
State-Machine
Replication

The Problem
Clients Server

The Problem
Clients Server

The Problem
Clients Server

The Problem
Clients Server

The Problem
Clients Server

Solution: replicate server!

The Problem
Clients Server

The Solution

The Solution
1. Make server deterministic (state machine)

The Solution
1. Make server deterministic (state machine)

State machine

The Solution
1. Make server deterministic (state machine)

2. Replicate server

State machines

The Solution
1. Make server deterministic (state machine)

2. Replicate server

State machines

The Solution
1. Make server deterministic (state machine)

2. Replicate server

3. Ensure correct replicas step through the same
sequence of state transitions

State machines

The Solution
1. Make server deterministic (state machine)

2. Replicate server

3. Ensure correct replicas step through the same
sequence of state transitions

Clients
State machines

The Solution
1. Make server deterministic (state machine)

2. Replicate server

3. Ensure correct replicas step through the same
sequence of state transitions

Clients

Commands

State machines

The Solution
1. Make server deterministic (state machine)

2. Replicate server

3. Ensure correct replicas step through the same
sequence of state transitions

Clients

Commands

State machines

The Solution
1. Make server deterministic (state machine)

2. Replicate server

3. Ensure correct replicas step through the same
sequence of state transitions

4. Vote on replica outputs for fault-tolerance

Clients
State machines

The Solution
1. Make server deterministic (state machine)

2. Replicate server

3. Ensure correct replicas step through the same
sequence of state transitions

4. Vote on replica outputs for fault-tolerance

Clients
State machines

The Solution
1. Make server deterministic (state machine)

2. Replicate server

3. Ensure correct replicas step through the same
sequence of state transitions

4. Vote on replica outputs for fault-tolerance

Clients

Voter

State machines

The Solution
1. Make server deterministic (state machine)

2. Replicate server

3. Ensure correct replicas step through the same
sequence of state transitions

4. Vote on replica outputs for fault-tolerance

Clients

Voter

State machines

The Solution
1. Make server deterministic (state machine)

2. Replicate server

3. Ensure correct replicas step through the same
sequence of state transitions

4. Vote on replica outputs for fault-tolerance

Clients

Voter

State machines

The Solution
1. Make server deterministic (state machine)

2. Replicate server

3. Ensure correct replicas step through the same
sequence of state transitions

4. Vote on replica outputs for fault-tolerance

Clients

Voter

State machines

A conundrum

A conundrum

A conundrum

A conundrum

A conundrum

A conundrum

. . .

A conundrum

. . .

A: voter
and client
share fate!

A conundrum

. . .

A: voter
and client
share fate!

A conundrum

. . .

A: voter
and client
share fate!

A conundrum

. . .

A: voter
and client
share fate!

A conundrum

. . .

A: voter
and client
share fate!

A conundrum

. . .

A: voter
and client
share fate!

State Machines

Set of state variables + Sequence of commands
A command

Reads its read set values (opt. environment)
Writes to its write set values (opt. environment)

A deterministic command
Produces deterministic wsvs and outputs on given rsv

A deterministic state machine
Reads a fixed sequence of deterministic commands

Semantic Characterization of
a State Machine

Outputs of a state machine are completely
determined by the sequence of commands it

processes, independent of time and any
other activity in a system

Replica Coordination

Agreement: Every non-faulty state machine !
! receives every command

Order: Every non-faulty state machine processes
the !commands it receives in the same order

All non-faulty state machines
receive all commands in the

same order

Where should RC be
implemented?

In hardware

sensitive to architecture changes

At the OS level

state transitions hard to track and coordinate

At the application level

requires sophisticated application programmers

Hypervisor-based
Fault-tolerance

Implement RC at a virtual machine running on
the same instruction-set as underlying hardware

Undetectable by higher layers of software

One of the great come-backs in systems
research!

CP-67 for IBM 369 [1970]

Xen [SOSP 2003], VMware

The Hypervisor as a
State Machine

Two types of commands

virtual-machine instructions

virtual-machine interrupts (with DMA input)

State transition must be deterministic

...but some VM instructions are not (e.g. time-
of-day)

interrupts must be delivered at the same point
in command sequence

The Architecture

Good-ol’ Primary-Backup

Primary makes all non-
deterministic choices

I/O Accessibility Assumption

Primary and backup have
access to same I/O operations

Primary
HP 9000/720

Backup
HP 9000/720

I/O
Device

Ethernet

Ensuring identical
command sequences

Ordinary (deterministic) instructions

Environment (nondeterministic) instructions

Ensuring identical
command sequences

Ordinary (deterministic) instructions

Environment (nondeterministic) instructions

Environment Instruction Assumption
Hypervisor captures all environmental
instructions, simulates them, and ensures they
have the same effect at all state machines

Ensuring identical
command sequences

Ordinary (deterministic) instructions

Environment (nondeterministic) instructions

Environment Instruction Assumption

VM interrupts must be delivered at same
point in instruction sequence at all replicas

Ensuring identical
command sequences

Ordinary (deterministic) instructions

Environment (nondeterministic) instructions

Environment Instruction Assumption

VM interrupts must be delivered at same
point in instruction sequence at all replicas

Instruction Stream Interrupt Assumption
Hypervisor can be invoked at specific point in
the instruction stream

Ensuring identical
command sequences

Ordinary (deterministic) instructions

Environment (nondeterministic) instructions

Environment Instruction Assumption

VM interrupts must be delivered at same
point in instruction sequence at all replicas

Instruction Stream Interrupt Assumption
implemented via recovery register
interrupts at backup are ignored

The failure-free protocol
P0: On processing environment

instruction at , HV of primary :
 sends ! ! ! to backup
 waits for ack

P1: If HV receives from its VM:

 buffers

P2: If epoch ends at :

 sends to all buffered in
 waits for ack
 delivers all VM in

 starts

P3: If HV processes environment
! instruction at :
 waits for from
 returns

 If receives from :

 sends ack to
 buffers for delivery at

P4: If HV receives from its VM

 ignores

P5: If epoch ends at :

 waits from for interrupts for
 sends ack to
 delivers all VM buffered in

 starts

i

Int

Int

p

b

p

p b ep

p

epp

ep := ep+1

epp

p

Int

ipc pc

[eb, pc,Vali][ep, pc,Vali] p

Vali

[E, pc,Val]b p

b p

b E, pcVal

Int

b Int

b

b p eb

b p

Int

Int ebb

eb := eb+1

b eb

p’

b’

b

b’

If the primary fails…
P6: If receives a failure notification instead

of , executes

If in P5 receives failure notification instead
of :

 starts <--- failover epoch
 is promoted primary for epoch

eb := eb+1

eb+1

b

[eb, pc,Vali] ib

Int

b

ebb

b

If crashes before sending to ,
 is lost!Int

Intp b

SMR and the
environment

On outputs, no exactly-once guarantee on outputs

On primary failure, avoid input inconsistencies
time must increase monotonically

at epoch, primary informs backup of value
of its clock

interrupts must be delivered as a fault-free
processor would

but interrupts can be lost...
weaken constraints on I/O interrupts

On I/O device drivers

IO1: If an I/O instruction is executed and the I/O operation
performed, the processor issuing the instruction delivers a
completion interrupt, unless it fails. Either way, the I/O
device is unaffected.

IO2: An I/O device may cause an uncertain interrupt
(indicating the operation has been terminated) to be
delivered by the processor issuing the I/O instruction. The
instruction could have been in progress, completed, or not
even started.

On an uncertain interrupt, the device driver
reissues the corresponding I/O instruction–not
all devices though are idempotent or testable

Backup promotion
and uncertain interrupts

P7: The backup’s VM generates an uncertain
interrupt for each I/O operation that is
outstanding right before the backup is
promoted primary (at the end of the failover
epoch)

The Hypervisor
prototype

Supports only one VM to eliminate issues of
address translation

Exploits unused privileged levels in HP’s
PA-RISC architecture (HV runs at level 1)

To prevent software to detect HV, hacks one
assembly HP-UX boot instruction

RC in the Hypervisor

Nondeterministic ordinary instructions (Surprise!)

RC in the Hypervisor
Nondeterministic ordinary instructions (Surprise!)

TLB replacement policy non-deterministic
TLB misses handled by software
Primary and backup may execute a different
number of instructions!

HV takes over TLB replacement

RC in the Hypervisor
Nondeterministic ordinary instructions (Surprise!)

TLB replacement policy non-deterministic
TLB misses handled by software
Primary and backup may execute a different
number of instructions!

HV takes over TLB replacement

Optimizations
 sends immediately
 blocks for acks only before output commit
p

p

Int

The JVM as
a State Machine

Asynchronous commands
interrupts

Non-deterministic commands
read time-of-day

Non-deterministic read set values
multi-threaded access to shared data

Output to the environment
simulate a single, fault-tolerant state
machine

Non-deterministic Commands
Only invoked through Java Native Interface (JNI)

direct access to OS and other libraries

implement windowing, I/O, read HW clock…

Executes outside the JVM:
can’t agree on inputs!

Non-deterministic Commands
Only invoked through Java Native Interface (JNI)

• direct access to OS and other libraries

• implement windowing, I/O, read HW clock…

Executes outside the JVM:
 can’t agree on inputs!

Non-deterministic Commands
Only invoked through Java Native Interface (JNI)

• direct access to OS and other libraries

• implement windowing, I/O, read HW clock…

Executes outside the JVM:
 can’t agree on inputs!

Force agreement on the wsvs

Non-deterministic Commands
Only invoked through Java Native Interface (JNI)

• direct access to OS and other libraries

• implement windowing, I/O, read HW clock…

Executes outside the JVM:
 can’t agree on inputs!

Not out of the woods:
 • Non-deterministic output to the
environment
 • Non-deterministic method invocation

Force agreement on the wsvs

