Integrity
of Reliable Broadcast (cf. Theorem 8). It remains to prove that it satisfies:

Uniform Agreement: Let p be any process (correct of faulty) that delivers m, and let ¢ be
a correct process. We must show that ¢ also delivers m. By assumption, there is a path
P1 = p,P2,-..,Pr = ¢ consisting entirely of correct processes and links (with the possible
exception of p). By induction on ¢ we prove that each p; delivers m. The basis, i = 1, is
true by assumption. For the induction step, suppose p; delivers m; we show that p;;1 also
delivers m. By the algorithm, since p; delivers m, it must have previously completed the
sending of m to every one of its neighbors, including p;+1. Since p;+1 and the link from
pi to p;4+1 are correct, by Strong Validity of send and receive p;41 eventually receives m.
Since it is correct, p;+1 delivers m. O

Achieving Uniform Agreement in systems with send-omission and receive-omission failures
can be done using techniques described in [NT90].

6.6 Impossibility of A-Timeliness in Asynchronous Systems

Consider an asynchronous point-to-point network. Clearly, no Reliable Broadcast algorithm
can achieve Real-Time A-Timeliness in such a system. Can it achieve Local-Time A-
Timeliness? If local clocks are required to satisfy the Clock Monotonicity property, the
answer is negative. In fact, this impossibility result holds even if the network is completely
connected, has correct links, at most one process may fail, and it can only fail by crashing.
The proof is by contradiction. Suppose there is a Reliable Broadcast algorithm that satisfies
Local-Time A-Timeliness in such a system. We could transform it into an Atomic Broadcast
algorithm, as shown in Figure 4 (Section 5.3). This contradicts the impossibility of solving
Atomic Broadcast in such a system (see Corollary 2 in Section 7.2.1).
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6.7 Achieving A-Timeliness in Synchronous Systems

In contrast to the impossibility results above, both versions of A-Timeliness can be achieved
in synchronous point-to-point networks: Real-Time A-Timeliness in networks with omission
failures, and Local-Time A-Timeliness in networks with timing failures. To show this, we
first state the properties of synchronous point-to-point networks.

6.7.1 Model of Synchronous Point-to-Point Networks

Roughly speaking, a point-to-point network is synchronous if there are known bounds on
message delay, clock drift, and the time to execute a local step. More precisely, a point-to-
point network is synchronous if, in addition to the properties in Section 6.1, it also satisfies
the following three synchrony properties (in this definition the word “time” refers to real
time):

1. 7-Local Step: There is a known constant 7 > 0 such that no process p completes a
step later than 7 time units of when it started that step.

2. p-Clock Drift: There is a known constant p > 0 such that every process p has a local
clock whose drift with respect to time is bounded by p. That is, if Cp(t) denotes the
value of the local clock of p at time ¢, then for all ¢t > ¢':

L _GM-Gt)
1+p~ t—t

<1l+p

3. 0-Timeliness: There is a known constant § > 0 such that for any processes p and ¢
connected by a link then g does not receive m after time ¢t + 6.

In a synchronous point-to-point network with omission failures the above properties
are never violated. In one with timing failures, however, Properties 1 and 2 hold only if p
is correct, and Property 3 holds only if p, ¢, and the link from p to ¢ are all correct. In
other words, in a synchronous point-to-point network with timing failures the synchrony
properties hold only in the subnetwork consisting entirely of correct processes and links.

6.7.2 Assumptions

To achieve A-Timeliness we make the following assumptions:

c. f-Failures: There is a known upper bound f on the number of faulty processes.

d. d-Diameter: There is a known constant d such that every two correct processes are
connected via a path of length at most d, consisting entirely of correct processes and
links.

e. 0-Local Step: The time to execute a local step is 0. More precisely, we take 7 = 0 in
Property 1 in the definition of synchronous point-to-point networks.
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Regarding the first two assumptions, note that f and d can be taken to be the number of
processes in the network, if no better bounds on these quantities are available. Regarding
the third assumption, we note that it is not really necessary but it simplifies the algorithms
and their analyses. Moreover, this assumption is reasonable for the type of algorithms that
we are considering: The amount of local processing is negligible and can be absorbed in the
upper bound on message delay 6.

6.7.3 Achieving Real-Time A-Timeliness

In a network with timing failures, no Reliable Broadcast can satisfy Real-Time A-Timeliness.
Roughly speaking, the argument runs as follows. Suppose that the clocks of correct pro-
cesses show real time, while faulty processes have clocks that are A’ ahead of real time,
for some A’ > A. Assume that a faulty process p broadcasts a message m at real time
t — A, i.e., at time t according to the clocks of faulty processes. Suppose the set of faulty
processes “withhold” m for A’ real-time units, and then “release” m into the rest of the
network at real-time ¢. To any correct process ¢, it now seems that the broadcast of m was
initiated at real time ¢, and that the sender of m, namely p, is actually correct. Thus, ¢
has to assume that p delivers m (by Validity). To satisfy Agreement, ¢ must also deliver m
thereby violating Real-Time A-Timeliness.

In contrast, in a network where only omission failures occur (i.e., one where the syn-
chrony assumptions are not violated), the Reliable Broadcast algorithm in Figure 11 does
satisfy Real-Time A-Timeliness:

Theorem 11 In a synchronous network with omisston failures the Reliable Broadcast al-
gorithm in Figure 11 satisfies Real-Time A-Timeliness, with A = (f + d)é.

Proof: We first show the following

Claim: For any two correct processes s and r, if s delivers a message m at real time ¢,
then r delivers m at real time ¢, such that ¢, < t, + dé.

Proof of Claim: Suppose s delivers m at real time ¢,. By Assumption (d), there is a
path p; = s,p2,...,px = r (for some k, 1 < k < d+ 1) from s to r, consisting entirely of
correct processes and links. We now show that:

for all 7, 1 < i < k, p; delivers m by real time ¢, + (i — 1)&. *)

The proof of this is by induction on ¢. For ¢ = 1, we have p1 = s and the induction
hypothesis obviously holds. Suppose it holds for i; we show it also does for ¢ + 1. By the
induction hypothesis, p; delivers m by real time ¢s+ (¢ — 1)§. By the algorithm, just before
delivering m, p; sent m to all its neighbors, including p;1.

Since p;, pi+1, and the link between them are correct, by Validity and 6-Timeliness of
send and receive, p;y1 receives m by real time ¢, + 6. By Assumption (e), pi+1 delivers
m by real time ¢ + i — concluding the proof of (*). By (*), pr = r delivers m by real
time t, + (k — 1)6. Noting that £ < d + 1 concludes the proof of the claim. O Claim
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We now prove that the algorithm satisfies Real-Time A-Timeliness.

Real-Time A-Timeliness: Suppose a process p broadcasts a message m at real time ¢, and
some correct process ¢ delivers m at real time t. We must show that ¢ < ¢t + A, where
A= (f+d)b. If p=gq,then t' =t (by Validity of send and receive, the message delay
of the “link” between p and itself is 0), and the result holds. Now assume p # ¢. From the
algorithm, Uniform Integrity and 6-Timeliness of send and receive, and Assumption (e),
there must be a sequence of k > 2 distinct processes p1 = p,po,...,Pr = ¢, such that for
all i, 2 < i < k, p; receives m from p; 1 and delivers it by real time ¢t + (¢ — 1). Let
p; be the first correct process in this sequence. It delivers m by real time t + (j — 1)6.
Since p1,...,pj—1 are faulty, and there are at most f faulty processes (Assumption (c)),
J —1 < f. Thus, p; delivers m by real time ¢ + f6. By the above claim, ¢ delivers m at
most dé real-time units later, i.e., by real time ¢t + (f + d)é. O

6.7.4 Achieving Local-Time A-Timeliness

Consider a synchronous point-to-point network with timing failures. In such networks, one
can implement approzimately synchronized clocks, i.e., clocks that are always close to each
other and whose drift with respect to real time is bounded (for example, see [LM85,ST87a,
Cri89]). More precisely these clocks satisfy:

f. (e, p)-Clock Synchronization: There are known constants e > 0 and p > 0 such that
for all correct processes p and ¢, and all real times ¢ > t:

o [Gp(t) = Cy(t)| < €, and

Ll _GB-G)
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With such clocks, we can modify the Reliable Broadcast algorithm in Figure 11 so that
it satisfies Local-Time A-Timeliness even if timing failures occur. The modified algorithm,
shown in Figure 12, works as follows. With each message m we now associate a counter
that indicates how many links m has traversed so far. Thus, processes send messages of the
form (m, k), where k is the counter associated with message m. When a process wishes to
broadcast a message m, it tags m with the local sending time ¢s(m), and then sends (m, 0)
to itself. When a process p receives a message (m, k), p checks whether the local receipt
time is less or equal to ts(m) + k(6(1 + p) +€). If so, p relays (m,k+1) to all its neighbors,
and then delivers m. Otherwise, p simply discards m.

Theorem 12 In a synchronous network with timing fatlures and approximately synchro-
nized clocks (Assumption (f)), the algorithm in Figure 12 is a Reliable Broadcast that sat-
isfies Local-Time A-Timeliness, with A = (f +d)6(1+ p) + (f + 1)e.

Proof: We first show the following

Claim: For any two correct processes s and r, if s delivers a message m at local time i,
then r delivers m at local time ¢, such that ¢, < ts+dé(1+ p) +e.
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Algorithm for process p:
To execute broadcast(R,m):
send((m,0)) to p

deliver(R,m) occurs as follows:
upon receive((m,k)) do
if p has not previously executed deliver(R,m) and
local time < ts(m) + k(6(1 + p) +¢€)
then
send((m, k + 1)) to all neighbors
deliver(R,m)

Figure 12: Reliable Broadcast with Local-Time A-Timeliness

Proof: Suppose s delivers m at local time ¢, on its clock. By Assumption (d), there is a
path p; = s,p2,...,pr = r (for some k, 1 < k < d+ 1) from s to r, consisting entirely of
correct processes and links. We now show that: For all 2, 1 <17 < k,

p; delivers m at time ! < t, + (i — 1)6(1 + p) according to the clock of s. *)

The proof of this is by induction on i. For i = 1, we have p; = s and t! = t,, and so the
induction hypothesis holds. Suppose it holds for ¢; we now show it also does for ¢+1. By the
induction hypothesis, p; delivers m. By the algorithm, it does so upon receiving a message
{(m, k;) at local time #* (on p;’s clock) such that ¢ < ts(m) + k;(6(1 + p) + €). Furthermore,
immediately after the receipt of (m, k;), p; sends (m, k; + 1) to all its neighbors, including
piy1. By Assumption (e) p; sends (m,k; + 1) to p;+1 at time #* (on p;’s clock). Since
i, Pit+1, and the link between them are correct, by Validity of send and receive, p;41
eventually receives (m, k; + 1). By §-Timeliness of send and receive, this receipt occurs
within é units of real time from the time p; sent (m,k; + 1). Thus, by Assumption (f),
pit1 receives (m,k; + 1) at local time ##T1 < #* + §(1 4+ p) + € on its clock. Note that #**!
< ts(m)+ (ki+1)(6(1+ p)+e€). Thus, by the algorithm and Assumption (e), p;+1 delivers m
by local time t**1. By the induction hypothesis, p; delivers m at time ¢} < t,+(i—1)6(1+p),
according to the clock of s. Since p;11 delivers m within ¢ units of real time from this, p; 1
delivers m at time #2*1 < t,+i6(1+p), also according to the clock of s. Thus, the induction
hypothesis holds for i + 1 — concluding the proof of (*).

By (*), process pg = r delivers m at time t* < ¢, + (k — 1)6(1 + p), according to the
clock of s. By Assumption (f), this delivery occurs at time ¢, < t¥ + ¢ on r’s clock, i.e., at
time ¢, < ts + (k—1)6(1 + p) + €. Noting that £ < d + 1 concludes the proof of the claim.

O Claim
We now prove that the algorithm satisfies the three properties of Reliable Broadcast as well
as Local-Time A-Timeliness.

Validity: If a correct process p broadcasts m, it sends (m,0) to itself at local time ts(m).
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By 6-Timeliness of send and receive, the message delay of the “link” between p and itself
is 0. Thus, p receives (m,0) at local time ts(m). By the algorithm, p delivers m.

Agreement: Immediate from the above claim.

Uniform Integrity: The proof, similar to the one given for the Algorithm in Figure 11, is
omitted.

Local-Time A-Timeliness: Suppose some correct process ¢ delivers a message m at local
time ty. We must show that ¢, < ts(m) + A, where A = (f +d)6(L+ p) + (f + 1)e. If
g = sender(m), then t, = ts(m) (by Validity of send and receive, the message delay of the
“link” between ¢ and itself is 0), and the result holds. Now assume ¢ # sender(m). In this
case, from the algorithm and Uniform Integrity of send and receive, there is a sequence
of k > 2 distinct processes p; = sender(m),ps,...,pr = ¢ such that for all 4,1 <i< k-1,
p; receives (m,i — 1) by local time ¢; < ts(m) + (i — 1)(6(1 + p) + ¢€), and sends (m, i) to
pi+1 (before delivering m). Let p; be the first correct process in this sequence. It receives
(m,j — 1) by local time t; < ts(m) + (j — 1)(6(1 + p) + €) on its clock. Since p1,...,p;j—1
are faulty, and there are at most f faulty processes (Assumption (c)), j —1 < f. Thus,
t; < ts(m) + f(6(1 + p) + €). By the above claim, since p; delivers m at local time t;, ¢
delivers m at local time ¢, < t;4+dé(1+p)+e. Thus, t, < ts(m)+f(6(1+p)+e)+db(1+p)+e,
ie., tg <ts(m)+ A, where A = (f+d)6(1+ p) + (f + 1)e. O

Observation: As in Theorem 9, if the links are FIFO then the algorithm in Figure 12 is
actually a Causal Broadcast that satisfies Local-Time A-Timeliness! More precisely, this
holds when the send and receive primitives satisfy Uniform FIFO Order and the upon
statement is indivisible.

6.8 Obtaining Stronger Broadcasts

We now describe how to obtain algorithms for every type of broadcast in point-to-point
networks. Starting from the Reliable Broadcast algorithm in Figure 11, we apply the generic
transformation that adds FIFO Order (Figure 5) to obtain a FIFO Broadcast algorithm.
We then add Causal Order by applying either the non-blocking transformation in Figure 6,
or the blocking one in Figure 7. This results in two Causal Broadcast algorithms. Note
that the algorithms that we get this way satisfy the uniform versions of FIFO and Causal
Order.

To obtain Atomic, FIFO Atomic, or Causal Atomic Broadcast algorithms in a syn-
chronous point-to-point network, we can proceed as follows:1®

1. Run a clock synchronization algorithm that yields approximately synchronized clocks
(Assumption (f) in Section 6.7.4) that also satisfy the Clock Monotonicity property.*®

2. With such clocks, the Reliable Broadcast algorithm in Figure 12 satisfies Local-Time
A-Timeliness.

!5Recall that Atomic Broadcast cannot be solved in asynchronous systems.
18 Typically, clock synchronization algorithms satisfy this property, or can be easily modified to do so.
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3. Obtain FIFO and Causal Broadcast algorithms by successively applying the blocking
transformations of Figure 5 and 7 to the Reliable Broadcast algorithm of Step 2.
Under reasonable assumptions about the local clocks, these transformations preserve
Local-Time A-Timeliness. Since the given Reliable Broadcast algorithm satisfies this
property, so do the resulting FIFO and Causal Broadcast algorithms. 17

4. Apply the transformation that adds Total Order (Figure 4) to the Reliable, FIFO,
and Causal Broadcast algorithms that were obtained in the previous steps. This gives
Atomic, FIFO Atomic and Causal Atomic Broadcast algorithms.

Another way to obtain FIFO Atomic and Causal Atomic Broadcast algorithms is:
(1) Derive an Atomic Broadcast by adding Total Order to our Timed Reliable Broadcast
as explained above, (2) add FIFO Order (recall that this transformation preserves Total
Order), and (3) add Causal Order by applying one of the three non-blocking transformations
of Section 5.6.

If a synchronous point-to-point network has FIFO links, one can also implement a
Causal Atomic Broadcast algorithm as follows. Start with the algorithm in Figure 12. As
we observed in Section 6.7.4, this is already a Causal Broadcast that satisfies Local-Time
A-Timeliness. Now apply the transformation that adds Total Order (Figure 4).

Bibliographic Notes

The algorithm for Reliable Broadcast that satisfies Local-Time A-Timeliness and tolerates
timing failures (Figure 12) is due to [CASD85]. That paper also presented an Atomic
Broadcast algorithm for point-to-point networks using the idea of delaying the delivery
of a message m until local time ts(m) + A. This technique is the basis of our generic
transformation that adds Total Order to any type of Timed Broadcast (Figure 4). Many
other broadcast algorithms for specific network types, synchrony assumptions, and failure
models have appeared in the literature, including those described in [CM84,BD85,BJ87,
PBS89,GSTC90,VM90,BSS91,GMS91,ADKM92].

7 Consensus

7.1 Specification

In the Consensus problem, all correct processes propose a value and must agree on some
value related to the proposed values. Formally, we define the Consensus problem in terms
of two primitives, propose and decide. If p invokes propose with a value v as a parameter
we say that p proposes v; in our algorithms we denote this invocation by “propose(v)”.

"In general we cannot apply the non-blocking transformation from FIFO to Causal Broadcast described
in Figure 6, because it does not preserve A-Timeliness unless the given FIFO Broadcast satisfies Uniform
Agreement. We can apply this transformation if, in Step 1, we start with an Reliable Broadcast that satisfies
Uniform Agreement.
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The value proposed is taken from some set V. When a process g returns from the execution
of decide with value v, we say that ¢ decides v; we denote this by “decide(v)”. The
Consensus problem requires that if each correct process proposes a value then the following
hold:

o Termination: Every correct process eventually decides exactly one value.

o Agreement: If a correct process decides v, then all correct processes eventually decide
.

o Integrity: If a correct process decides v, then v was previously proposed by some
process.

Integrity ensures that the decision of a correct process is not created “out of thin air”.
In particular, if all processes that propose a value, propose the same value v, then this
decision can only be v. As usual, we can strengthen the Agreement and Integrity properties
by requiring Uniformity:

e Uniform Agreement: If a process (whether correct or faulty) decides v, then all correct
processes eventually decide v.

e Uniform Integrity: If a process (whether correct or faulty) decides v, then v was
previously proposed by some process.

Now consider the specification of Consensus in the case of arbitrary failures. If a process p
is subject to such failures, the meaning of “p proposes v” or “p decides v” is now ambiguous.
To circumvent this problem, the properties of Consensus should now refer only to proposals
and decisions of correct processes (see Section 3.10). This already holds for Termination
and Agreement, but for arbitrary failures Integrity must be redefined as follows:

o Integrity: If all processes are correct and a process decides v, then v was previously
proposed by some process.

7.2 Relating Consensus and Atomic Broadcast

In this section we examine the relation between Consensus and Atomic Broadcast. We shall
see that the two problems are, under certain conditions, equivalent to each other. That is
we can transform any algorithm for one into an algorithm for the other.

The transformation from Atomic Broadcast to Consensus tolerates any number of be-
nign failures. The one from Consensus to Atomic Broadcast assumes that Reliable Broad-
cast is available and that only crash failures occur.'® Both transformations make no as-
sumptions on the type or synchrony of the communication network.

18 A more complex transformation can actually work for any type of failures [CT92], but it is beyond the
scope of this paper.
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These two transformations have important consequences regarding the solvability of
Atomic Broadcast in asynchronous point-to-point networks with crash failures:

1. Atomic Broadcast can not be solved, even if we assume that links are reliable, at most
one process may fail, and it can only fail by crashing (Corollary 2).

2. Atomic Broadcast can be solved using randomization or failure detectors (Corollary 5).

7.2.1 Transforming Atomic Broadcast to Consensus

In Figure 13, we show how to transform any Atomic Broadcast algorithm into a Consensus
algorithm. To propose a value v, a process uses the given Atomic Broadcast algorithm
to A-broadcast v. To decide a value, a process selects the value of the first message that
it A-delivers. By Agreement and Total Order of Atomic Broadcast, all correct processes
choose the same value; hence Agreement of Consensus is satisfied. It is easy to verify
that Termination and Integrity of Consensus also hold. This transformation makes no
assumptions on the type or synchrony of the communication network, and it tolerates any
number of benign failures.

Algorithm for process p:
To execute propose(v):
broadcast(A,v)

decide(—) occurs as follows:
upon deliver(A,u) do
if p has not previously executed deliver(A,—)
then decide(u)

Figure 13: Transforming Atomic Broadcast into Consensus

Theorem 13 The algorithm in Figure 13 transforms any Atomic Broadcast algorithm into
a Consensus algorithm.

Corollary 2 Atomic Broadcast cannot be solved in an asynchronous point-to-point network,
even if the network is completely connected, all the links are correct, at most one process
may faul, and it can only fail by crashing.

Proof: It is well-known that Consensus cannot be solved in such a system [FLP85]. The
result now follows from the previous theorem. O

The impossibility of Atomic Broadcast in asynchronous systems seems paradoxical
since this primitive is a basic service provided by many practical systems which, on the
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face of it, appear to be asynchronous. (Such systems include Isis [BJ87,BCJ90], Amoeba
[Kaa92], Delta-4 [VM90], and Transis [ADKM92].) There is no contradiction here. What
this indicates is that such systems, at some level, explicitly or implicitly use of one of the
mechanisms previously mentioned for circumventing the impossibility result. For example,
the Isis Atomic Broadcast algorithm uses a failure detector mechanism based on timeouts.
This means that it relies, at some level, on synchrony assumptions.

We close this section with a word of caution against confusing the impossibility of
Atomic Broadcast and Consensus in asynchronous systems with a seemingly similar but, in
fact, quite different impossibility result in fault-tolerant distributed computing, sometimes
known as “the generals’ paradox” [Gra78]. This concerns a problem, technically known as
Non-Blocking Atomic Commitment [BHGS8T], that cannot be solved if the communication
network may partition into two or more components, so that no messages can be exchanged
between processes in different components. It is the possibility of network partioning that
makes Non-Blocking Atomic Commitment unsolvable. In fact, this problem cannot be
solved even if the network is synchronous (i.e., each message is either delivered within a
known bound or not at all). In contrast, the impossibility of Consensus is due to the
combination of asynchrony and process failures, and it holds even if communication is
reliable, i.e., even if partitioning cannot occur. The difference in the reasons underlying these
two impossibility results is reflected in their proofs, which are based on entirely different
ideas (compare [FLP85] and [Gra78]).

7.2.2 Transforming Reliable Broadcast and Consensus to Atomic Broadcast

In Figure 14, we show how to transform any Reliable Broadcast and Consensus algorithms
into an Atomic Broadcast algorithm [CT91]. This transformation uses repeated (possibly
concurrent but completely independent) executions of Consensus. Informally, the kth ex-
ecution of Consensus is used to decide on the kth batch of messages to be A-delivered.
Processes disambiguate between these executions by tagging all the messages pertaining to
the kth execution of Consensus with a counter k. Tagging with such counters constitutes
a minor modification to any given Consensus algorithm. The propose and decide prim-
itives corresponding to the kth execution of Consensus are denoted by propose(k,—) and
decide(k, —).

When a process wishes to A-broadcast a message m, it uses the given Reliable Broad-
cast algorithm to R-broadcast m (Task 1). When a process p R-delivers m, it adds m to
the set R_delivered, (Task 2). Thus, R_delivered, contains all the messages submitted for
Atomic Broadcast (since the beginning) that p is aware of. When p A-delivers a message
m, it adds m to the set A_delivered, (in Task 3). Thus, R_delivered, — A_delivered, is
the set of messages that were submitted for Atomic Broadcast but not yet A-delivered, ac-
cording to p. This set is denoted by A_undelivered,. Process p periodically checks whether
A_undelivered, is not empty; if so, p participates in the next execution of Consensus, say
the kth one, by proposing A_undelivered, as the kth batch of messages to be A-delivered.
It then waits for the decision msgSet of this Consensus execution. Finally, it A-delivers all
the messages in msgSet except those it previously A-delivered. More precisely, p A-delivers
all the messages in batch,(k) = msgSet — A_delivered,, and it does so in some deterministic

62



Algorithm for process p:

Initialization:
R_delivered := 0
A_delivered == 0
k:=0

To execute broadcast(A,m): { Task 1}
broadcast(R,m)
deliver(A,—) occurs as follows:

upon deliver(R,m) do { Task 2}
R_delivered := R_delivered U {m}

do forever { Task 3}
A_undelivered := R_delivered — A_delivered
if A_undelivered # () then
k=k+1
propose(k, A_undelivered)
wait for decide(k,msgSet)
batch(k) := msgSet — A_delivered
A-deliver all messages in batch(k) in some deterministic order
A_delivered := A_delivered U batch(k)

Figure 14: Transforming Consensus and Reliable Broadcast into Atomic Broadcast
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order that was agreed a prior: by all processes, e.g., in lexicographical order.

This transformation assumes that the given Reliable Broadcast algorithm satisfies Uni-
form Integrity, and that only crash failures occur. On the other hand, it makes no assump-
tions on the type or synchrony of the communication network, and it tolerates any number
of crash failures.

The following sequence of lemmata show that the transformation in Figure 14 results
in an algorithm that satisfies all the properties of Atomic Broadcast.

Lemma 1 For any two correct processes p and q, and any message m, if m € R_delivered,
then eventually m € R_delivered,.

Proof: If m € R_delivered, then p R-delivered m (in Task 2). Since p is correct, by
Agreement of Reliable Broadcast g eventually R-delivers m, and inserts m into R_delivered,.
O

Lemma 2 For all correct processes p and all k > 1:

1. batchy(k) is a set of messages.

2. p does not A-deliver the messages in batch,(k+1) unless it has previously A-delivered
those in batchy, (k).

Proof: Let v be p’s decision value of the kth execution of Consensus. By Integrity of
Consensus, some process must have proposed v. By the algorithm, v is a set of messages.
Part (1) of the lemma follows from the observation that batchy(k) = v — A_delivered,, and
A_delivered,, is also a set of messages. Part (2) of the lemma is obvious from Task 3. O

Lemma 3 For any two correct processes p and q, and all k > 1:

1. If p executes propose(k,—), then q eventually executes propose(k,—).

2. Ifp A-delivers messages in batchy(k), then q eventually A-delivers messages in batchy(k),
and batchy(k) = batchq (k).

Proof: The proof is by simultaneous induction on (1) and (2). For k = 1, we first
show that if p executes propose(1, —), then ¢ eventually executes propose(l,—). When p
executes propose(l,—), R_delivered, must contain some message m. By Lemma 1, m is
eventually in R_delivered,. Since A_delivered, is initially empty, eventually R_deliveredy —
A_deliveredy # 0. Thus, g eventually executes Task 3 and propose(1,—).

We now show that if p A-delivers the messages in batch,(1), then ¢ eventually A-delivers
the messages in batchgy(1), and batchy(1) = batchy(1). From the algorithm, if p A-delivers
messages in batchy(1), it previously executed propose(1l,—). From part (1) of the lemma,
all correct processes eventually execute propose(1, —). By Termination of Consensus, every
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correct process eventually executes decide(1, —) exactly once. By Agreement of Consensus,
all correct processes execute decide(1, msgSet) with the same msgSet. Since A_delivered,
and A_delivered, are initially empty, batchy,(1) = batchy(1) = msgSet.

Now assume that the lemma holds for all k£, 1 < k < [. We first show that if p executes
propose(l,—), then ¢ eventually executes propose(l,—). When p executes propose(l,—),
R_delivered, must contain some message m that is not in A_deliver,. Thus, m is not in
Uz;ll batchy(k). By the induction hypothesis, batch,(k) = batchq(k) for all 1 < k <1 —1.
So m is not in Ui_:ll batchq(k). Since m is in R_delivered,, by Lemma 1, m is eventually
in R_delivered,. Thus, there is a time after ¢ A-delivers batchy(l — 1) such that m is in
R_delivered, — A_delivered,. So q eventually executes Task 3 and propose(l,—).

We now show that if p A-delivers messages in batch,(l), then ¢ A-delivers messages
in batchg(l), and batchy(l) = batchg(l). Since p A-delivers messages in batch,(l), it must
have executed propose(l,—). By part (1) of this lemma, all correct processes eventually
execute propose(l/, —). By Termination of Consensus, every correct process eventually exe-
cutes decide(l, —) exactly once. By Agreement of Consensus, all correct processes execute
decide(l,msgSet) with the same msgSet. Note that batch,(l) = msgSet — U batchy(k),
and batchy(l) = msgSet — Ui;ll batchq(k). By the induction hypothesis, batch,(k) =
batchg(k) for all 1 < k <1 —1. Thus batch,(l) = batchq(l). O

Corollary 3 Agreement and Total Order of Atomic Broadcast are satisfied.

Proof: Immediate from Lemmata 2, 3, and the fact that correct processes A-deliver mes-
sages in each batch in the same deterministic order. O

Lemma 4 Validity of Atomic Broadcast is satisfied.

Proof: The proof is by contradiction. Suppose some correct process p A-broadcasts m
but never A-delivers m. By Corollary 3, no correct process A-delivers m. By Task 1 of
the algorithm, p R-broadcasts m. By Validity and Agreement of Reliable Broadcast, every
correct process ¢ eventually R-delivers m, and inserts m in R_delivered, (Task 2). Since
correct processes never A-deliver m, they never insert m in their A_delivered set. Thus,
for every correct process ¢, there is a time after which m is permanently in R_delivered, —
A_delivered,. By the algorithm and Lemma 3, it is easy to show there is a ki, such that for
all I > kq, all correct processes execute propose(l,—), and they do so with sets that always
include m.

Since all faulty processes eventually crash, there is a ko such that no faulty process
executes propose(l,—) with [ > ko. Let k& = maxz{k1,k2}. Since all correct processes
execute propose(k,—), by Termination and Agreement of Consensus, all correct processes
execute decide(k, msgSet) with the same msgSet. By Integrity of Consensus, some process
g executed propose(k, msgSet). From our definition of &, ¢ is correct and msgSet contains
m. Thus all correct processes, including p, A-deliver m — a contradiction that concludes
this proof. O

Lemma 5 Integrity of Atomic Broadcast is satisfied.
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Proof: We must show that for any message m, every correct process A-delivers m at most
once, and only if m was A-broadcast by sender(m). Suppose a correct process p A-delivers
m. After p A-delivers m, it inserts m in A_delivered,. From the algorithm, it is clear that
p cannot A-deliver m again. Furthermore, since p A-delivers m, it must have previously
executed decide(k,msgSet) for some k and some msgSet that contains m. By Integrity
of Consensus, some process ¢ must have executed propose(k,msgSet). So ¢ previously
R-delivered all the messages in msgSet, including m. By Uniform Integrity of Reliable
Broadcast, sender(m) R-broadcast m, and therefore it A-broadcast m. O

Theorem 14 In a system with crash failures, the algorithm in Figure 14 transforms any
algorithms for Reliable Broadcast and Consensus into an Atomic Broadcast algorithm.

Proof: Immediate from Lemmata 4, 5, and Corollary 3. O

From the proof of Lemma 5, it is easy to see that if the given Consensus algorithm satisfies
Uniform Integrity, the resulting Atomic Broadcast also does so. From Theorems 13 and 14:

Corollary 4 Consensus and Atomic Broadcast are equivalent in any system with crash
failures where Reliable Broadcast can be implemented.

Theorem 14 does not make any assumption on the type or synchrony of the commu-
nication network. Now consider asynchronous point-to-point networks with crash failures.
In such systems, Reliable Broadcast can be implemented (see Section 6), and Consensus
can be solved using randomization [CD89] or failure detectors [CT91]. These results and
Theorem 14 imply:

Corollary 5 In asynchronous point-to-point networks with crash failures, Atomic Broad-
cast can be implemented using randomization or failure detectors.
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8 Terminating Reliable Broadcast

8.1 Specification

Recall that with Reliable Broadcast any process is allowed to broadcast any message from a
set M of possible messages, at any time. In particular, processes have no a priori knowledge
of the impending broadcasts. Thus, as we noted before, if a process p fails immediately after
invoking the broadcast primitive, the correct processes cannot be required to deliver any
message, as they were not even aware of p’s intention to broadcast.

In contrast, in some applications there is a priori knowledge that a particular process,
say sender s, is supposed to broadcast a single message in M. For example, a distributed
control system may have a temperature sensor process s that is supposed to reliably broad-
cast the temperature at a particular time to three monitoring processes. This broadcast is
an instance of Terminating Reliable Broadcast for sender s, a type of broadcast that requires
correct processes to always deliver a message (“from” s) — even if the sender s is faulty and,
say, crashes before the broadcast! For this requirement to be satisfiable, processes must be
allowed to deliver a message that was not actually broadcast by s. Thus, we now allow the
delivery of a special message Fs ¢ M stating that the sender s is faulty. By convention, we
assume sender(Fs) = s.

With Terminating Reliable Broadcast (TRB) for sender s, s can broadcast any message
m € M, processes can deliver any message m € M U {F;}, and the following hold:

Termination: Every correct process eventually delivers exactly one message.

Validity: If s is correct and broadcasts a message m, then it eventually delivers m.

o Agreement: If a correct process delivers a message m, then all correct processes even-
tually deliver m.

Integrity: If a correct process delivers a message m then sender(m) = s. Furthermore,
if m # F; then m was previously broadcast by s.

The reader should verify that the specification of TRB for sender s implies that a correct pro-
cess delivers F; only if s is faulty. Just as with Reliable Broadcast, we can strengthen TRB
by requiring it to satisfy Uniform Agreement, or one of the two versions of A-Timeliness.

This problem has been studied extensively in the case of arbitrary failures under the
name of “Byzantine Agreement” or “Byzantine Generals’ Problem”. If the sender s is sub-
ject to arbitrary failures, the second clause of Integrity, namely the sentence “Furthermore,
if m # Fs then m was previously broadcast by s”, is now ambiguous. To circumvent this
problem in the usual manner (see Section 3.10), we must reformulate this statement so that
it applies only to the case that s is correct. In that case, however, the other three properties
of TRB already determine that correct processes must deliver the message broadcast by s,
and only that. Hence, for arbitrary failures, we can simply drop this second clause, and
Integrity reduces to: “If a correct process delivers a message m then sender(m) = s.”
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8.2 Relating Consensus and Terminating Reliable Broadcast

In this section we relate Consensus and Terminating Reliable Broadcast:

e In some synchronous point-to-point networks, Consensus is equivalent to TRB. This
allows us to translate both positive and negative results proven for one problem, to
the other. For example, the transformation from Consensus to TRB is message- and
time-efficient. In particular, it can convert any constant-time randomized Consen-
sus algorithm (such as the one in [FM90]), into a constant-time randomized TRB
algorithm.

e In asynchronous systems, these two problems are not equivalent: TRB can be trans-
formed to Consensus, but the converse does not hold (Consensus is solvable with
randomization, but TRB is not).

8.2.1 Transforming Terminating Reliable Broadcast to Consensus

The transformation from TRB to Consensus requires the concurrent execution of several
independent copies of the given TRB algorithm, one for each process as the sender. Let
TRB(p) denote the copy of TRB for sender p, and F be the set {F,| for all processes ¢}.

The transformation is shown in Figure 15. To propose a value v (we assume that
v ¢ F), a process p uses TRB(p) to broadcast v. When p delivers a value from a process
g, it inserts that value into entry V[g| of a vector V' that has one entry per process. Once
all the entries of V' have been filled, p decides the first non-F value in V' (i.e., the first
component of V' whose value is not in F).

This transformation makes no assumptions on the type or synchrony of the communi-
cation network, and it works with any type and number of benign failures.

Theorem 15 The algorithm in Figure 15 transforms any Terminating Reliable Broadcast
algorithm into a Consensus algorithm.

Proof: We show that the algorithm that results from the transformation satisfies the prop-
erties of Consensus.

Termination and Integrity: Consider any correct process p. From the structure of the
algorithm, it is clear that p decides at most once. We now show that p does decide, and
that its decision value was previously proposed by some process. Suppose p proposes, and
hence broadcasts, v. By assumption, v ¢ F. By Validity of TRB(p), p delivers v. Since
sender(v) = p, it sets V[p] := v. By Termination and Integrity of TRB, p never delivers
any other message u such that sender(u) = p. Therefore p never sets V[p| to a value u
different than v.

By Termination of TRB(gq) for each process ¢, p eventually delivers exactly one message
from ¢. Thus, p’s execution of the wait for statement eventually terminates, and at that
time V' contains at least one non-F value, namely V [p] = v. Therefore, p eventually decides
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Algorithm for process p:
To execute propose(v):
broadcast(TRB,v)

decide(—) occurs as follows:

Vi=(L,1,...,1)
cobegin

upon deliver(TRB,u) do V[sender(u)] :=u
//

wait for (Vg,V([g] # L)

decide(first non-F value of V)

coend

Figure 15: Transforming Terminating Reliable Broadcast into Consensus

a non-F value u, where u = V|[s] for some process s. From the algorithm, p previously
delivered u and sender(u) = s. By Integrity of TRB, the delivery of u occurred during the
execution of TRB(s). By Integrity of TRB(s), u was previously broadcast by s. Thus, u
was previously proposed by s.

Agreement: By Agreement of TRB(q) for each process ¢, all correct processes have the same
vector V' when they use it to decide. Thus, they all decide the same value. O

8.2.2 Transforming Consensus into Terminating Reliable Broadcast

In Figure 16 we show how to transform any Consensus algorithm into a TRB algorithm for
any given sender s. In contrast to the converse transformation, this one requires several
assumptions: The system is a synchronous point-to-point network, it is completely con-
nected with no link failures, and faulty processes are subject to send-omission failures only.
Furthermore, we assume that processes have a priori knowledge of the time o at which the
sender s is supposed to broadcast, and have perfect real time clocks (i.e., Cp(t) =t for all
processes p). Recall that in a synchronous point-to-point network there is a known upper
bound § on message transmission time over a link (Condition 3 in Section 6.7).

To broadcast a message m, s sends m to every process at the designated time ty. At
time £o+46, if a process previously received a message from s then it uses the given Consensus
algorithm to propose that message, otherwise it proposes Fs. To deliver a message, a process
waits for the decision value of the Consensus algorithm and delivers it.

Theorem 16 Consider a synchronous point-to-point network that satisfies the assumptions
listed above. The algorithm in Figure 16 transforms any Consensus algorithm into a Ter-
minating Reliable Broadcast algorithm for any given sender s.
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broadcast(TRB,m) occurs as follows:
The sender s at time tq:
send(m) to all processes {m#F,}

Every process at time tg + 6:
if receive(m) from s by time ¢ty + 6
then propose(m)
else propose(F;)

deliver(TRB, —) occurs as follows:
Every process:
upon decide(v) do { v is a message m or F; }
deliver(TRB,v)

Figure 16: Transforming Consensus into Terminating Reliable Broadcast for Sender s

The proof is omitted.

9 Multicast Specifications

So far we have assumed that each broadcast is targeted to all the processes in the system.
In some applications, the system is configured as a collection of (possibly overlapping)
groups, each consisting of a subset of processes. A multicast is a broadcast that is targeted
exclusively to the members of some particular group. We shall assume that groups are static,
and that each process knows to which groups it belongs and the members of each of these
groups. We shall not address the question of how these groups are formed, or how processes
join or leave them. This is the group membership problem discussed in [Cri90a,RB91], and
is outside the scope of this paper.

Formally, a group GG is a name for a subset of the processes in the system. We say that
process p is in G (or p is a member of G), and write p € G, when p is in the subset of
processes named G. Since each message m is multicast to a particular group, it is tagged
with the name of that group, i.e., we assume that m has a field denoted group(m).

Multicasts are defined in terms of two primitives, multicast and deliver. When a
process p invokes multicast with a message m as a parameter, we say that p multicasts m
(to group(m) ). We assume that m is taken from a set a set M of possible messages. When a
process ¢ returns from the execution of deliver(m) with message m as the returned value,
we say that ¢ delivers m (in group(m)). As with broadcasts, our definitions of multicasts
assume benign failures. The modifications for arbitrary failures are similar to those given
in Section 3.10 for broadcasts, and are omitted.
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9.1 Reliable Multicast

Reliable Multicast is essentially the Reliable Broadcast problem adapted to groups. It is the
basis for all the types of multicasts that we consider. Informally, Reliable Multicast requires
that all correct processes in each group G deliver the same set of messages, that this set
include all the messages multicast to G by correct processes, and that no spurious messages
are ever delivered. More precisely, Reliable Multicast is defined in terms of multicast and
deliver primitives that satisfy the following:

o Validity: If a correct process multicasts a message m, then some correct process in
group(m) eventually delivers m or no process in that group is correct.

o Agreement: If a correct process delivers a message m, then all correct processes in
group(m) eventually deliver m.

e Integrity: For any message m, every correct process p delivers m at most once, and
only if p is in group(m) and m was previously multicast by sender(m).

The reader should verify that Reliable Multicast is a generalization of Reliable Broadcast:
if group(m) is the set of all processes then the above specification is equivalent to the
specification of Reliable Broadcast given in Section 3. The key difference from Reliable
Broadcast is that only processes in group(m) can deliver m.

In some applications processes must be able to multicast messages to groups to which
they do not belong. For example, consider a client-server application where the server is
replicated for fault-tolerance. In this case, a client broadcasting a request to the distributed
server is not a member of the group of processes that implement the service. Thus, the
specification of Reliable Multicast does not require that the sender of a message m be a
member of group(m).t®

9.2 FIFO Multicast

Informally, FIFO Multicast is a Reliable Multicast in which a process p delivers a message
m only if it has already delivered all messages previously multicast by the sender of m, with
the exception of those targeted to groups of which p is not a member. More precisely, FIFO
Multicast is a Reliable Multicast that satisfies the following requirement:

e Global FIFO Order: If a process multicasts a message m before it multicasts a message
m’, then no correct process in group(m) delivers m’ unless it has previously delivered
m.

In some applications, a weaker order requirement is adequate. It stipulates that FIFO
Order applies only to messages that are multicast to the same group. More precisely,

19This is why the formulation of Validity for multicasts is different from the one for broadcasts: We can
no longer require that the sender of a message deliver its own message.
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e Local FIFO Order: If a process multicasts a message m before it multicasts a message
m’ such that group(m') = group(m), then no correct process delivers m’ unless it has
previously delivered m.

To see the difference between the two FIFO Order properties, consider the following
example. Suppose a process p multicasts a message m to group G = {p,q,7} and then
it multicasts a message m' to group G’ = {p,q,r'}. Suppose, further, that there are no
failures. Since ¢ is in both groups, it must deliver both messages. In the case of Global
FIFO Order, ¢ must deliver m before m'. In the case of Local FIFO Order, since m and m/
were multicast to different groups, ¢ is not constrained as to the order in which it delivers
them.

If the application is such that a process p delivering a message m can properly in-
terpret m if it has already delivered every message that sender(m) previously multicast
to group(m), then Local FIFO Order can be used. In general, however, it may be that
to properly understand m, p must have already delivered every message that sender(m)
previously multicast to any group of which p is a member. In this case Global FIFO Order
should be used.

9.3 Causal Multicast

As we strengthened FIFO Broadcast to obtain Causal Broadcast, we can strengthen FIFO
Multicast to obtain Causal Multicast. To do so, we must first define the causal precedence
induced by the multicasts and deliveries of messages. This is just the — relation defined in
Section 2.7 except that the word “broadcast” is substituted with “multicast” in Clause 2.
We can now define Causal Multicast to be a Reliable Multicast that satisfies:

o Global Causal Order: If the multicast of a message m causally precedes the multicast of
a message m’, then no correct process in group(m) delivers m’ unless it has previously
delivered m.

In the above definition, the causal precedence relation crosses group boundaries: it
may relate multicasts and deliveries that “occur” in different groups (hence the name Global
Causal Order). For example, suppose there are two groups G = {p,q} and G’ = {p,q,r},
and consider the following sequence of events: (a) p multicasts m to G; (b) p multicasts
m" to G'; (c) r delivers m” in G'; (d) » multicasts m’ to G'. By definition, the multicast
of m causally precedes the multicast of m’'. Since ¢ is in both G and G’, Global Causal
Order requires that ¢ deliver m before m/, even though these two messages were multicast
to different groups. Similarly, it requires that ¢ deliver m” before m'.

Local Causal Order, a weaker type of Causal Order that does not cross group bound-
aries, is defined as follows. Given any group G, the causal precedence relation induced by
the multicasts and deliveries of messages m such that group(m) = G is called causal prece-
dence in group G. Note that this relation ignores the multicasts and deliveries of messages
that are not in group G. We now define Local Causal Order as follows:
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e Local Causal Order: If the multicast of a message m causally precedes in group(m) the
multicast of a message m’, then no correct process delivers m’ unless it has previously
delivered m.

In the previous example, group(m) = G # group(m’) = G'. So, the multicast of m does not
causally precede in group(m) the multicast of m’, and, in contrast to Global Causal Order,
Local Causal Order allows ¢ to deliver m' and m in any order. However, the multicast of m”
causally precedes in G’ the multicast of m’, so Local Causal Order requires that ¢ deliver
m" before m/.

The following example shows that even if the multicast of m causally precedes the
multicast of m' and group(m) = group(m’), it is still possible that the multicast of m does
not causally precede in group(m) the multicast of a m'. Consider groups G = {p, ¢} and
G' = {p,r}, and the following sequence of events: (a) p multicasts m to G; (b) p multicasts
m" to G'; (c) r delivers m” in G'; (d) r multicasts m’ to G (even though r does not belong
to G). By definition, the multicast of m causally precedes the multicast of m’. Since both
messages are multicast to a group of which ¢ is a member, Global Causal Order requires
that ¢ deliver m before m’. However, even though m and m’' were multicast to the same
group G, the multicast of m does not causally precede the multicast of m’ in G, since the
causality is established via the multicast and delivery of m”, a message that is not in G.
So, in contrast to Global Causal Order, Local Causal Order allows ¢ to deliver m’ before
m.

9.4 Atomic Multicast

We consider three types of Atomic Multicast that differ by the strength of their message
delivery order requirement.

9.4.1 Local Atomic Multicast

A Local Atomic Multicast is a Reliable Multicast that satisfies the following property:

e Local Total Order: If correct processes p and g both deliver messages m and m' and
group(m) = group(m’), then p delivers m before m' if and only if ¢ delivers m before

!/

m'.

This is the total order property guaranteed by the Atomic Multicast primitive that the Isis
system provides [BJ87,BCJ*90].

9.4.2 Pairwise Atomic Multicast
Local Total Order allows two correct processes to disagree on the order in which they

deliver messages. For example, consider two groups G = {p,q,r} and G’ = {p,q,r'}.
Suppose r multicasts m to G, and r' multicasts m' to G'. Local Total Order allows p and
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g to deliver the two messages in different order. This disagreement, which is undesirable
in some applications, is prevented by Pairwise Atomic Multicast, a Reliable Multicast that
satisfies the following property:

e Pairwise Total Order: If correct processes p and ¢ both deliver messages m and m/,
then p delivers m before m' if and only if ¢ delivers m before m/.

This is the total order requirement of several Atomic Multicasts that have appeared in the
literature (e.g., [GMS91]).

9.4.3 Global Atomic Multicast

Pairwise Total Order is not the strongest possible message ordering requirement for Atomic
Multicasts. In particular, it allows cycles in message delivery order. For example, consider
three groups, G1 = {p,q}, G2 = {¢,r} and G3 = {r,p}. Note that the intersection of
any two of these groups consists of exactly one process. The messages mi, my and mg3 are
multicast to groups G1, G2 and G3, respectively. Pairwise Total Order allows process p to
deliver m3 before mi, ¢ to deliver m; before mg, and r to deliver mo before ms. This cycle
of deliveries is counter to the intuition that Atomic Multicast must provide the abstraction
of indivisible, i.e., “simultaneous”, deliveries. Moreover, Pairwise Total Order is not strong
enough for some applications, as we illustrate with a simple example below.

Consider the Dining Philosophers’ Problem with philosophers G1, G2 and G3, and forks
p, ¢ and r. G1 needs forks p and ¢, G2 needs forks ¢ and r, and G3 needs forks r and p.
Each philosopher G; competes for her forks by broadcasting m; to her forks. G; wins a
fork if her message is the first to be delivered at that fork. If the philosophers use Pairwise
Atomic Multicast to broadcast their messages, and a cycle of deliveries occurs as in the
scenario described above, each philosopher wins exactly one fork, and they all starve.

Global Atomic Multicast is a type of Atomic Multicast that precludes such cycles.
Consider the set of messages delivered by correct processes. We define the relation < on
this set as follows: m < m' if and only if any correct process delivers m and m’, in that order.
A Global Atomic Multicast is a Reliable Multicast that satisfies the following property:

e Global Total Order: The relation < is acyclic.

Since < is acyclic, the set of messages delivered by correct processes can be totally ordered
in a way that is consistent with <, i.e., with the order of message deliveries at each correct
process.

Global Total Order is strictly stronger than Pairwise Total Order which is strictly
stronger than Local Total Order. However, none of these three properties guarantees FIFO
Order. In principle, we can define six types of FIFO Atomic Multicasts by selecting one
of the two FIFO Orders (Local or Global) and any one of the three Total Orders above.
Of these, the FIFO Atomic Multicast that requires the Local versions of FIFO Order and
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Total Order, and the one requiring the Global versions of these two properties, seem the
most sensible. The others are of questionable value.

Similarly, we can define six types of Causal Atomic Multicasts, by combining any one
of the two types of Causal Order with one of the three Total Orders above. As before, of
these six combinations two seem particularly useful: the one combining the Local versions
of the order properties, and the one combining the Global versions.

9.5 Timeliness and Uniformity

As with broadcasts, we can impose a bound on the latency of multicasts in terms of local
or real time. More precisely, we can require one of these two properties:

o Local-Time Ag-Timeliness: For each group G, there is a known constant Ag such
that no correct process p delivers a message m after local time ts(m) + Ag on p’s
clock.

o Real-Time A-Timeliness: For each group G, there is a known constant Ag such that
if a message m is broadcast at real time ¢, then no correct process delivers m after
real time ¢t + Ag.

Note that the bound Ag on the latency now depends on the group G. A multicast that
satisfies any of the above properties is called a Timed Multicast.

As with broadcast, we can also define the Uniform counterparts for the Agreement,
Integrity, Order, and A-Timeliness properties of multicasts. The formal definitions are
straightforward and are omitted.

A Appendix — Model of Point-to-Point Networks

In this appendix we describe our model of point-to-point networks in more detail than in
Sections 2 and 6. The overall plan is as follows: First we describe the correct behavior of
processes and links. We then define different types of (process and link) failures as violations
of some of the properties that describe correct behavior. In the case of synchronous systems,
where correct behavior includes the timely occurrence of actions, correctness can be violated
in two ways: actions that are supposed to take place never occur (omission failures), or they
occur late (performance and clock failures).

A.1 Networks with No Failures

A point-to-point network can be modeled as a directed graph, with nodes representing pro-
cesses, and edges representing communication links between processes. In such a network,
any pair of processes that are connected by a link can communicate with each other by send-
ing and receiving messages, as described below. In this section we assume that processes
and links do not fail.
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Properties of Processes:

Each process is capable of executing certain operations, such as the writing of a local
variable, or the sending or receipt of a message. The execution of an operation by a process
p is a step of p. We do not assume that the steps are atomic; a step consists of a sequence
of atomic events, delimited by a start and an end event. (The fact that steps are not
atomic will permit us, in the next section, to model failures that interrupt the execution of
an operation in the middle.) Hence, the execution of a process p is modeled as a sequence
of events grouped into steps such that the start event of each step (except the first one)
immediately follows the end event of the previous step. If this sequence includes the start
event of a step, we say that p has started that step; if it includes the end event of a step,
we say that p completed that step. Associated with each process p is an automaton whose
transition relation describes the legal sequences of events (and thus of steps) for p. We
assume that:

a. Every process completes an infinite number of steps.

This implies that every process eventually completes every step that it starts.
Properties of send and receive:

Let p and ¢ be any two processes connected by a link from p to ¢q. Associated with this
link are the communication primitives send and receive, which are among the operations
that can be executed by p and ¢, respectively. The operation send takes a message as a
parameter; receive returns a message. The execution of the send primitive with parameter
m is a step denoted send(m); the execution of the receive primitive with return value m
is a step denoted receive(m). We say that p sends m to ¢ if p starts the step send(m); we
say that g receives m if ¢ completes the step receive(m).

Associated with the link from p to ¢, p has an outgoing message buffer, denoted
omb(p, q), and ¢ has an incoming message buffer, denoted imb(p,q). Informally, when p
sends a message m to ¢, p inserts m in omb(p, q), the link transports m from omb(p, q) to
imb(p, q), and g receives m from imb(p, q). More precisely, the send and receive primitives
associated with the link from p to ¢ satisfy:2°

b. If p completes the sending of m to ¢, then m is eventually inserted into omb(p, q).

c. If m is inserted into omb(p, ¢), then m is eventually inserted into imb(p, q).

d. If m is inserted into imb(p, ¢), then ¢ eventually receives m.

These three properties imply:

e If p sends m to ¢ then ¢ eventually receives m.?!

20To simplify the formulation of these properties, we assume that each message sent from p to g is unique.
This can be easily enforced by using link sequence numbers.
*INote that messages are not necessarily received in the order in which they are sent.
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We also assume that:

b’. m is inserted into omb(p, ¢) at most once, and only if p sends m to q.

c’. m is inserted into imb(p, q) at most once, and only if m is in omb(p, q).

d’. ¢ receives m at most once, and only if m is in imb(p, q).

Properties (b')—(d’) imply:

o Uniform Integrity: For any message m, g receives m at most once from p, and only if
p previously sent m to q.

To simplify the exposition and the correctness proofs of our algorithms for point-to-point
networks, we found it convenient to allow each process to send a message to itself. This
is only a fictitious device, and a message “sent” this way does not really go through any
buffer or link. We postulate the following property regarding such messages:

e If p sends m to itself, then p receives m instantaneously.

The preceding definition of a point-to-point network assumes that no failures occur. In
the next section we consider some of the failures that can affect processes and links. These
failures will be defined as violations of Properties (a)—(d). We will not allow the violation
of Properties (b')—(d’); thus, Uniform Integrity holds even in networks with failures. We
will also not allow the violation of the postulated property regarding messages sent by a
process to itself.

A.2 Networks with Omission Failures

Failures can be defined as deviations from correct behavior. In networks with omission
failures, processes and links may violate Properties (a)—(d).

Violating Property (a) of Processes:

To model the violation of Property (a), we introduce a special event called crash.
Every process p can execute a crash at any time?2, and after doing so it stops executing
further events. This is modeled by the addition of a new terminal state to the automaton
associated with p, and a transition from every other state of p to that terminal state. The
event associated with such a transition is defined as a crash. We say that p commits a
crash failure if it executes a crash event.

Since no event can follow crash, a process that crashes can execute only a finite number
of events, and therefore completes only a finite number of steps. Thus, a process that
crashes violates Property (a). We assume, however, that only processes that crash violate
that property. That is, a process that does not crash completes an infinite number of steps.

22In particular, a crash event may occur in the middle of a step, i.e., between the start and the end
events of a step. This models a crash that interrupts the execution of a non-atomic operation in the middle.
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Violating Properties (b), (c), and (d) of send and receive:

> Process p commits a send-omission failure on m if p completes the sending of m to ¢
but m is never inserted into omb(p, ¢) (violation of Property (b)).

> The link from p to ¢ commits an omission failure on m if m is inserted into omb(p, q)
but m is never inserted into imb(p, ¢q) (violation of Property (c)).

> Process ¢ commits a receive-omission failure on m if m is inserted into imb(p, q) but
g never receives m and does not crash (violation of Property (d)).

If a process or a link commits a failure, we say that it is faulty; otherwise it is correct.
Recall that in networks with no failures, if p sends m to ¢ then ¢ eventually receives m.
The properties of point-to-point networks with omission failures imply:

o Validity: If p sends m to ¢ and ¢ does not receive m, then one of the following holds:
. p does not complete the sending of m, or
. p commits a send-omission failure on m, or

1
2
3. the link from p to ¢ commits an omission failure on m, or
4. g commits a receive-omission failure on m, or

5

. g crashes.

This formulation of Validity implies the simpler one stated in Section 6.1. It also implies
the Strong Validity property given in Section 6.5 for systems where send-omission failures
do not occur.

A.3 Synchronous Networks with No Failures

Consider the sequence of events executed by a process. Since events are atomic, we can
associate with each the real time at which it occurred. We say that p sends m at time t
(respectively, g receives m at time t), if the start event of send(m) (respectively, the end
event of receive(m)) occurs at time ¢.

A point-to-point network with no failures is synchronous if, in addition to the properties
of Section A.1, all processes and links satisfy Properties (e)—(i) below (in all our definitions
for synchronous networks, the word “time” always refers to real time):

Synchrony Properties of Processes:

e. 7-Local Step: There is a known constant 7 > 0 such that no process completes a step
later than 7 time units of when it started that step.
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f. p-Clock Drift: There is a known constant p > 0 such that every process p has a local
clock whose drift with respect to time is bounded by p. That is, if C,(t) denotes the
value of the local clock of p at time ¢, then for all ¢ > ¢':

1 _ G- Glt)
14p~  t—t

<I+p

Synchrony Properties of send and receive:
There are known constants 71, 72, and 73 > 0, such that for any processes p and ¢ connected
by a link from p to ¢:

g. If p sends m to ¢ at time ¢, then m is not inserted into omb(p, q) after time ¢ + 1.

h. If m is inserted into omb(p,q) at time ¢, then m is not inserted into imb(p, q) after
time £ + 7o.

i. If m is inserted into imb(p, q) at time ¢, then ¢ does not receive m after time ¢t + 73.
Let 6 = 71 + 70 + 73. The properties of synchronous point-to-point networks imply:

o §-Timeliness: There is a known constant § > 0 such that for any processes p and ¢
connected by a link, if p sends m to ¢ at time ¢ then ¢ does not receive m after time
t+6.

A.4 Synchronous Networks with Omission Failures

In synchronous networks with omission failures, all processes and links satisfy all the syn-
chrony properties (i.e., (e)—(i)), but some may violate Properties (a)—(d). The synchrony
properties allow us to redefine crash and omission failures in a way that includes information
about the time when each failure occurred.

Violating Property (a) of Processes:

As in Section A.2, we introduce a crash event which can be executed by any process
p at any time, but after which p may not execute any event. We say that p crashes at time
t if it executes a crash event at time ¢.

Violating Properties (b), (c), and (d) of send and receive:

> Process p commits a send-omission failure on m during [t,t+ 1] if p sends m to ¢ at
time ¢, completes the sending of m, but m is never inserted into omb(p,¢q) (violation
of Property (b) for a message m sent at time ¢).

> The link from p to ¢ commits an omission failure on m during [t,t+72] if m is inserted
into omb(p, ¢) at time ¢ but m is never inserted into imb(p, q) (violation of Property (c)
for a message m inserted into omb(p, ¢) at time t).

> Process ¢ commits a receive-omission failure on m during [t,t + 73] if m is inserted
into imb(p,q) at time ¢ but ¢ never receives m and does not crash by time ¢ + 73
(violation of Property (d) for a message m inserted into imb(p, q) at time ¢).
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A.5 Synchronous Networks with Clock and Performance Failures

In synchronous networks with clock and performance failures, processes and links may
violate the synchrony properties (e), (f), (g), (h), and (i).

Violating Synchrony Properties (e) and (f) of Processes:

> Process p commits a performance failure if p completes a step later than 7 time units
of when it started that step (violation of Property (e)).

> Process p commits a clock failure if during some time interval the local clock C, of p
drifts more than p with respect to real time (violation of Property (f)).

Violating Synchrony Properties (g), (h), and (i) of send and receive:

> Process p commits a performance failure on the sending of m if p sends m to ¢ at time
t and m is inserted into omb(p, q) after time ¢ + 71 (violation of Property (g)).

> The link from p to ¢ commits a performance failure on m if m is inserted into omb(p, q)
at time ¢ and m is inserted into imb(p, ¢) after time ¢+ 7 (violation of Property (h)).

> Process ¢ commits a performance failure on the receipt of m if m is inserted into
imb(p,q) at time ¢t and ¢ receives m after time ¢ + 73 (violation of Property (i)).

A.6 Classification of Failures and Terminology

In the preceding sections, we have defined crash, send-omission, receive-omission failures
of processes, and omission failures of links. For synchronous systems, we also defined
performance and clock failures of processes, and performance failures of links.

It is convenient to group failures into two classes that include both process and link
failures:

e omission failures consist of crash, send-omission, and receive-omission failures of pro-
cesses, as well as link omission failures.

e t{iming failures consist of omission, clock and performance failures.

A network with a certain class of failures, is one where processes and links may commit
any of the failures included in that class, but no other failures. Thus, a network with
omission failures is not subject to clock, performance, or arbitrary failures. Similarly, one
with timing failures is not subject to arbitrary failures. Benign failures is synonymous to
omission failures in asynchronous networks and to timing failures in synchronous networks.

We have not included arbitrary failures among the types of process and link failures
defined in this appendix, since these failures are only considered in passing in this paper.
It is not difficult to incorporate such failures in the framework of our model. Recall that
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we defined a network with no process or link failures by stating various properties that
the processes and links must satisfy. The types of failures considered so far were defined
as specific violations of some of these properties. We say that a process or link commits
arbitrary failures if it can violate arbitrarily the properties that specify its correct behavior.
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