Consensus and

 Reliable Broadcast
Broadcast

(2) If a process sends a message m, then every process eventually delivers m

Broadcast

(2) If a process sends a message m, then every process eventually delivers m

Broadcast

(2) If a process sends a message m, then every process eventually delivers m

(2) How can we adapt the spec for an environment where processes can fail? And what does "fail" mean?

A hierarchy of failure models
 Crash

A hierarchy of failure models

Fail-stop $\bigcirc-\ldots$ Crash

A hierarchy of failure models

A hierarchy of failure models

A hierarchy of failure models

A hierarchy of failure models

A hierarchy of failure models

Reliable Broadcast

Validity
If the sender is correct and broadcasts a message m, then all correct processes eventually deliver m
Agreement If a correct process delivers a message m, then all correct processes eventually deliver m

Integrity Every correct process delivers at most one message, and if it delivers m, then some process must have broadcast m

Terminating Reliable Broadcast

Validity
If the sender is correct and broadcasts a message m, then all correct processes eventually deliver m
Agreement If a correct process delivers a message m, then all correct processes eventually deliver m

Integrity Every correct process delivers at most one message, and if it delivers $m \neq S F$, then some process must have broadcast m
Termination Every correct process eventually delivers some message

Consensus

Validity If all processes that propose a value propose v, then all correct processes eventually decide v
Agreement If a correct process decides v, then all correct processes eventually decide v
Integrity Every correct process decides at most one value, and if it decides v, then some process must have proposed v
Termination Every correct process eventually decides some value

Properties of send (m) and receive(m)

Benign failures:

> Validity If p sends m to q, and p, q, and the link between them are correct, then q eventually receives m

Uniform* Integrity For any message m, q receives m at most once from p, and only if p sent m to q

* A property is uniform if it applies to both correct and faulty processes

Properties of send (m) and receive (m)

Arbitrary failures:
Integrity For any message m, if p and q are correct then q receives m at most once from p, and only if p sent m to q

Questions, Questions...

- Are these problems solvable at all?
(2) Can they be solved independent of the failure model?
(2) Does solvability depend on the ratio between faulty and correct processes?
(2) Does solvability depend on assumptions about the reliability of the network?
- Are the problems solvable in both synchronous and asynchronous systems?
- If a solution exists, how expensive is it?

Plan

6 Synchronous Systems

- Consensus for synchronous systems with crash failures
. Lower bound on the number of rounds
- Reliable Broadcast for arbitrary failures with message authentication
© Lower bound on the ratio of faulty processes for Consensus with arbitrary failures
- Reliable Broadcast for arbitrary failures
(- Asynchronous Systems
(2) Impossibility of Consensus for crash failures
- Failure detectors
- PAXOS

Model

© Synchronous Message Passing
\square Execution is a sequence of rounds
\square In each round every process takes a step - sends messages to neighbors - receives messages sent in that round - changes its state
(2) Network is fully connected (an n-clique)

- No communication failures

A simple

Consensus algorithm

Process p_{i} :
Initially $V=\left\{v_{i}\right\}$
To execute propose $\left(v_{i}\right)$
1: send $\left\{v_{i}\right\}$ to all decide(x) occurs as follows:
2: for all $j, 0 \leq j \leq n-1, j \neq i$ do
3: receive S_{j} from p_{j}
4: $\quad V:=V \cup S_{j}$
5: decide $\min (V)$

An execution

An execution

v_{2}
v_{3}
v_{4}

An execution

An execution

Suppose $v_{1}=v_{3}=v_{4}$ at the end of round 1 Can p_{3} decide?

$$
\begin{array}{ll}
v_{3} & \\
v_{4} & v_{4}
\end{array}
$$

An execution

Suppose $v_{1}=v_{3}=v_{4}$ at the end of round 1 Can p_{3} decide?

$$
\begin{array}{ll}
v_{3} & \\
v_{4} & v_{4}
\end{array}
$$

An execution

Suppose $v_{1}=v_{3}=v_{4}$ at the end of round 1 Can p_{3} decide?

$$
v_{3}
$$

$$
v_{4} \quad v_{4}
$$

An execution

Suppose $v_{1}=v_{3}=v_{4}$ at the end of round 1 Can p_{3} decide?

$$
v_{3}
$$

$$
v_{4} \quad v_{4}
$$

An execution

Suppose $v_{1}=v_{3}=v_{4}$ at the end of round 1 Can p_{3} decide?

$$
v_{3}
$$

$$
v_{4} \quad v_{4}
$$

An execution

Suppose $v_{1}=v_{3}=v_{4}$ at the end of round 1 Can p_{3} decide?

An execution

Suppose $v_{1}=v_{3}=v_{4}$ at the end of round 1 Can p_{3} decide?

Echoing values

- A process that receives a proposal in round 1, relays it to others during round 2.

Echoing values

- A process that receives a proposal in round 1, relays it to others during round 2.
(2) Suppose p_{3} hasn't heard from p_{2} at the end of round 2. Can p_{3} decide?

Echoing values

- A process that receives a proposal in round 1, relays it to others during round 2.
- Suppose p_{3} hasn't heard from p_{2} at the end of round 2. Can p_{3} decide?

round 2
$p_{1} p_{2}^{\circ}$

Echoing values

- A process that receives a proposal in round 1, relays it to others during round 2.
- Suppose p_{3} hasn't heard from p_{2} at the end of round 2. Can p_{3} decide?

round 2
$p_{1}^{\circ} \quad p_{2} \quad p_{3}^{\circ} \quad p_{4}^{\circ}$

Echoing values

- A process that receives a proposal in round 1, relays it to others during round 2.
- Suppose p_{3} hasn't heard from p_{2} at the end of round 2. Can p_{3} decide?

round 2

Echoing values

- A process that receives a proposal in round 1, relays it to others during round 2.
- Suppose p_{3} hasn't heard from p_{2} at the end of round 2. Can p_{3} decide?

Echoing values

- A process that receives a proposal in round 1, relays it to others during round 2.
- Suppose p_{3} hasn't heard from p_{2} at the end of round 2. Can p_{3} decide?

What is going on

6 A correct process p^{*} has not received all proposals by the end of round i. Can p^{*} decide?
(2) Another process may have received the missing proposal at the end of round i and be ready to relay it in round $i+1$

Dangerous Chains

Dangerous chain

The last process in the chain is correct, all others are faulty

Living dangerously

How many rounds can a dangerous chain span?
$\square f$ faulty processes
\square at most $f+1$ nodes in the chain
\square spans at most f rounds
It is safe to decide by the end of round $f+1$!

The Algorithm

Code for process p_{i} :
Initially $V=\left\{v_{i}\right\}$
To execute propose $\left(v_{i}\right)$ round $k, 1 \leq k \leq f+1$
1: send $\left\{v \in V: p_{i}\right.$ has not already sent $\left.v\right\}$ to all
2: for all $j, 0 \leq j \leq n-1, j \neq i$ do
3: receive S_{j} from p_{j}
4: $\quad V:=V \cup S_{j}$
decide(x) occurs as follows:
5: if $k=f+1$ then
6: \quad decide $\min (V)$

Termination and Integrity

```
Initially \(V=\left\{v_{i}\right\}\)
To execute propose \(\left(v_{i}\right)\)
    round \(k, 1 \leq k \leq f+1\)
1: send \(\left\{v \in V: p_{i}\right.\) has not already sent \(\left.v\right\}\) to all
2: for all \(j, 0 \leq j \leq n-1, j \neq i\) do
3: receive \(S_{j}\) from \(p_{j}\)
4: \(\quad V:=V \cup S_{j}\)
decide \((x)\) occurs as follows:
5: if \(k=f+1\) then
6: decide \(\min (V)\)
```

Termination

Termination and

Integrity

```
Initially }V={\mp@subsup{v}{i}{}
To execute propose(vi)
    round k,1\leqk\leqf+1
1: send {v\inV:\mp@subsup{p}{i}{}\mathrm{ has not already sent v} to all}
2: for all }j,0\leqj\leqn-1,j\not=i\mathrm{ do
3: receive }\mp@subsup{S}{j}{}\mathrm{ from }\mp@subsup{p}{j}{
4: V:= V\cup Sj
decide(x) occurs as follows:
5: if }k=f+1\mathrm{ then
6: decide min(V)
```

Termination
Every correct process
-reaches round $f+1$
© Decides on $\min (\mathrm{V})$--- which is well defined

Termination and Integrity

Initially $V=\left\{v_{i}\right\}$
To execute propose $\left(v_{i}\right)$

$$
\text { round } k, 1 \leq k \leq f+1
$$

1: send $\left\{v \in V: p_{i}\right.$ has not already sent $\left.v\right\}$ to all
2: for all $j, 0 \leq j \leq n-1, j \neq i$ do
3: receive S_{j} from p_{j}
4: $\quad V:=V \cup S_{j}$
decide(x) occurs as follows:
5: if $k=f+1$ then
6: decide $\min (V)$

Integrity

At most one value:

Only if it was proposed:

Termination
Every correct process
ereaches round $f+1$
(2. Decides on $\min (V)$--- which is well defined

Termination and

Integrity

```
Initially \(V=\left\{v_{i}\right\}\)
To execute propose \(\left(v_{i}\right)\)
round \(k, 1 \leq k \leq f+1\)
1: send \(\left\{v \in V: p_{i}\right.\) has not already sent \(\left.v\right\}\) to all
2: for all \(j, 0 \leq j \leq n-1, j \neq i\) do
3: receive \(S_{j}\) from \(p_{j}\)
4: \(\quad V:=V \cup S_{j}\)
decide( \(x\) ) occurs as follows:
5: if \(k=f+1\) then
6: decide \(\min (V)\)
```


Integrity

At most one value:

- one decide, and $\min (V)$ is unique Only if it was proposed:

Termination

Every correct process
areaches round $f+1$
© Decides on $\min (V)$--- which is well defined

Termination and

Integrity

Initially $V=\left\{v_{i}\right\}$
To execute propose $\left(v_{i}\right)$
round $k, 1 \leq k \leq f+1$
1: send $\left\{v \in V: p_{i}\right.$ has not already sent $\left.v\right\}$ to all
2: for all $j, 0 \leq j \leq n-1, j \neq i$ do
3: receive S_{j} from p_{j}
4: $V:=V \cup S_{j}$
decide (x) occurs as follows:
5: if $k=f+1$ then
6: decide $\min (V)$

Termination

Every correct process
areaches round $f+1$
© Decides on $\min (\mathrm{V})$--- which is well defined

Integrity

At most one value:

- one decide, and $\min (V)$ is unique

Only if it was proposed:

- To be decided upon, must be in V at round $f+1$
- if value $=v_{i}$, then it is proposed in round 1
- else, suppose received in round k. By induction:
- $k=1$:
- by Uniform Integrity of underlying send and receive, it must have been sent in round 1
- by the protocol and because only crash failures, it must have been proposed
- Induction Hypothesis: all values received up to round $k=j$ have been proposed
- $k=j+1$
- sent in round $j+1$ (Uniform Integrity of send and synchronous model)
- must have been part of V of sender at end of round j
- by protocol, must have been received by sender by end of round j
- by induction hypothesis, must have been proposed

Validity

```
Initially \(V=\left\{v_{i}\right\}\)
To execute propose \(\left(v_{i}\right)\)
    round \(k, 1 \leq k \leq f+1\)
1: send \(\left\{v \in V: p_{i}\right.\) has not already sent \(\left.v\right\}\) to all
2: for all \(j, 0 \leq j \leq n-1, j \neq i\) do
3: receive \(S_{j}\) from \(p_{j}\)
4: \(\quad V:=V \cup S_{j}\)
decide (x) occurs as follows:
5: if \(k=f+1\) then
6: decide \(\min (V)\)
```


Validity

```
Initially }V={\mp@subsup{v}{i}{}
To execute propose(vi)
    round k,1\leqk\leqf+1
1: send {v\inV: pi has not already sent v} to all
2: for all }j,0\leqj\leqn-1,j\not=i\mathrm{ do
3: receive Sj from }\mp@subsup{p}{j}{
4: V:= V\cup Sj
decide(x) occurs as follows:
5: if }k=f+1\mathrm{ then
6: decide min(V)
```

(2) Suppose every process proposes v^{*}
e Since only crash model, only v^{*} can be sent
© By Uniform Integrity of send and receive, only v^{*} can be received
(2) By protocol, $V=\left\{v^{*}\right\}$
($\min (V)=v^{*}$

- decide(v^{*})

Agreement

```
Initially }V={\mp@subsup{v}{i}{}
To execute propose(vi)
    round k,1\leqk\leqf+1
1: send {v\inV: pi has not already sent v} to all
2: for all }j,0\leqj\leqn-1,j\not=i\mathrm{ do
3: receive Sj from p
4:}\quadV:=V\cup\mp@subsup{S}{j}{
decide(x) occurs as follows:
5: if }k=f+1\mathrm{ then
6: decide min(V)
```


Lemma 1

For any $r \geq 1$, if a process p receives a value v in round r, then there exists a sequence of processes $p_{0}, p_{1}, \ldots, p_{r}$ such that $p_{r}=p_{,} p_{0}$ is v 's proponent, and in each round p_{k-1} sends v and p_{k} receives it. Furthermore, all processes in the sequence are distinct.

Proof

By induction on the length of the sequence

Agreement

```
Initially \(V=\left\{v_{i}\right\}\)
To execute propose \(\left(v_{i}\right)\)
    round \(k, 1 \leq k \leq f+1\)
1: send \(\left\{v \in V: p_{i}\right.\) has not already sent \(\left.v\right\}\) to all
2: for all \(j, 0 \leq j \leq n-1, j \neq i\) do
3: receive \(S_{j}\) from \(p_{j}\)
4: \(\quad V:=V \cup S_{j}\)
decide \((x)\) occurs as follows:
5: if \(k=f+1\) then
6: decide \(\min (V)\)
```


Lemma 2:

In every execution, at the end of round $f+1$, $V_{i}=V_{j}$ for every correct processes p_{i} and p_{j}

Agreement

```
Initially }V={\mp@subsup{v}{i}{}
To execute propose(vi)
    round k,1\leqk\leqf+1
1: send {v\inV: pi has not already sent v} to all
2: for all }j,0\leqj\leqn-1,j\not=i\mathrm{ do
3: receive Sj from }\mp@subsup{p}{j}{
4: V:= V\cup Sj
decide(x) occurs as follows:
5: if }k=f+1\mathrm{ then
6: decide min(V)
```


Lemma 2:

In every execution, at the end of round $f+1$, $V_{i}=V_{j}$ for every correct processes p_{i} and p_{j}

Agreement follows from Lemma 2, since

 \min is a deterministic function
Agreement

```
Initially \(V=\left\{v_{i}\right\}\)
To execute propose \(\left(v_{i}\right)\)
    round \(k, 1 \leq k \leq f+1\)
1: send \(\left\{v \in V: p_{i}\right.\) has not already sent \(\left.v\right\}\) to all
2: for all \(j, 0 \leq j \leq n-1, j \neq i\) do
3: receive \(S_{j}\) from \(p_{j}\)
4: \(V:=V \cup S_{j}\)
decide \((x)\) occurs as follows:
5: if \(k=f+1\) then
6: decide \(\min (V)\)
```


Proof:

- Show that if a correct p has x in its V at the end of round $f+1$, then every correct has x in its V at the end of round $f+1$

Lemma 2:

In every execution, at the end of round $f+1$, $V_{i}=V_{j}$ for every correct processes p_{i} and p_{j}

Agreement follows from Lemma 2, since \min is a deterministic function

Agreement

```
Initially }V={\mp@subsup{v}{i}{}
To execute propose(vi)
    round k,1\leqk\leqf+1
1: send {v\inV: pi has not already sent v} to all
2: for all }j,0\leqj\leqn-1,j\not=i\mathrm{ do
3: receive Sj from }\mp@subsup{p}{j}{
4: V:= V\cup Sj
```

decide (x) occurs as follows:

5: if $k=f+1$ then
6: decide $\min (V)$

Proof:

- Show that if a correct p has x in its V at the end of round $f+1$, then every correct has x in its V at the end of round $f+1$
- Let r be earliest round x is added to the V of a correct p. Let that process be p^{*}
- If $r \leq f$, then p^{*} sends x in round $r+1 \leq f+1$; every correct process receives x and adds x to its V in round $r+1$

Lemma 2:
In every execution, at the end of round $f+1$, $V_{i}=V_{j}$ for every correct processes p_{i} and p_{j}

Agreement follows from Lemma 2, since \min is a deterministic function

Agreement

Proof:

- Show that if a correct p has x in its V at the end of round $f+1$, then every correct has x in its V at the end of round $f+1$
- Let r be earliest round x is added to the V of a correct p. Let that process be p^{*}
- If $r \leq f$, then p^{*} sends x in round $r+1 \leq f+1$; every correct process receives x and adds x to its V in round $r+1$
- What if $r=f+1$?

Agreement

```
Initially }V={\mp@subsup{v}{i}{}
To execute propose(vi)
    round }k,1\leqk\leqf+
1: send {v\inV: pi has not already sent v} to all
2: for all }j,0\leqj\leqn-1,j\not=i\mathrm{ do
3: receive S from }\mp@subsup{p}{j}{
4: V:= V\cup Sj
decide(x) occurs as follows:
5: if \(k=f+1\) then
6: decide \(\min (V)\)
```


Lemma 2:

In every execution, at the end of round $f+1$, $V_{i}=V_{j}$ for every correct processes p_{i} and p_{j}

Agreement follows from Lemma 2, since min is a deterministic function

Proof:

- Show that if a correct p has x in its V at the end of round $f+1$, then every correct has x in its V at the end of round $f+1$
- Let r be earliest round x is added to the V of a correct p. Let that process be p^{*}
- If $r \leq f$, then p^{*} sends x in round $r+1 \leq f+1$; every correct process receives x and adds x to its V in round $r+1$
- What if $r=f+1$?
- By Lemma 1, there exists a sequence of distinct processes $p_{0}, \ldots, p_{f+1}=p^{*}$
- Consider processes p_{0}, \ldots, p_{f}
- $f+1$ processes; only f faulty
- one of p_{0}, \ldots, p_{f} is correct, and adds x to its V before p^{*} does it in round r
CONTRADICTION!

Terminating Reliable Broadcast

Validity
If the sender is correct and broadcasts a message m, then all correct processes eventually deliver m
Agreement If a correct process delivers a message m, then all correct processes eventually deliver m

Integrity Every correct process delivers at most one message, and if it delivers $m \neq S F$, then some process must have broadcast m
Termination Every correct process eventually delivers some message

TRB for benign failures

Sender in round 1:
1 : send m to all
Process p in round $k, 1 \leq k \leq f+1$
1 : if delivered m in round $k-1$ and $p \neq$ sender then
send m to all
halt
receive round k messages
5: if received m then
6: deliver(m)
7: if $k=f+1$ then halt
8: else if $k=f+1$
9: deliver(SF)
10: halt

Terminates in $f+1$ rounds

How can we do better? find a protocol whose round complexity is proportional to t-the number of failures that actually occurredrather than to f-the max number of failures that may occur

Early stopping: the idea

- Suppose processes can detect the set of processes that have failed by the end of round i
(2) Call that set faulty (p, i)
(2) If \mid faulty $(p, i) \mid<i$ there can be no active dangerous chains, and p can safely deliver SF

Early Stopping: The Protocol

Let $\operatorname{faulty}(p, k)$ be the set of processes that have failed to send a message to p in any round $1, \ldots, k$

1: if $p=$ sender then value $:=m$ else value:=?
Process p in round $k, 1 \leq k \leq f+1$
2: send value to all
3: if value \neq ? and delivered m in round $k-1$ then halt
4: receive round k values from all
5: $\operatorname{faulty}(p, k):=\operatorname{faulty}(p, k-1) \cup\{q \mid p$ received no value from q in round $k\}$
6: if received value $v \neq$? then
7: value $:=v$
8: deliver value
9: else if $k=f+1$ or \mid faulty $(p, k) \mid<k$ then
10: value := SF
11: deliver value
12: if $k=f+1$ then halt

Termination

Let $\operatorname{faulty}(p, k)$ be the set of processes that have
failed to send a message to p in any round $1, \ldots, k$
1: if $p=$ sender then value $:=m$ else value:= ?

Process p in round $k, 1 \leq k \leq f+1$
2: send value to all
3: if value \neq ? and delivered m in round $k-1$ then halt
4: receive round k values from all
5: $\quad \operatorname{faulty}(p, k):=\operatorname{faulty}(p, k-1) \cup\{q \mid p$ received no value from q in round $k\}$
if received value $v \neq$? then
value := v
deliver value
else if $k=f+1$ or \mid faulty $(p, k) \mid<k$ then
value := SF
deliver value
if $k=f+1$ then halt

Termination

Let $\operatorname{faulty}(p, k)$ be the set of processes that have failed to send a message to p in any round $1, \ldots, k$
1: if $p=$ sender then value $:=m$ else value:=?
Process p in round $k, 1 \leq k \leq f+1$
2: send value to all
3: if value \neq ? and delivered m in round $k-1$ then halt
4: receive round k values from all
5: $\quad \operatorname{faulty}(p, k):=\operatorname{faulty}(p, k-1) \cup\{q \mid p$ received no value from q in round $k\}$
6: if received value $v \neq$? then
7: \quad value $:=v$
8: deliver value
9: else if $k=f+1$ or \mid faulty $(p, k) \mid<k$ then
10: value := SF
11: deliver value
12: \quad if $k=f+1$ then halt
(2) If in any round a process receives a value, then it delivers the value in that round
(2) If a process has received only "?" for $f+1$ rounds, then it delivers SF in round $f+1$

Validity

```
Let faulty(p,k) be the set of processes that have
failed to send a message to p in any round 1,\ldots,k
    1: if }p=\mathrm{ sender then value := m}\mathrm{ else value:= ?
Process p in round k,1\leqk\leqf+1
2: send value to all
3: if value }\not=\mathrm{ ? and delivered }m\mathrm{ in round }k-1\mathrm{ then halt
4: receive round }k\mathrm{ values from all
5: faulty (p,k):= faulty (p,k-1)\cup{q|p
        received no value from q in round }k
        if received value v\not=? then
            value := v
            deliver value
        else if k=f+1 or }|\mathrm{ faulty }(p,k)|<k\mathrm{ then
            value := SF
            deliver value
            if }k=f+1\mathrm{ then halt
```


Validity

```
Let faulty(p,k) be the set of processes that have
failed to send a message to p in any round 1,\ldots,k
    1: if }p=\mathrm{ sender then value := m}\mathrm{ else value:= ?
Process p in round k,1\leqk\leqf+1
2: send value to all
3: if value }\not=\mathrm{ ? and delivered m}\mathrm{ in round }k-1\mathrm{ then halt
4: receive round }k\mathrm{ values from all
5: faulty (p,k):= faulty (p,k-1)\cup{q|p
        received no value from q}\mathrm{ in round }k
6: if received value v}\ddagger\mathrm{ ? then
7: value := v
8: deliver value
9: else if }k=f+1\mathrm{ or }|\mathrm{ faulty }(p,k)|<k\mathrm{ then
10: value := SF
11: deliver value
12: if }k=f+1\mathrm{ then halt
```

- If the sender is correct then it sends m to all in round 1
(2) By Validity of the underlying send and receive, every correct process will receive m by the end of round 1
(6) By the protocol, every correct process will deliver m by the end of round 1

Agreement - 1

Let $\operatorname{faulty}(p, k)$ be the set of processes that have failed to send a message to p in any round $1, \ldots, k$

1: if $p=$ sender then value $:=m$ else value:=?

Process p in round $k, 1 \leq k \leq f+1$

2: send value to all
3: if value \neq ? and delivered m in round $k-1$ then halt
4: receive round k values from all
5: $\quad \operatorname{faulty}(p, k):=\operatorname{faulty}(p, k-1) \cup\{q \mid p$ received no value from q in round $k\}$
6: if received value $v \neq$? then
7: \quad value $:=v$
8: deliver value
9: else if $k=f+1$ or $|\operatorname{faulty}(p, k)|<k$ then
10: value := SF
11: deliver value
12: if $k=f+1$ then halt

Lemma 1
For any $r \geq 1$, if a process p delivers $m \neq S F$ in round r, then there exists a sequence of processes $p_{0}, p_{1}, \ldots, p_{r}$ such that $p_{0}=$ sender, $p_{r}=p$, and in each round $k, 1 \leq k \leq r, p_{k-1}$ sent m and p_{k} received it. Furthermore, all processes in the sequence are distinct, unless $r=1$ and $p_{0}=p_{1}=$ sender

Lemma 2:
For any $r \geq 1$, if a process p sets value to SF in round r, then there exist some $j \leq r$ and a sequence of distinct processes $q_{j}, q_{j+1}, \ldots, q_{r}=p$ such that q_{j} only receives "?" in rounds 1 to j, \mid faulty $\left(q_{j}, j\right) \mid<j$, and in each round $k, j+1 \leq k \leq r, \quad q_{k-1}$ sends SF to q_{k} and q_{k} receives SF

Agreement - 2

Let faulty (p, k) be the set of processes that have failed to send a message to p in any round $1, \ldots, k$
1: if $p=$ sender then value $:=m$ else value:= ?
Process p in round $k, 1 \leq k \leq f+1$

```
    send value to all
        if value #? and delivered m}\mathrm{ in round }k-1\mathrm{ then halt
        receive round }k\mathrm{ values from all
        faulty(p,k):= faulty(p,k-1)\cup{q|p
        received no value from q in round k}
        if received value v\not=? then
            value:= v
            deliver value
        else if }k=f+1\mathrm{ or }|\mathrm{ faulty (p,k)|<k then
            value := SF
            deliver value
        if }k=f+1\mathrm{ then halt
                                    Lemma 3:
```

It is impossible for p and q, not necessarily correct or distinct, to set value in the same round r to m and SF, respectively

Agreement - 2

Let $f a u l t y(p, k)$ be the set of processes that have
failed to send a message to p in any round $1 \ldots . . . k$
1 : if $p=$ sender then value $:=m$ else value:= ?

Process p in round $k, 1 \leq k \leq f+1$

```
    send value to all
    if value }\not=\mathrm{ ? and delivered }m\mathrm{ in round }k-1\mathrm{ then halt
    receive round }k\mathrm{ values from all
    faulty(p,k):= faulty(p,k-1)\cup{q|p
    received no value from q in round k}
    if received value v\not=? then
        value:= v
        deliver value
    else if k=f+1 or }|\mathrm{ faulty (p,k)|<k then
        value := SF
        deliver value
        if }k=f+1\mathrm{ then halt
                            Lemma 3:
```

It is impossible for p and q, not necessarily correct or distinct, to set value in the same round r to m and SF, respectively

Proof
By contradiction
Suppose p sets value $=m$ and q sets
value = SF
By Lemmas 1 and 2 there exist
p_{0}, \ldots, p_{r}
q_{j}, \ldots, q_{r}
with the appropriate characteristics
Since q_{j} did not receive m from
process $p_{k-1} \quad 1 \leq k \leq j$ in round k
q_{j} must conclude that p_{0}, \ldots, p_{j-1} are all faulty processes
But then, $\left|\operatorname{faulty}\left(q_{j}, j\right)\right| \geq j$

Agreement - 3

Let faulty (p, k) be the set of processes that have

 failed to send a message to p in any round $1, \ldots, k$1: if $p=$ sender then value $:=m$ else value:= ?
Process p in round $k, 1 \leq k \leq f+1$

2: send value to all
3: if value \neq ? and delivered m in round $k-1$ then halt
4: receive round k values from all
5: $\quad \operatorname{faulty}(p, k):=\operatorname{faulty}(p, k-1) \cup\{q \mid p$ received no value from q in round $k\}$
6: if received value $v \neq$? then
7: \quad value $:=v$
8: deliver value
9: else if $k=f+1$ or \mid faulty $(p, k) \mid<k$ then
10: value := SF
11: deliver value
12: \quad if $k=f+1$ then halt

Agreement - 3

Let $\operatorname{faulty}(p, k)$ be the set of processes that have failed to send a message to p in any round $1, \ldots, k$
1: if $p=$ sender then value $:=m$ else value:= ?
Process p in round $k, 1 \leq k \leq f+1$

2: send value to all
3: if value \neq ? and delivered m in round $k-1$ then halt
4: receive round k values from all
5: $\quad \operatorname{faulty}(p, k):=\operatorname{faulty}(p, k-1) \cup\{q \mid p$ received no value from q in round $k\}$
if received value $v \neq$? then
value := v deliver value
else if $k=f+1$ or $|f a u l t y(p, k)|<k$ then value := SF deliver value if $k=f+1$ then halt

Proof

If no correct process ever receives m, then every correct process delivers $S F$ in round $f+1$

Let r be the earliest round in which a correct process delivers value $\neq S F$
$r \leq f$
\square By Lemma 3, no (correct) process can set value differently in round r
\square In round $r+1 \leq f+1$, that correct process sends its value to all
\square Every correct process receives and delivers the value in round $r+1 \leq f+1$
$r=f+1$
\square By Lemma 1, there exists a sequence $\mathrm{PO}^{\prime}, \ldots, \mathrm{Pf}_{\mathrm{f}} 1$ = Pr of distinct processes
\square Consider processes $\mathrm{PO}, \ldots, \mathrm{Pf}$
e $f+1$ processes; only f faulty
(2) one of $\mathrm{PO}, \ldots, \mathrm{Pf}$ is correct-- let it be Pc
(2 To send v in round $c+1, P_{c}$ must have set its value to v and delivered v in round $c<r$ CONTRADICTION

Integrity

Let $\operatorname{faulty}(p, k)$ be the set of processes that have failed to send a message to p in any round $1, \ldots, k$
1: if $p=$ sender then value $:=m$ else value:= ?
Process p in round $k, 1 \leq k \leq f+1$

2: send value to all
3: if value \neq ? and delivered m in round $k-1$ then halt
4: receive round k values from all
5: $\quad \operatorname{faulty}(p, k):=\operatorname{faulty}(p, k-1) \cup\{q \mid p$ received no value from q in round $k\}$
6: if received value $v \neq$? then
7: \quad value $:=v$
8: deliver value
9: else if $k=f+1$ or $|\operatorname{faulty}(p, k)|<k$ then
10: value := SF
11: deliver value
12: \quad if $k=f+1$ then halt

Integrity

```
Let faulty(p,k) be the set of processes that have
failed to send a message to p in any round 1,\ldots,k
1: if }p=\mathrm{ sender then value := m}\mathrm{ else value:= ?
Process p in round k,1\leqk\leqf+1
    send value to all
    if value }\not=\mathrm{ ? and delivered }m\mathrm{ in round }k-1\mathrm{ then halt
    receive round }k\mathrm{ values from all
    faulty(p,k):= faulty(p,k-1)\cup{q|p
    received no value from q in round k}
6: if received value v\not=? then
7: value := v
8: deliver value
9: else if k=f+1 or }|\mathrm{ faulty (p,k)|<k then
10: value := SF
11: deliver value
12: if }k=f+1\mathrm{ then halt
```

(2) At most one m
\square Failures are benign, and a process executes at most one deliver event before halting
(2) If $m \neq S F$, only if m was broadcast
\square From Lemma 1 in the proof of Agreement

A Lower Bound

Theorem

There is no algorithm that solves the consensus problem in fewer than $f+1$ rounds in the presence of f crash failures, if $n \geq f+2$

We consider a special case $(f=1)$ to study the proof technique

Views

Let α be an execution. The view of process p_{i} in α, denoted by $\alpha \mid p_{i}$, is the subsequence of computation and message receive events that occur in p_{i} together with the state of p_{i} in the initial configuration of α

Views

Let α be an execution. The view of process p_{i} in α, denoted by $\alpha \mid p_{i}$, is the subsequence of computation and message receive events that occur in p_{i} together with the state of p_{i} in the initial configuration of α

Similarity

Definition Let α_{1} and α_{2} be two executions of consensus and let p_{i} be a correct process in both α_{1} and α_{2}.
α_{1} is similar to α_{2} with respect to p_{i}, denoted $\alpha_{1} \sim_{p_{i}} \alpha_{2}$ if

$$
\alpha_{1}\left|p_{i}=\alpha_{2}\right| p_{i}
$$

Similarity

Definition Let α_{1} and α_{2} be two executions of consensus and let p_{i} be a correct process in both α_{1} and α_{2}.
α_{1} is similar to α_{2} with respect to p_{i}, denoted $\alpha_{1} \sim_{p_{i}} \alpha_{2}$ if

$$
\alpha_{1}\left|p_{i}=\alpha_{2}\right| p_{i}
$$

Note If $\alpha_{1} \sim_{p_{i}} \alpha_{2}$ then p_{i} decides the same value in both executions

Similarity

Definition Let α_{1} and α_{2} be two executions of consensus and let p_{i} be a correct process in both α_{1} and α_{2}.
α_{1} is similar to α_{2} with respect to p_{i}, denoted $\alpha_{1} \sim_{p_{i}} \alpha_{2}$ if

$$
\alpha_{1}\left|p_{i}=\alpha_{2}\right| p_{i}
$$

Note If $\alpha_{1} \sim_{p_{i}} \alpha_{2}$ then p_{i} decides the same value in both executions

Lemma If $\alpha_{1} \sim_{p_{i}} \alpha_{2}$ and p_{i} is correct, then $\operatorname{dec}\left(\alpha_{1}\right)=\operatorname{dec}\left(\alpha_{2}\right)$

Similarity

Definition Let α_{1} and α_{2} be two executions of consensus and let p_{i} be a correct process in both α_{1} and α_{2}.
α_{1} is similar to α_{2} with respect to p_{i}, denoted $\alpha_{1} \sim_{p_{i}} \alpha_{2}$ if

$$
\alpha_{1}\left|p_{i}=\alpha_{2}\right| p_{i}
$$

The transitive closure of $\alpha_{1} \sim_{p_{i}} \alpha_{2}$ is denoted $\alpha_{1} \approx \alpha_{2}$.

We say that $\alpha_{1} \approx \alpha_{2}$ if there exist executions $\beta_{1}, \beta_{2}, \ldots, \beta_{k+1}$ such that
$\alpha_{1}=\beta_{1} \sim_{p_{i_{1}}} \beta_{2} \sim_{p_{i_{2}}} \ldots, \sim_{p_{i_{k}}} \beta_{k+1}=\alpha_{2}$
Note If $\alpha_{1} \sim_{p_{i}} \alpha_{2}$ then p_{i} decides the same value in both executions

Lemma If $\alpha_{1} \sim_{p_{i}} \alpha_{2}$ and p_{i} is correct, then $\operatorname{dec}\left(\alpha_{1}\right)=\operatorname{dec}\left(\alpha_{2}\right)$

Similarity

Definition Let α_{1} and α_{2} be two executions of consensus and let p_{i} be a correct process in both α_{1} and α_{2}.
α_{1} is similar to α_{2} with respect to p_{i}, denoted $\alpha_{1} \sim_{p_{i}} \alpha_{2}$ if

$$
\alpha_{1}\left|p_{i}=\alpha_{2}\right| p_{i}
$$

Note If $\alpha_{1} \sim_{p_{i}} \alpha_{2}$ then p_{i} decides the same value in both executions

Lemma If $\alpha_{1} \sim_{p_{i}} \alpha_{2}$ and p_{i} is correct, then $\operatorname{dec}\left(\alpha_{1}\right)=\operatorname{dec}\left(\alpha_{2}\right)$

The transitive closure of $\alpha_{1} \sim_{p_{i}} \alpha_{2}$ is denoted $\alpha_{1} \approx \alpha_{2}$.

We say that $\alpha_{1} \approx \alpha_{2}$ if there exist executions $\beta_{1}, \beta_{2}, \ldots, \beta_{k+1}$ such that
$\alpha_{1}=\beta_{1} \sim_{p_{i_{1}}} \beta_{2} \sim_{p_{i_{2}}} \ldots, \sim_{p_{i_{k}}} \beta_{k+1}=\alpha_{2}$
Lemma If $\alpha_{1} \approx \alpha_{2}$ then $\operatorname{dec}\left(\alpha_{1}\right)=\operatorname{dec}\left(\alpha_{2}\right)$

Single-Failure Case

There is no algorithm that solves consensus in fewer than two rounds in the presence of one crash failure, if $n \geq 3$

The Idea

By contradiction

- Consider a one-round execution in which each process proposes 0 . What is the decision value?
© Consider another one-round execution in which each process proposes 1. What is the decision value?
(2) Show that there is a chain of similar executions that relate the two executions.

So what?

α^{i} s

Definition
α^{i} is the execution of the algorithm in which

- no failures occur
(2) only processes p_{0}, \ldots, p_{i-1} propose 1

$\alpha^{i} s$

Definition
α^{i} is the execution of the algorithm in which

- no failures occur
© only processes p_{0}, \ldots, p_{i-1} propose 1
$\begin{array}{cc}p_{0} & 0 \\ & \\ p_{i-1} & 0 \\ p_{i} & 0 \\ p_{i+1} & 0 \\ & \\ p_{n-1} & 0\end{array}$ \square

$\alpha^{i} s$

Definition
α^{i} is the execution of the algorithm in which

- no failures occur
(2) only processes p_{0}, \ldots, p_{i-1} propose 1

α^{i} s

Definition
α^{i} is the execution of the algorithm in which

- no failures occur
© only processes p_{0}, \ldots, p_{i-1} propose 1

$\alpha^{i} s$

Definition
α^{i} is the execution of the algorithm in which

- no failures occur
(2) only processes p_{0}, \ldots, p_{i-1} propose 1

$\alpha^{i} s$

Definition
α^{i} is the execution of the algorithm in which

- no failures occur
© only processes p_{0}, \ldots, p_{i-1} propose 1

$\alpha^{i} s$

Definition
α^{i} is the execution of the algorithm in which
(2) no failures occur
© only processes p_{0}, \ldots, p_{i-1} propose 1

$\alpha^{i} s$

Definition
α^{i} is the execution of the algorithm in which
(2) no failures occur
© only processes p_{0}, \ldots, p_{i-1} propose 1

α^{i} s

Definition
α^{i} is the execution of the algorithm in which
(2) no failures occur
© only processes p_{0}, \ldots, p_{i-1} propose 1

$\alpha^{i} \mathrm{~s}$

Definition
α^{i} is the execution of the algorithm in which
(2) no failures occur
© only processes p_{0}, \ldots, p_{i-1} propose 1

Adjacent α^{i} s are similar!

Starting from α^{i}, we build a set of executions α_{j}^{i} where $0 \leq j \leq n-1$ as follows:
α_{j}^{i} is obtained from α^{i} after removing the messages that p_{i} sends to the j -th highest numbered processors (excluding itself)

The executions

The executions

$$
\alpha_{0}^{i}
$$

The executions

α_{0}^{i}

α_{1}^{i}

α_{n-1}^{i}

The executions

α_{0}^{i}

α_{1}^{i}

α_{n-1}^{i}

The executions

α_{0}^{i}

α_{1}^{i}

α_{n-1}^{i}

Indistinguishability

```
lull
\alpha
a
```


Indistinguishability

$$
\begin{aligned}
& \alpha^{i} \\
& \alpha_{1}^{i}
\end{aligned}
$$

Indistinguishability

$$
\begin{aligned}
& \begin{array}{l}
\alpha^{i} \\
2
\end{array} \\
& \alpha_{1}^{i}
\end{aligned}
$$

Indistinguishability

$$
\begin{aligned}
& \begin{array}{llll}
p_{0} & 1 & \vdots \\
& & \vdots \\
& & \vdots \\
p_{i-1} & 1 & \vdots \\
p_{i} & 0 & \vdots \\
p_{i+1} & 0 & \vdots & \vdots \\
& & \vdots \\
p_{n-1} & 0 & 0 & \vdots
\end{array} \\
& \alpha^{i} \\
& \alpha_{2}^{i}
\end{aligned}
$$

Indistinguishability

$$
\begin{aligned}
& \begin{array}{llll}
p_{0} & 1 & \vdots \\
& & \vdots \\
& & \vdots \\
p_{i-1} & 1 & \vdots \\
p_{i} & 0 & \vdots \\
p_{i+1} & 0 & \vdots & \vdots \\
& & \vdots \\
p_{n-1} & 0 & 0 & \vdots
\end{array} \\
& \begin{array}{l}
\alpha^{i} \\
2
\end{array}
\end{aligned}
$$

Indistinguishability

$$
\begin{array}{ccccc}
p_{0} & 1 & \vdots & & \vdots \\
& & \vdots & & \vdots \\
& & \vdots & & \vdots \\
& & \vdots & & \vdots \\
p_{i-1} & 1 & \vdots & & \vdots \\
p_{i} & 0 & \vdots & & \vdots \\
p_{i+1} & 0 & \vdots & & \vdots \\
& & \vdots & & \vdots \\
& & \vdots & & \vdots \\
& & \vdots & & \vdots \\
p_{n-1} & 0 & \vdots & & \vdots \\
& & & & \\
& & & \alpha^{i} \\
& & & & \\
& & & & \alpha_{n-1}^{i}
\end{array}
$$

Indistinguishability

$$
\begin{array}{ccccc}
p_{0} & 1 & \vdots & & \vdots \\
& & \vdots & & \vdots \\
& & \vdots & & \vdots \\
& & \vdots & & \vdots \\
p_{i-1} & 1 & \vdots & & \vdots \\
p_{i} & 0 & \vdots & & \vdots \\
p_{i+1} & 0 & \vdots & & \vdots \\
& & \vdots & & \vdots \\
& & \vdots & & \vdots \\
& & \vdots & & \vdots \\
p_{n-1} & 0 & \vdots & & \vdots \\
& & & & \\
& & & \alpha^{i} \\
& & & 2 l \\
& & & \alpha_{n-1}^{i}
\end{array}
$$

Indistinguishability

ϕ
1
0
\vdots
1
0
1
\vdots
1
\vdots
\vdots
1
0
1
\vdots
1
\vdots
1
0

$$
\begin{aligned}
& \alpha^{i} \\
& 22_{n-1}^{i} \\
& \alpha_{n-1}^{i}
\end{aligned}
$$

$$
\beta_{n-1}^{i}
$$

Indistinguishability

$$
\begin{aligned}
& \alpha^{i} \\
& 22_{n-1}^{i}
\end{aligned}
$$

\approx

Indistinguishability

$$
\begin{aligned}
& \alpha^{i} \\
& 22_{n-1}^{i} \\
& \alpha_{n-1}^{i}
\end{aligned}
$$

\approx

$$
\beta_{n-2}^{i}
$$

Indistinguishability

$$
\begin{aligned}
& \alpha^{i} \\
& 22_{n-1}^{i} \\
& \alpha_{n-1}^{i}
\end{aligned}
$$

\approx
β_{n-3}^{i}

Indistinguishability

ϕ
1
0
1
0
1
\vdots
1
0
1
0
\vdots
\vdots
\vdots
1
0
1
0
1
0

$$
\begin{aligned}
& \alpha^{i} \\
& 22 \\
& \alpha_{n-1}^{i}
\end{aligned}
$$

\approx
β_{0}^{i}

Indistinguishability

$$
\begin{aligned}
& \alpha^{i} \\
& 22 \\
& \alpha_{n-1}^{i}
\end{aligned}
$$

$0-\theta-\theta-a-\theta-\theta-\theta-\theta-0-0-\theta$

α_{2}^{i+1}
β_{0}^{i}

Indistinguishability

α^{i}
\approx

α^{i+1}

Arbitrary failures with

 message authentication Fail-stop $\bigcirc-----\bigcirc$ CrashSend Omission

Receive Omission
(2Process can send conflicting messages to different receivers
© Messages are signed with unforgeable signatures

Arbitrary failures with message authentication

Arbitrary (Byzantine) failures

Valid messages

A valid message m has the following form:
in round 1:

$$
m: s_{i d} \quad \text { (} m \text { is signed by the sender) }
$$

in round $r>1$, if received by p from q : $m: p_{1}: p_{2}: \ldots: p_{r}$ where
(6) $p_{1}=$ sender; $p_{r}=q$
(2) p_{1}, \ldots, p_{r} are distinct from each other and from p
(2) message has not been tampered with

AFMA: The Idea

(2 A correct process p discards all non-valid messages it receives
(2) If a message is valid,
\square it "extracts" the value from the message
\square it relays the message, with its own signature appended
(2 At round $f+1$:
\square if it extracted exactly one message, p delivers it
\square otherwise, p delivers SF

AFMA: The Protocol

Initialization for process p :
if $p=$ sender and p wishes to broadcast m then extracted := relay := $\{m\}$

Process p in round $k, 1 \leq k \leq f+1$
for each $s \in$ relay
send $s: p$ to all
receive round k messages from all processes
relay := \emptyset
for each valid message received $s=m: p_{1}: p_{2}: \ldots: p_{k}$
if $m \notin$ extracted then
extracted := extracted $\cup\{m\}$ relay := relay $\cup\{s\}$

At the end of round $f+1$
if $\exists m$ such that extracted $=\{m\}$ then
deliver m
else deliver SF

Termination

Initialization for process p :
if $p=$ sender and p wishes to broadcast m then extracted $:=$ relay $:=\{m\}$

Process p in round $k, 1 \leq k \leq f+1$
for each $s \in$ relay
send $s: p$ to all
receive round k messages from all processes
relay := \emptyset
for each valid message received $s=m: p_{1}: p_{2}: \ldots: p_{k}$
if $m \notin$ extracted then
extracted := extracted $\cup\{m\}$
relay $:=$ relay $\cup\{s\}$
At the end of round $f+1$
if $\exists m$ such that extracted $=\{m\}$ then
deliver m
else deliver SF

In round $f+1$, every correct process delivers either m or SF and then halts

Agreement

Initialization for process p :
if $p=$ sender and p wishes to broadcast m then extracted $:=$ relay $:=\{m\}$

Process p in round $k, 1 \leq k \leq f+1$
for each $s \in$ relay send $s: p$ to all
receive round k messages from all processes
relay := \emptyset
for each valid message received $s=m: p_{1}: p_{2}: \ldots: p_{k}$ if $m \notin$ extracted then extracted := extracted $\cup\{m\}$ relay := relay $\cup\{s\}$

At the end of round $f+1$
if $\exists m$ such that extracted $=\{m\}$ then deliver m else deliver SF

Lemma. If a correct process extracts m, then every correct process eventually extracts m

Proof
Let r be the earliest round in which some correct process extracts m. Let that process be p.

- if p is the sender, then in round $1 p$ sends a valid message to all.
All correct processes extract that message in round 1
- otherwise, p has received in round r a message

$$
m: p_{1}: p_{2}: \ldots: p_{r}
$$

- Claim: $p_{1}, p_{2}, \ldots, p_{r}$ are all faulty
- true for $p_{1}=s$
- Suppose $p_{j}, 1 \leq j \leq r$, were correct
- p_{j} signed and relayed message in round j
- p_{j} extracted message in round $j-1$

CONTRADICTION

- If $r \leq f, p$ will send a valid message

```
m: p1: p p : ...: p
```

in round $r+1 \leq f+1$ and every correct process will extract it in round $r+1 \leq f+1$

- If $r=f+1$, by Claim above, $p_{1}, p_{2}, \ldots, p_{f+1}$ faulty
- At most f faulty processes
- CONTRADICTION

Validity

Initialization for process p :
if $p=$ sender and p wishes to broadcast m then extracted $:=$ relay $:=\{m\}$

Process p in round $k, 1 \leq k \leq f+1$
for each $s \in$ relay
send $s: p$ to all
receive round k messages from all processes
relay := \emptyset
for each valid message received $s=m: p_{1}: p_{2}: \ldots: p_{k}$
if $m \notin$ extracted then
extracted := extracted $\cup\{m\}$
relay $:=$ relay $\cup\{s\}$
At the end of round $f+1$
if $\exists m$ such that extracted $=\{m\}$ then
deliver m
else deliver SF

Validity

Initialization for process p :
if $p=$ sender and p wishes to broadcast m then extracted := relay $:=\{m\}$

Process p in round $k, 1 \leq k \leq f+1$
for each $s \in$ relay send $s: p$ to all
receive round k messages from all processes
relay := \emptyset
for each valid message received $s=m: p_{1}: p_{2}: \ldots: p_{k}$
if $m \notin$ extracted then
extracted := extracted $\cup\{m\}$
relay := relay $\cup\{s\}$
At the end of round $f+1$
if $\exists m$ such that extracted $=\{m\}$ then
deliver m
else deliver SF

TRB for

 Fail-stop Receive OmissionSend Omission
Arbitrary failures with
message authentication
Arbitrary (Byzantine) failures

AF: The Idea

(2) Identify the essential properties of message authentication that made AFMA work
(2) Implement these properties without using message authentication

AF: The Approach

- Introduce two primitives $\begin{array}{ll}\text { broadcast }(p, m, i) & \text { (executed by } p \text { in round } i \text {) } \\ \operatorname{accept}(p, m, i) & \text { (executed by } q \text { in round } j \geq i)\end{array}$
- Give axiomatic definitions of broadcast and accept
(2) Derive an algorithm that solves TRB for AF using these primitives
(2) Show an implementation of these primitives that does not use message authentication

Properties of

broadcast and accept

- Correctness If a correct process p executes broadcast (p, m, i) in round i, then all correct processes will execute $\operatorname{accept}(p, m, i)$ in round i
(2) Unforgeability If a correct process q executes $\operatorname{accept}(p, m, i)$ in round $j \geq i$, and p is correct, then p did in fact execute broadcast (p, m, i) in round i
- Relay If a correct process q executes accept (p, m, i) in round $j \geq i$, then all correct processes will execute $\operatorname{accept}(p, m, i)$ by round $j+1$

AF: The Protocol - 1

sender s in round 0 :
0 : extract m
sender s in round 1:
1: broadcast $(s, m, 1)$
Process p in round $k, 1 \leq k \leq f+1$
2: if p extracted m in round $k-1$ and $p \neq$ sender then
4: $\quad \operatorname{broadcast}(p, m, k)$
5: if p has executed at least k accept $\left(q_{i}, m, j_{i}\right) 1 \leq i \leq k$ in rounds 1 through k (where (i) q_{i} distinct from each other and from $p_{\text {, }}$ (ii) one q_{i} is s, and (iii) $1 \leq j_{i} \leq k$) and p has not previously extracted m then

6: extract m
7: if $k=f+1$ then
8: if in the entire execution p has extracted exactly one m then
9: \quad deliver m
10: else deliver SF
11: halt

Termination

sender s in round 0 :
0 : extract m
sender s in round 1:
1: $\quad \operatorname{broadcast}(s, m, 1)$

Process p in round $k, 1 \leq k \leq f+1$
2: if p extracted m in round $k-1$ and $p \neq$ sender then broadcast (p, m, k)
5: if p has executed at least k accept $\left(q_{i}, m, j_{i}\right) \quad 1 \leq i \leq k$ in rounds 1 through k
(where (i) q_{i} distinct from each other and from p, (ii) one q_{i} is s, and (iii) $1 \leq j_{i} \leq k$)
and p has not previously extracted m then
6: extract m
7: if $k=f+1$ then
8: \quad if in the entire execution p has extracted exactly one m then
deliver m
else deliver SF halt

In round $f+1$, every correct process delivers either m or SF and then halts

Agreement - 1

```
sender s in round 0:
O: extract m
sender s in round 1:
1: broadcast(s,m,1)
Process p in round k,1\leqk\leqf+1
2: if }p\mathrm{ extracted }m\mathrm{ in round }k-1\mathrm{ and }p\not=\mathrm{ sender then
4: broadcast( }p,m,k
5: if p has executed at least k accept ( }\mp@subsup{q}{i}{},m,\mp@subsup{j}{i}{})\quad1\leqi\leqk i
        rounds 1 through k
            (where (i) }\mp@subsup{q}{i}{}\mathrm{ distinct from each other and from
            p,(ii) one q}\mp@subsup{q}{i}{}\mathrm{ is }s\mathrm{ , and (iii) 1拢价)
        and p}\mathrm{ has not previously extracted }m\mathrm{ then
            extract m
        if k=f+1 then
        if in the entire execution p}\mathrm{ has extracted exactly
                one m}\mathrm{ then
            deliver m
        else deliver SF
        halt
```


Lemma

If a correct process extracts m, then every correct process eventually extracts m

Agreement - 1

```
sender s in round 0:
O: extract m
sender s in round 1:
1: broadcast(s,m,1)
Process p in round k,1\leqk\leqf+1
2: if }p\mathrm{ extracted }m\mathrm{ in round }k-1\mathrm{ and }p\not=\mathrm{ sender then
4: broadcast( }p,m,k
5: if p has executed at least k accept ( }\mp@subsup{q}{i}{},m,\mp@subsup{j}{i}{})\quad1\leqi\leqk i
        rounds 1 through k
            (where (i) }\mp@subsup{q}{i}{}\mathrm{ distinct from each other and from
            p,(ii) one q}\mp@subsup{q}{i}{}\mathrm{ is }s\mathrm{ , and (iii) 1拢价)
        and p}\mathrm{ has not previously extracted }m\mathrm{ then
            extract m
        if k=f+1 then
        if in the entire execution p}\mathrm{ has extracted exactly
                one m}\mathrm{ then
            deliver m
        else deliver SF
        halt
```


Lemma

If a correct process extracts m, then every correct process eventually extracts m

Agreement - 1

sender s in round 0 :
0 : extract m
sender s in round 1:
1: broadcast $(s, m, 1)$

Process p in round $k, 1 \leq k \leq f+1$
2: if p extracted m in round $k-1$ and $p \neq$ sender then
4: $\quad \operatorname{broadcast}(p, m, k)$
5: if p has executed at least k accept $\left(q_{i}, m, j_{i}\right) \quad 1 \leq i \leq k$ in rounds 1 through k
(where (i) q_{i} distinct from each other and from p, (ii) one q_{i} is s, and (iii) $1 \leq j_{i} \leq k$) and p has not previously extracted m then

extract m

if $k=f+1$ then
if in the entire execution p has extracted exactly one m then
deliver m
else deliver SF
halt

Lemma

If a correct process extracts m, then every correct process eventually extracts m

Proof

Let r be the earliest round in which some correct process extracts m. Let that process be p.
. if $r=0$, then $p=s$ and p will execute broadcast $(s, m, 1)$ in round 1. By CORRECTNESS, all correct processes will execute accept $(s, m, 1)$ in round 1 and extract m

- if $r>0$, the sender is faulty. Since p has extracted m in round r, p has accepted at least r triples with properties (i), (ii), and (iii) by round r
$\square r \leq f$ By RELAY, all correct processes will have accepted those r triples by round $r+1$
$\square p$ will execute broadcast(p,m,r+1) in round $r+1$
\square By CORRECTNESS, any correct process other than p, $q_{1}, q_{2}, \ldots, q_{r}$ will have accepted $r+1$ triples ($q_{k}, m, j k$), $1 \leq j_{k} \leq r+1$, by round $r+1$
- $91,92, \ldots, q_{r}, \mathrm{p}$ are all distinct
\square every correct process other than $\mathrm{q}_{1}, \mathrm{q}_{2}, \ldots, \mathrm{q}_{\mathrm{r}}, \mathrm{p}$ will extract m
\square p has already extracted m; what about $q_{1}, q_{2}, \ldots, q_{r}$?

Agreement - 2

sender s in round 0 :
0: extract m
sender s in round 1:
1: broadcast($s, m, 1$)

Process p in round $k, 1 \leq k \leq f+1$
2: if p extracted m in round $k-1$ and $p \neq$ sender then
4: $\quad \operatorname{broadcast}(p, m, k)$
5: if p has executed at least k accept $\left(q_{i}, m, j_{i}\right) \quad 1 \leq i \leq k$ in rounds 1 through k
(where (i) q_{i} distinct from each other and from p, (ii) one q_{i} is s, and (iii) $1 \leq j_{i} \leq k$) and p has not previously extracted m then

$$
\text { extract } m
$$

if $k=f+1$ then
if in the entire execution p has extracted exactly one m then
deliver m
else deliver SF
halt

Claim: $q_{1}, q_{2}, \ldots, q_{r}$ are all faulty
$>$ Suppose q_{k} were correct
$>p$ has $\operatorname{accepted}\left(q_{k}, m, j_{k}\right)$ in round $j_{k} \leq r$
> By UNFORGEABILITY, q_{k} executed broadcast $\left(q_{k}, m, j_{k}\right)$ in round j_{k}
$>q_{k}$ extracted m in round $j_{k-1}<r$

CONTRADICTION

\square Case 2: $r=f+1$
\square Since there are at most f faulty processes, some process q_{l} in $q_{1}, q_{2}, \ldots, q_{f+1}$ is correct
\square By UNFORGEABILITY, q_{l} executed broadcast $\left(q_{l}, m, j_{l}\right)$ in round $j_{l} \leq r$
$\square q_{l}$ has extracted m in round $j_{l-1}<f+1$
CONTRADICTION

Validity

sender s in round 0 :
0 : extract m
sender s in round 1 :
1: \quad broadcast $(s, m, 1)$

Process p in round $k, 1 \leq k \leq f+1$
2: if p extracted m in round $k-1$ and $p \neq$ sender then
4: \quad broadcast (p, m, k)
5: if p has executed at least k accept $\left(q_{i}, m, j_{i}\right) \quad 1 \leq i \leq k$ in rounds 1 through k
(where (i) q_{i} distinct from each other and from p, (ii) one q_{i} is s, and (iii) $1 \leq j_{i} \leq k$) and p has not previously extracted m then
extract m
if $k=f+1$ then
if in the entire execution p has extracted exactly one m then
deliver m
else deliver SF halt
(2) A correct sender executes broadcast $(s, m, 1)$ in round 1
(2) By CORRECTNESS, all correct processes execute $\operatorname{accept}(s, m, 1)$ in round 1 and extract m

- In order to extract a different message m^{\prime}, a process must execute $\operatorname{accept}\left(s, m^{\prime}, 1\right)$ in some round $i \leq f+1$
© By UNFORGEABILITY, and because s is correct, no correct process can extract $m^{\prime} \neq m$
© All correct processes will deliver m

Implementing

broadcast and accept

(2) A process that wants to broadcast m, does so through a series of witnesses
\square Sends m to all
\square Each correct process becomes a witness by relaying m to all

- If a process receives enough witness confirmations, it accepts m

Can we rely on witnesses?

(2) Only if not too many faulty processes!
(2) Otherwise, a set of faulty processes could fool a correct process by acting as witnesses of a message that was never broadcast
© How large can be f with respect to n ?

Byzantine Generals

- One General G, a set of Lieutenants L_{i}
- General can order Attack (A) or Retreat (R)
(2 General may be a traitor; so may be some of the Lieutenants
* * *

I. If G is trustworthy, every trustworthy L_{i} must follow G's orders
II. Every trustworthy L_{i} must follow same battleplan

The plot thickens...

One traitor
${ }^{G}$ 大
L_{1} オ
t $^{L_{2}}$

The plot thickens...

One traitor
${ }^{G}$ 웃
${ }^{L_{1}}$ 웃 \quad ㅇ́ㅅ $^{L_{2}}$

The plot thickens...

One traitor

G 大
${ }^{L_{1}}$ 大
$t^{L_{2}}$

The plot thickens...

One traitor

The plot thickens...

The plot thickens...

One traitor

$$
\begin{aligned}
& { }^{G} \text { 웃 } \\
& L_{1} \text { 웃 } \quad^{L_{2}}
\end{aligned}
$$

The plot thickens...

One traitor

The plot thickens...

One traitor

$$
\begin{aligned}
& { }^{G} \text { 웃 }
\end{aligned}
$$

The plot thickens...

One traitor

$$
\begin{aligned}
& { }^{G} \text { 웃 } \\
& L_{1} \stackrel{\circ}{x}^{\leftrightarrows}^{L_{2}}
\end{aligned}
$$

The plot thickens...

One traitor

${ }^{G}$ 웃

The plot thickens...

One traitor

${ }^{G}$ 웃

A Lower Bound

Theorem
There is no algorithm that solves TRB for Byzantine failures if $n \leq 3 f$
(Lamport, Shostak, and Pease, The Byzantine Generals Problem, ACM TOPLAS, 4 (3), 382-401, 1982)

Back to the protocol...

(2) To broadcast a message in round r, p sends (init, p, m, r) to all
(. A confirmation has the form (echo, p, m, r)
(2) A witness sends (echo, p, m, r) if either:
\square it receives (init, p, m, r) from p directly or
\square it receives confirmations for (p, m, r) from at least $f+1$ processes (at least one correct witness)
(2) A process accepts (p, m, r) if it has received $n-f$ confirmations (as many as possible...)
(2 Protocol proceeds in rounds. Each round has 2 phases

Implementation of

broadcast and accept

Phase $2 r-1$
1: p sends (init, p, m, r) to all
Phase $2 r$
2: if q received (init, p, m, r) in phase $2 r-1$ then
3: q sends (echo, p, m, r) to all /* q becomes a witness */
4: if q receives (echo, p, m, r) from at least $n-f$ distinct processes in phase $2 r$ then
5: $\quad q$ accepts (p, m, r)
Phase $j>2 r$
6: if q has received (echo, p, m, r) from at least $f+1$ distinct processes in phases $(2 r, 2 r+1, \ldots, j-1)$ then
7: q sends (echo, p, m, r) to all processes $\quad /^{*} q$ becomes a witness */
8: if q has received (echo, p, m, r) from at least $n-f$ processes in phases $(2 r, 2 r+1, \ldots, j)$ then
9: $\quad q$ accepts (p, m, r)

Implementation of

broadcast and accept

Phase $2 r-1$
1: p sends (init, p, m, r) to all
Phase $2 r$
2: if q received (init, p, m, r) in phase $2 r-1$ then
3: q sends (echo, p, m, r) to all /* q becomes a witness */
4: if q receives (echo, p, m, r) from at least $n-f$ distinct processes in phase $2 r$ then
5: $\quad q$ accepts (p, m, r)
Phase $j>2 r$
6: if q has received (echo, p, m, r) from at least $f+1$ distinct processes in phases $(2 r, 2 r+1, \ldots, j-1)$ then
7: q sends (echo, p, m, r) to all processes $\quad /^{*} q$ becomes a witness */
8: if q has received (echo, p, m, r) from at least $n-f$ processes in phases $(2 r, 2 r+1, \ldots, j)$ then
9: $\quad q$ accepts (p, m, r)
Is termination a problem?

The implementation is correct

Theorem
If $n>3 f$, the given implementation of broadcast (p, m, r) and $\operatorname{accept}(p, m, r)$ satisfies Unforgeability, Correctness, and Relay

Assumption

Channels are authenticated

Correctness

If a correct process p
executes broadcast (p, m, r)in round r, then allcorrect processes willexecute $\operatorname{accept}(p, m, r)$ inround r

Correctness

If a correct process p

 executes broadcast (p, m, r) in round r, then all correct processes will execute $\operatorname{accept}(p, m, r)$ in round rIf p is correct then
$\square p$ sends (init, p, m, r) to all in round r (phase $2 r-1$)
\square by Validity of the underlying send and receive, every correct process receives (init, p, m, r) in phase
\square every correct process becomes a witness
\square every correct process sends (echo, p, m, r) in phase $2 r$
\square since there are at least $n-f$ correct processes, every correct process receives at least $n-f$ echoes in phase $2 r$
\square every correct process executes accept $(p, m, r$) in phase $2 r$ (in round r)

Unforgeability - 1

If a correct process q executes accept (p, m, r) in round $j \geq r$, and p is correct, then p did in fact execute broadcast (p, m, r) in round r

- Suppose q executes accept (p, m, r) in round j
- q received (echo, p, m, r) from at least $n-f$ distinct processes by phase k, where $k=2 j-1$ or $k=2 j$
- Let k^{\prime} be the earliest phase in which some correct process q^{\prime} becomes a witness to (p, m, r)

Unforgeability - 1

If a correct process q executes accept (p, m, r) in round $j \geq r$, and p is correct, then p did in fact execute broadcast (p, m, r) in round r

- Suppose q executes accept (p, m, r) in round j
- q received (echo, p, m, r) from at least $n-f$ distinct processes by phase k, where $k=2 j-1$ or $k=2 j$
- Let k^{\prime} be the earliest phase in which some correct process q^{\prime} becomes a witness to (p, m, r)

Case 1: $k^{\prime}=2 r-1$
$\square q^{\prime}$ received (init, p, m, r) from p
\square since p is correct, it follows that p did execute broadcast (p, m, r) in round r
Case 2: $k^{\prime}>2 r-1$
$\square q^{\prime}$ has become a witness by receiving (echo, p, m, r) from $f+1$ distinct processes
\square at most f are faulty; one is correct
\square this process was a witness to (p, m, r) before phase k^{\prime}

CONTRADICTION
The first correct process receives (init, p, m, r) from p !

Unforgeability -2

(2) For q to accept, some correct process must become witness.
© Earliest correct witness q^{\prime} becomes so in phase $2 r-1$, and only if p did indeed executed broadcast (p, m, r)
(3) Any correct process that becomes a witness later can only do so if a correct process is already a witness.
(3) For any correct process to become a witness, p must have executed broadcast (p, m, r)

Relay

If a correct process q executes accept (p, m, r) in round $j \geq r$, then all correct processes will execute accept (p, m, r) by round $j+1$

Relay

If a correct process q executes accept (p, m, r) in round $j \geq r$, then all correct processes will execute accept (p, m, r) by round $j+1$
(6) Suppose correct q executes $\operatorname{accept}(p, m, r)$ in round j (phase $k=2 j-1$ or $k=2 j$)

- q received at least $n-f$ (echo, p, m, r) from distinct processes by phase k
(2) At least $n-2 f$ of them are correct.
- All correct procs received (echo, p, m, r) from at least $n-2 f$ correct processes by phase k
(2) From $n>3 f$, it follows that $n-2 f \geq f+1$. Then, all correct processes become witnesses by phase k
(2) All correct processes send (echo, p, m, r) by phase $k+1$
e Since there are at least $n-f$ correct processes, all correct processes will accept (p, m, r) by phase $k+1$ (round $2 j$ or $2 j+1$)

Taking a step back...

(2) Specified Consensus and TRB
(2) In the synchronous model :
\square solved Consensus and TRB for General Omission failures
\square proved lower bound on rounds required by TRB asolved TRB for AFMA
\square proved lower bound on replication for solving TRB with AF
asolved TRB with AF

Ordered Broadcasts for Benign Failures

FIFO Order

If a process broadcasts a message m before it broadcasts a message m^{\prime}, then no correct process delivers m^{\prime} unless it has previously delivered m

Uniform FIFO Order

If a process broadcasts a message m before it broadcasts a message m^{\prime}, then no process (correct or faulty) delivers m^{\prime} unless it has previously delivered m

Causal Order

If the broadcast of a message m causally precedes the broadcast of a message m^{\prime}, then no correct process delivers m^{\prime} unless it has previously delivered m

Uniform Causal Order

If the broadcast of a message m causally precedes the broadcast of a message m^{\prime}, then no process (correct or faulty) delivers m^{\prime} unless it has previously delivered m.

From FIFO to Causal

Local Order

If a process broadcasts a message m and a process delivers m before broadcasting m^{\prime}, then no correc \dagger process delivers m^{\prime} unless it previously delivered m

Causal Order = FIFO Order + Local Order

Total Order

If correct processes p and q both deliver messages m and m^{\prime}, then p delivers m before m^{\prime} if and only if q delivers m before m^{\prime}

Uniform Total Order

If correct or faulty processes p and q both deliver messages m and m^{\prime}, then p delivers m before m^{\prime} if and only if q delivers m before m^{\prime}

A Modular Approach to Broadcast Protocols
(Hadzilakos \& Toueg)

