Separating Agreement from Execution for Byzantine Fault-Tolerant Services

Rethinking Replicated State Machines

Jian Yin, Jean-Philippe Martin, Arun Venkataramani, Lorenzo Alvisi and Mike Dahlin

jianyin@us.ibm.com, {jpmartin, arun, lorenzo, dahlin}@cs.utexas.edu

Laboratory for Advanced Systems Research (LASR)
The University of Texas at Austin
Problem: Tolerating Byzantine Faults

- Current solution: replicated state machine
 - $3f + 1$ versions of service
 - Hurts confidentiality
- Our solution: rethinking replicated state machine
 - Cheaper: $2f + 1$ versions of service
 - Helps confidentiality

JPM, The University of Texas at Austin
Outline

• Introduction
• Separating Agreement from Execution
• Enables
 ◇ Fewer service replica
 ◇ Confidentiality
• Prototype
• Conclusion
Current Solution

- Client
 - Send request and repeats
 - Pick majority reply
- Correct replica must return same reply
 - Start from same state
 - All replicas process the same requests in the same order (*replica coordination*)
- How
 - Replicated state machine protocol

JPM, The University of Texas at Austin
Separating Agreement from Execution

- Split problem into independent concerns
 - Agreement: All agree on sequence of requests
 - Execution: Requests executed in order

- Note different requirements
 - Agreement: $3g + 1$ servers, g faults
 - Execution: $2f + 1$ servers, f faults
Implementation

1. Assign unique sequence number to request
2. \(\langle \text{request}, \text{sequence number} \rangle_A \): unique, certified
3. Execute in sequence order
4. \(\langle \text{reply}, \text{sequence number} \rangle_E \): unique, certified
Cluster Implementation is Simple

- Simple protocol
 - Agreement using traditional protocol
 - Send instead of executing
- Tricks in retransmission
 - Execution cluster internal retransmission
 - Confidential intercluster retransmission

JPM, The University of Texas at Austin
Separation makes Replication Cheaper

- Execution cluster
 - Fewer service replicas
 - Expensive because different
- Agreement cluster
 - Simple nodes, reusable
- Can merge

JPM, The University of Texas at Austin
Separation makes Replication Cheaper

- Execution cluster
 - Fewer service replicas
 - Expensive because different
- Agreement cluster
 - Simple nodes, reusable
- Can merge
Confidentiality: The Problem

- Replication hurts confidentiality
- Privacy Firewall restores it
Separation Enables Confidentiality

- Separation enables confidentiality
 - Agreement nodes as filters
- Key 1: Restrict communication
- Key 2: Separate choice from secrets
 - Choice in reply contents
 - Choice in who signs the reply certificate
 - Choice in retransmission
- One choice remains: speed
The Privacy Firewall

- Nodes check reply certificate
- Replicated for h Byzantine failures
- Restrict communication
- Only valid replies
 - $h + 1$ rows \Rightarrow one is correct
- Always reply
 - $h + 1$ columns \Rightarrow one is correct
- Minimal: $(h + 1)^2$ servers
The Privacy Firewall

- Nodes check reply and order
- Replicated for h Byzantine failures
- Restrict communication
- Only valid replies
 - $h + 1$ rows \Rightarrow one is correct
- Always reply
 - $h + 1$ columns \Rightarrow one is correct
- Minimal: $(h + 1)^2$ servers
The Privacy Firewall

- Nodes check reply and order
- Replicated for h Byzantine failures
- Restrict communication
- Only valid replies
 - $h + 1$ rows \Rightarrow one is correct
- Always reply
 - $h + 1$ columns \Rightarrow one is correct
- Minimal: $(h + 1)^2$ servers
The Privacy Firewall

- Nodes check reply and order
- Replicated for h Byzantine failures
- Restrict communication
- Only valid replies
 - $h + 1$ rows \Rightarrow one is correct
- Always reply
 - $h + 1$ columns \Rightarrow one is correct
- Minimal: $(h + 1)^2$ servers
Privacy Firewall Guarantees

- **Output set confidential**
 Output of correct cut is a valid output for a correct node through unreliable link

- Only *correct replies* get through
 - Replies that correct nodes send

JPM, The University of Texas at Austin
Timing Attacks Remain

- One choice remains: execution speed
- Faulty execution server can influence when majority forms
- Information-theoretic confidentiality impossible without synchrony

JPM, The University of Texas at Austin
Prototype

- Built prototype from BASE [Rodrigues01]
- Implements BFT confidential network file system
- 10 machines: 1 client, 4 ag+PF, 2 PF, 3 exec.
 - Tolerate 1 fault in each of agreement, PF, exec.
 - 128MB RAM, 100Mbps switch
- Limitations of prototype
 - No uninterruptible power supply
 - Same code
 - Communication not restricted
Latency Micro-Benchmarks

- Micro-benchmark latency
 - Removed some BASE optimizations
 - Only implemented one of six optimizations

JPM, The University of Texas at Austin
Good Performance

- Separation and PF perform well in benchmarks
 - +16% for confidentiality

JPM, The University of Texas at Austin
Conclusion

• Take home message:

 Separate agreement from execution!

• Benefits

 ♦ Fewer service replicas
 ♦ Privacy Firewall
 ♦ Easy