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How can we adapt the spec for an environment 
where processes can fail? And what does “fail” mean?
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A hierarchy of 
failure models

Crash

Arbitrary failures with
message authentication

Arbitrary (Byzantine) failures
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Reliable Broadcast 
Validity! ! If the sender is correct and broadcasts a 
! ! message   , then all correct processes 
! ! eventually deliver  
Agreement!! If a correct process delivers a message   ,
! ! then all correct processes eventually 
! ! deliver
Integrity! ! Every correct process delivers at most one 
! ! message, and if it delivers   , then some 
! ! process must have broadcast 
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Terminating
Reliable Broadcast 

Validity! ! If the sender is correct and broadcasts a 
! ! message   , then all correct processes 
! ! eventually deliver  
Agreement!! If a correct process delivers a message   ,
! ! then all correct processes eventually 
! ! deliver
Integrity! ! Every correct process delivers at most one 
! ! message, and if it delivers    ≠ SF, then 
! ! some process must have broadcast 
Termination !Every correct process eventually delivers 
! ! some message
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Consensus 
Validity! ! If all processes that propose a value 
! ! propose   , then all correct processes 
! ! eventually decide  
Agreement!! If a correct process decides  , then all 
! ! correct processes eventually !decide 
Integrity! ! Every correct process decides at most one 
! ! value, and if it decides  , then some 
! ! process must have proposed 
Termination !Every correct process eventually decides 
! ! some value
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Properties of 
send(m) and receive(m)
Benign failures:

Validity   If   sends    to  , and   ,  , and 
the link between them are correct, then  
eventually receives 

Uniform* Integrity   For any message   ,  
receives    at most once from  , and only if      
sent    to 

* A property is uniform if it applies to both 
  correct and faulty processes
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Properties of 
send(  ) and receive(  )

Arbitrary failures:

Integrity   For any message    , if   and  
are correct then   receives    at most once 
from  , and only if   sent   to 
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Questions, Questions…
Are these problems solvable at all?
Can they be solved independent of the failure 
model?
Does solvability depend on the ratio between 
faulty and correct processes?
Does solvability depend on assumptions about 
the reliability of the network?
Are the problems solvable in both synchronous 
and asynchronous systems?
If a solution exists, how expensive is it?



Plan
Synchronous Systems

Consensus for synchronous systems with crash failures
Lower bound on the number of rounds
Reliable Broadcast for arbitrary failures with message 
authentication
Lower bound on the ratio of faulty processes for 
Consensus with arbitrary failures
Reliable Broadcast for arbitrary failures

Asynchronous Systems
Impossibility of Consensus for crash failures
Failure detectors
PAXOS



Model

Synchronous Message Passing
Execution is a sequence of rounds
In each round every process takes a step

sends messages to neighbors
receives messages sent in that round
changes its state

Network is fully connected (an   -clique)

No communication failures

n



A simple 
Consensus algorithm

Initially 
To execute propose(  )
1:!!   send {  } to all 
decide( ) occurs as follows:
2: ! for all                        do
3:!!!   receive    from  
4:!!!     :=  
5:!!   decide min(  )

Process   :pi

V = {vi}

pj

vi

vi

x

j, 0≤j≤n−1, j #= i

Sj

V ∪ SjV

V
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What is going on

A correct process    has not received all 
proposals by the end of round  . Can    
decide?

Another process may have received the 
missing proposal at the end of round   and 
be ready to relay it in round 

p
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i + 1
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Dangerous Chains

Dangerous chain 
The last process in the chain is correct, all 
others are faulty

round 1

round 2

rounds

round
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pi−1

pi

3...i − 1
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Living dangerously

How many rounds can a dangerous chain span?

  faulty processes

at most      nodes in the chain

spans at most   rounds

It is safe to decide by the end of round      !

f

f+1

f

f+1



The Algorithm

Initially 
To execute propose(  )
! round 
1:!!send {           has not already sent  } to all 
2:!!for all                        do
3:!!! receive    from  
4:!!!   := 
decide( ) occurs as follows:
5:  if           then
6:    decide min(  )

Code for process  :pi

k=f+1

j, 0≤j≤n−1, j #= i

k, 1≤k≤f+1

V ={vi}

v∈V : pi v

V

V ∪ Sj

Sj pj

vi

x

V



Termination and 
Integrity

Termination

Initially 

To execute propose( )
! round !
1:! ! send {           has not already sent  } to all 
2:! ! for all                        do
3:! ! ! receive    from  
4:! ! !   :=  

decide(x) occurs as follows:
5:! if           then
6:! ! decide min(  )

V ={vi}

vi

Sj pj

V ∪ SjV

k=f+1

V

k, 1≤k≤f+1

j, 0≤j≤n−1, j #= i

v∈V : pi v
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Termination
Every correct process 

reaches round f + 1
Decides on min(V) --- which is well 
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Termination
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reaches round f + 1
Decides on min(V) --- which is well 
defined 

Integrity
At most one value: 
    

Only if it was proposed:
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Termination
Every correct process 

reaches round f + 1
Decides on min(V) --- which is well 
defined 

Integrity
At most one value: 
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Termination and 
Integrity

Termination
Every correct process 

reaches round f + 1
Decides on min(V) --- which is well 
defined 

Integrity
At most one value: 
   – one decide, and min(V) is unique

Only if it was proposed:

  – To be decided upon, must be in V at round f+1
  – if value = vi, then it is proposed in round 1
  – else, suppose received in round k. By induction:
  – k = 1: 
      • by Uniform Integrity of underlying send 
       and receive, it must have been sent in round 1
      • by the protocol and because only crash 
        failures, it must have been proposed
  – Induction Hypothesis: all values received up to   
    round k = j have been proposed
  – k = j+1
      • sent in round j+1 (Uniform Integrity of send 
        and synchronous model)
      • must have been part of V of sender at end     
        of round j
      • by protocol, must have been received by sender 
        by end of round j
      • by induction hypothesis, must have been proposed 

Initially 

To execute propose( )
! round !
1:! ! send {           has not already sent  } to all 
2:! ! for all                        do
3:! ! ! receive    from  
4:! ! !   :=  
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Validity
Initially 

To execute propose( )
! round !
1:! ! send {           has not already sent  } to all 
2:! ! for all                        do
3:! ! ! receive    from  
4:! ! !   :=  

decide(x) occurs as follows:
5:! if           then
6:! ! decide min(  )

V ={vi}

vi
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Validity
Suppose every process proposes 

Since only crash model, only    can 
be sent

By Uniform Integrity of send and 
receive, only    can be received

By protocol,  = {   }

min(  ) = 

decide(   )
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Initially 

To execute propose( )
! round !
1:! ! send {           has not already sent  } to all 
2:! ! for all                        do
3:! ! ! receive    from  
4:! ! !   :=  

decide(x) occurs as follows:
5:! if           then
6:! ! decide min(  )

V ={vi}

vi
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Agreement
Lemma 1 
For any      , if a process   receives 
a value   in round  , then there 
exists a sequence of processes               
! !       such that       ,    is  
! .’s  proponent, and in each round       
!     sends   and    receives it. 
Furthermore, all processes in the 
sequence are distinct.

Proof 
By induction on the length of 
the sequence

Initially 

To execute propose( )
! round !
1:! ! send {           has not already sent  } to all 
2:! ! for all                        do
3:! ! ! receive    from  
4:! ! !   :=  

decide(x) occurs as follows:
5:! if           then
6:! ! decide min(  )

V ={vi}

vi

Sj pj

V ∪ SjV

k=f+1

V

k, 1≤k≤f+1

j, 0≤j≤n−1, j #= i

v∈V : pi v

r≥1 p

v r

p0, p1, . . . , pr pr =p p0

v

pk−1 pkv



Agreement

Lemma 2: 
!In every execution, at the end of round      , 
! !  for every correct processes    and 

Initially 

To execute propose( )
! round !
1:! ! send {           has not already sent  } to all 
2:! ! for all                        do
3:! ! ! receive    from  
4:! ! !   :=  

decide(x) occurs as follows:
5:! if           then
6:! ! decide min(  )

V ={vi}

vi

Sj pj

V ∪ SjV

k=f+1

V

k, 1≤k≤f+1

j, 0≤j≤n−1, j #= i

v∈V : pi v

f+1

Vi =Vj pi pj



Agreement

Lemma 2: 
!In every execution, at the end of round      , 
! !  for every correct processes    and 

Agreement follows from Lemma 2, since 
min is a deterministic function

Initially 

To execute propose( )
! round !
1:! ! send {           has not already sent  } to all 
2:! ! for all                        do
3:! ! ! receive    from  
4:! ! !   :=  
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Agreement

Lemma 2: 
!In every execution, at the end of round      , 
! !  for every correct processes    and 

Proof:
• Show that if a correct    has   in its   at 
! the end of round      , then every correct  
! has   in its   at the end of round 

Agreement follows from Lemma 2, since 
min is a deterministic function

Initially 

To execute propose( )
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2:! ! for all                        do
3:! ! ! receive    from  
4:! ! !   :=  

decide(x) occurs as follows:
5:! if           then
6:! ! decide min(  )

V ={vi}

vi

Sj pj

V ∪ SjV

k=f+1

V

k, 1≤k≤f+1

j, 0≤j≤n−1, j #= i

v∈V : pi v

p x V

f+1 p

x V f+1

f+1

Vi =Vj pi pj



Agreement

Lemma 2: 
!In every execution, at the end of round      , 
! !  for every correct processes    and 

Proof:
• Show that if a correct    has   in its   at 
! the end of round      , then every correct  
! has   in its   at the end of round 
• Let   be earliest round   is added to the    
! of a correct  . Let that process be 

• If       , then    sends   in round              ; 
! every correct process receives   and adds   
! to its   in round 

Agreement follows from Lemma 2, since 
min is a deterministic function

Initially 

To execute propose( )
! round !
1:! ! send {           has not already sent  } to all 
2:! ! for all                        do
3:! ! ! receive    from  
4:! ! !   :=  

decide(x) occurs as follows:
5:! if           then
6:! ! decide min(  )
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Agreement

Lemma 2: 
!In every execution, at the end of round      ,  
! !  for every correct processes    and 

Proof:
• Show that if a correct    has   in its   at 
! the end of round      , then every correct  
! has   in its   at the end of round 
• Let   be earliest round   is added to the    
! of a correct  . Let that process be 

• If       , then    sends   in round              ; 
! every correct process receives   and adds   
! to its   in round 
• What if           ?

Agreement follows from Lemma 2, since 
min is a deterministic function

Initially 

To execute propose( )
! round !
1:! ! send {           has not already sent  } to all 
2:! ! for all                        do
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4:! ! !   :=  
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Agreement

Lemma 2: 
!In every execution, at the end of round      ,   
! !  for every correct processes    and 

Proof:
• Show that if a correct    has   in its   at 
! the end of round      , then every correct  
! has   in its   at the end of round 
• Let   be earliest round   is added to the    
! of a correct  . Let that process be 

• If       , then    sends   in round              ; 
! every correct process receives   and adds   
! to its   in round 
• What if           ?
• By Lemma 1, there exists a sequence of 
! distinct processes
• Consider processes  
•       processes; only    faulty
• one of            is correct, and adds   to    
! its     before    does it in round 
CONTRADICTION!Agreement follows from Lemma 2, since 

min is a deterministic function

p0, . . . , pf

p0, . . . , pf

Initially 

To execute propose( )
! round !
1:! ! send {           has not already sent  } to all 
2:! ! for all                        do
3:! ! ! receive    from  
4:! ! !   :=  

decide(x) occurs as follows:
5:! if           then
6:! ! decide min(  )

V ={vi}

vi
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Terminating
Reliable Broadcast 

Validity! ! If the sender is correct and broadcasts a 
! ! message   , then all correct processes 
! ! eventually deliver  
Agreement!! If a correct process delivers a message   ,
! ! then all correct processes eventually 
! ! deliver
Integrity! ! Every correct process delivers at most one 
! ! message, and if it delivers    ≠ SF, then 
! ! some process must have broadcast 
Termination !Every correct process eventually delivers 
! ! some message

m

m

m

m

m

m



TRB for benign failures

Sender in round 1:
1:! send m to all

Process p in round ! k, 1 ≤ k ≤ f+1! !
1:! if delivered m in round k-1 and p ≠ sender then
2:! ! send m to all 
3:! ! halt
4:! receive round k messages
5:! if received m then
6:! ! deliver(m)
7:! ! if  k = f+1 then halt
8:! else if k = f+1
9:! ! deliver(SF)
10:!! halt

Terminates in      rounds

 How can we do better?
find a protocol whose round 
complexity is proportional to   
! –the number of failures 
that actually occurred–
rather than to ..–the max 
number of failures that may 
occur

f

f+1

t



Early stopping: 
the idea

Suppose processes can detect the set of 
processes that have failed by the end of 
round 

Call that set 

If                  there can be no active 
dangerous chains, and   can safely deliver SF

faulty(p, i)

|faulty(p, i)| < i

p

i



Early Stopping:
The Protocol

Let               be the set of processes that have failed to send a message to     
! ! in any round 

1:! if    = sender then value :=    else value:= ?

Process   in round !

2:! send value to all 
3:! if value ≠ ? and delivered    in round      then halt
4:! receive round    values from all
5:!                                     {  |   received no value from    in round  }
6:  if received value   ≠ ? then
7:!!   value := 
8:!!   deliver value
9:! else if          or                    then
10:! ! value := SF
11:!!    deliver value
12:! ! if           then halt

|faulty(p, k)| < k

1, . . . , k

k, 1≤k≤f+1

p

p

k

p

v

k=f+1

k=f+1

v

k−1

m

m

pq q k

faulty(p, k)

faulty(p, k) := faulty(p, k − 1)∪



Termination

k−1

Let                be the set of processes that have 
failed to send a message to   in any round 

1:!   if   = sender then value :=    else value:= ?

Process    in round !

2:! send value to all 
3:! if value ≠ ?! and delivered    in round       then halt
4:! receive round   values from all
5:!                                      {  |   
      received no value from   in round   }
6:! if received value   ≠ ?  then
7:! ! value := 
8:! ! deliver value 
9:! else if           or                    then
10:! ! value := SF
11:! ! deliver value
12:! ! if           then halt

1, . . . , k

p m

p k, 1≤k≤f+1

k=f+1 |faulty(p, k)|<k

k=f+1

v

v

k

q p

q k

p

m

faulty(p, k) := faulty(p, k − 1)∪

faulty(p, k)



Termination

If in any round a process 
receives a value, then it 
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round
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only “?” for       rounds, 
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Validity

If the sender is correct then 
it sends   to all in round 1

By Validity of the underlying 
send and receive, every 
correct process will receive    
by the end of round 1

By the protocol, every correct 
process will deliver    by the 
end of round 1
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Agreement - 1
Lemma 1: 

! For any      , if a process    delivers
! ≠ SF in round r, then there exists a 
sequence of processes                such 
that    = sender,        , and in each 
round             ,       sent    and    
received it. Furthermore, all processes 
in the sequence are distinct, unless    
and             sender

Lemma 2: 
! For any      , if a process   sets value 

to SF in round  , then there exist 
some       and a sequence of distinct 
processes !

! such that    only receives “?” in 
rounds 1 to ,                     , and in 
each round                 ,        sends 
SF to    and    receives SF
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pk−1 pk
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j
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Lemma 3: 
! It is impossible for   and   , not necessarily 

correct or distinct, to set value in the same 
round r to    and SF, respectively
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Agreement - 2
Proof

By contradiction
Suppose   sets value =    and   sets 
value = SF

By Lemmas 1 and 2 there exist

with the appropriate characteristics
Since    did not receive    from 
process                   in round 
   must conclude that               are 
all faulty processes
But then, 
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p0, . . . , pj−1
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Lemma 3: 
! It is impossible for   and   , not necessarily 

correct or distinct, to set value in the same 
round r to    and SF, respectively
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Let                be the set of processes that have 
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Agreement - 3
Let r be the earliest round in which a correct process 
delivers value ≠ SF

r ≤ f   
By Lemma 3, no (correct) process can set value 
differently in round r
In round r + 1 ≤ f + 1, that  correct process 
sends its value to all
Every correct process receives and delivers the 
value in round r + 1 ≤ f + 1

r =  f + 1
By Lemma 1, there exists a sequence p0, …, pf+1 

= pr of distinct processes

Consider processes p0, …, pf 

f + 1 processes; only f faulty
one of p0, …, pf is correct-- let it be pc
To send v in round c + 1, pc must have set 

its value to v  and delivered v in round c < r
CONTRADICTION

Proof
If no correct process ever receives m, then every 

correct process delivers SF in round f + 1

k−1

Let                be the set of processes that have 
failed to send a message to   in any round 

1:!   if   = sender then value :=    else value:= ?

Process    in round !

2:! send value to all 
3:! if value ≠ ?! and delivered    in round       then halt
4:! receive round   values from all
5:!                                      {  |   
      received no value from   in round   }
6:! if received value   ≠ ?  then
7:! ! value := 
8:! ! deliver value 
9:! else if           or                    then
10:! ! value := SF
11:! ! deliver value
12:! ! if           then halt
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Let                be the set of processes that have 
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1:!   if   = sender then value :=    else value:= ?

Process    in round !

2:! send value to all 
3:! if value ≠ ?! and delivered    in round       then halt
4:! receive round   values from all
5:!                                      {  |   
      received no value from   in round   }
6:! if received value   ≠ ?  then
7:! ! value := 
8:! ! deliver value 
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10:! ! value := SF
11:! ! deliver value
12:! ! if           then halt
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Integrity
At most one 

Failures are benign, and 
a process executes at 
most one deliver event 
before halting

If    ≠ SF, only if     
was broadcast

From Lemma 1 in the 
proof of Agreement

m

mm

k−1

Let                be the set of processes that have 
failed to send a message to   in any round 

1:!   if   = sender then value :=    else value:= ?

Process    in round !

2:! send value to all 
3:! if value ≠ ?! and delivered    in round       then halt
4:! receive round   values from all
5:!                                      {  |   
      received no value from   in round   }
6:! if received value   ≠ ?  then
7:! ! value := 
8:! ! deliver value 
9:! else if           or                    then
10:! ! value := SF
11:! ! deliver value
12:! ! if           then halt
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A Lower Bound

Theorem
There is no algorithm that solves the 
consensus problem in fewer than  
rounds in the presence of   crash 
failures, if 

We consider a special case         to study 
!! the proof technique

n ≥ f+2

f+1

f

(f =1)



Views
Let α be an execution. The view of process    
in   ., denoted by        , is the subsequence of 
computation and message receive events that 
occur in    together with the state of    in the 
initial configuration of 

p1 p2 p3 p4

p1 p2 p3 p4
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pi

α

α



Views
Let α be an execution. The view of process    
in   ., denoted by        , is the subsequence of 
computation and message receive events that 
occur in    together with the state of    in the 
initial configuration of 

p1 p2 p3 p4

p1 p2 p3 p4
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α
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Similarity
Definition Let    and    be two 
executions of consensus and let    
!  be a correct process in both    
!  and     . 
     is similar to     with respect 
to   , denoted                if 
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Similarity
Definition Let    and    be two 
executions of consensus and let    
!  be a correct process in both    
!  and     . 
     is similar to     with respect 
to   , denoted                if 
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Note  If             then    
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both executions
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Similarity
Definition Let    and    be two 
executions of consensus and let    
!  be a correct process in both    
!  and     . 
     is similar to     with respect 
to   , denoted                if 

α1 α2

pi

α1 α2

α1 α2

pi α1 ∼pi
α2

α1|pi = α2|pi

Note  If             then    
decides the same value in 
both executions

α1 ∼pi
α2 pi

Lemma  If             and    is 
correct, then dec(   ) = dec(   )

α1 ∼pi
α2 pi

The transitive closure of !           
is denoted!      .

We say that !      if there exist 
executions ! ! such that

α1 ∼pi
α2

α1 ≈ α2

α1 ≈ α2

β1, β2, . . . , βk+1

α1 = β1 ∼pi1
β2 ∼pi2

. . . ,∼pik
βk+1 = α2

Lemma  If            then 
! dec(   ) = dec(   )

α1 ≈ α2

α1 α2

α1 α2



Single-Failure Case

There is no algorithm that solves consensus 
in fewer than two rounds in the presence of 
one crash failure, if n≥3



The Idea
By contradiction

Consider a one-round execution in which each 
process proposes 0. What is the decision value?

Consider another one-round execution in which 
each process proposes 1. What is the decision 
value?

Show that there is a chain of similar 
executions that relate the two executions.

So what?
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Adjacent    s are similar! 

Starting from   , we build a set of executions 
!  where                as follows:

   is obtained from    after removing the 
messages that    sends to the j-th highest 

numbered processors (excluding itself)

α
i

α
i

α
i
j 0 ≤ j ≤ n−1

α
i
j α

i

pi
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Arbitrary failures with 
message authentication

Crash

Arbitrary failures with
message authentication

Arbitrary (Byzantine) failures

Send Omission

General Omission

Receive Omission

Fail-stop

Process can send 
conflicting messages 
to different receivers
Messages are signed 
with unforgeable 
signatures



Valid messages

A valid message    has the following form:

in round 1:
 .         (   is signed by the sender)

in round   > 1, if received by   from   :
                         where 

   = sender; 
           are distinct from each other and from 
message  has not been tampered with
p1, . . . , pr

p1 pr = q

m

m

r p q

p

m : sid

m : p1 : p2 : . . . : pr



AFMA: The Idea

A correct process   discards all non-valid messages 
it receives
If a message is valid, 

it “extracts” the value from the message
it relays the message, with its own signature 
appended

At round      :
if it extracted exactly one message,   delivers it
otherwise,   delivers SF 

p

p

p

f+1



AFMA: The Protocol
Initialization for process   :
! if   = sender and   wishes to broadcast    then
! !extracted := relay := 

Process   in round
! for each     relay
! !  send      to all
! receive round   messages from all processes
! relay := 
! for each valid message received
! ! if       extracted then
! ! ! extracted := extracted 
! ! ! relay := relay 

At the end of round 
! ! if     such that extracted =     then
! ! ! deliver 
! !else deliver SF

p

{m}

p

p p m

k, 1≤k≤f+1

s ∈

k

∅

s = m : p1 : p2 : . . . : pk

m !∈

∪ {m}

∪ {s}

f+1

∃m {m}

m

s : p



Termination

In round      , every 
correct process delivers 
either    or SF and then 
halts

m

f+1

Initialization for process   :
! if   = sender and   wishes to broadcast    then
! ! extracted := relay := 

Process   in round
! for each     relay
! !  send      to all
! receive round   messages from all processes
! relay := 
! for each valid message received
! ! if       extracted then
! ! ! extracted := extracted 
! ! ! relay := relay 

At the end of round 
! ! if     such that extracted =     then
! ! ! deliver 
! ! else deliver SF

p p m

{m}

p k, 1≤k≤f+1

s ∈

k

∅

s = m : p1 : p2 : . . . : pk

m !∈

∪ {m}

∪ {s}

f+1

∃m {m}

m

p

s : p



Lemma. If a correct process 
extracts    , then every correct 
process eventually extracts 

Agreement
Proof
Let   be the earliest round in which some correct process 
extracts   . Let that process be   .
• if    is the sender, then in round 1   sends a valid 
message to all. 
All correct processes extract that message in round 1
• otherwise,   has received in round   a message
! !  

• Claim:                 are all faulty
– true for 
– Suppose              ,  were correct
•     signed and relayed message in round 
•     extracted message in round 

CONTRADICTION
• If          will send a valid message 
!  
! in round               and every correct process will 

extract it in round 
• If           , by Claim above,                   faulty
– At most   faulty processes 
– CONTRADICTiONm

m

r

m p

pp

p r

m : p1 : p2 : . . . : pr

p1, p2, . . . , pr

p1 = s

pj , 1≤j≤r

pj j

pj j−1

r≤f, p

m : p1 : p2 : . . . : pr : p

r+1≤f+1

r+1≤f+1

r =f+1 p1, p2, . . . , pf+1

f

Initialization for process   :
! if   = sender and   wishes to broadcast    then
! ! extracted := relay := 

Process   in round
! for each     relay
! !  send      to all
! receive round   messages from all processes
! relay := 
! for each valid message received
! ! if       extracted then
! ! ! extracted := extracted 
! ! ! relay := relay 

At the end of round 
! ! if     such that extracted =     then
! ! ! deliver 
! ! else deliver SF

p p m

{m}

p k, 1≤k≤f+1

s ∈

k

∅

s = m : p1 : p2 : . . . : pk

m !∈

∪ {m}

∪ {s}

f+1

∃m {m}

m

p

s : p



Validity
Initialization for process   :
! if   = sender and   wishes to broadcast    then
! ! extracted := relay := 

Process   in round
! for each     relay
! !  send      to all
! receive round   messages from all processes
! relay := 
! for each valid message received
! ! if       extracted then
! ! ! extracted := extracted 
! ! ! relay := relay 

At the end of round 
! ! if     such that extracted =     then
! ! ! deliver 
! ! else deliver SF

p p m

{m}

p k, 1≤k≤f+1

s ∈

k

∅

s = m : p1 : p2 : . . . : pk

m !∈

∪ {m}

∪ {s}

f+1

∃m {m}

m

p

s : p



Validity

From Agreement and the 
observation that the 
sender, if correct, 
delivers its own message.

Initialization for process   :
! if   = sender and   wishes to broadcast    then
! ! extracted := relay := 

Process   in round
! for each     relay
! !  send      to all
! receive round   messages from all processes
! relay := 
! for each valid message received
! ! if       extracted then
! ! ! extracted := extracted 
! ! ! relay := relay 

At the end of round 
! ! if     such that extracted =     then
! ! ! deliver 
! ! else deliver SF

p p m

{m}

p k, 1≤k≤f+1

s ∈

k

∅

s = m : p1 : p2 : . . . : pk

m !∈

∪ {m}

∪ {s}

f+1

∃m {m}

m

p

s : p



TRB for 
arbitrary failures 

Crash

Arbitrary failures with
message authentication

Arbitrary (Byzantine) failures

Send Omission

General Omission

Receive Omission

Fail-stop

Srikanth, T.K., Toueg S.
Simulating Authenticated 

Broadcasts to Derive Simple 
Fault-Tolerant Algorithms
Distributed Computing 2 (2), 

80-94



AF: The Idea

Identify the essential properties of message 
authentication that made AFMA work

Implement these properties without using 
message authentication



AF: The Approach

Introduce two primitives
broadcast          (executed by   in round  )
accept        !!   (executed by   in round      )

Give axiomatic definitions of broadcast and accept
Derive an algorithm that solves TRB for AF using 
these primitives
Show an implementation of these primitives that 
does not use message authentication

q

p

j≥ i

i(p, m, i)
(p, m, i)



Properties of
broadcast and accept

Correctness   If a correct process   executes 
broadcast           in round  , then all correct 
processes will execute accept           in round 

Unforgeability   If a correct process   executes 
accept          in round     , and   is correct, then  
did in fact execute broadcast           in round 

Relay   If a correct process   executes accept      
in round      , then all correct processes will 
execute accept            by round 

p

p

i

i

p

i

(p, m, i) j≥ i

(p, m, i)

(p, m, i)

(p, m, i)

(p, m, i) j+1

(p, m, i)
j≥ i

q

q



AF: The Protocol - 1
sender   in round 0:
0:!extract 

sender    in round 1:
1:!broadcast 
Process   in round 
2:!if   extracted    in round       and   ≠ sender then
4:!! broadcast
5:!if   has executed at least   accept                       in rounds 1 through 

! (where  (i)    distinct from each other and from  , (ii) one    is  , and    
(iii)           ) and    has not previously extracted    then

6:!! extract 
7:!if           then
8:!! if in the entire execution   has extracted exactly one    then
9:!!     deliver
10:! else deliver SF
11:!    halt

(p,m, k)

m

k=f+1

(s,m, 1)

m

s

s

k, 1≤k≤f+1

1≤ i≤k

1≤ji≤k

p

p

p

pm k−1

m

m

p

(qi,m, ji)

mp

k k

qi qip s



Termination

In round      , every 
correct process delivers 
either    or SF and then 
halts

f+1

m

sender    in round 0:
0:! extract 
sender  in round 1:
1:! broadcast 

Process    in round !! !
2:! if   extracted     in round       and   ≠ sender then
4:! ! broadcast 
5:! if   has executed at least   accept                       in 
! ! rounds 1 through 
! ! ! (where  (i)    distinct from each other and from 
! ! !   , (ii) one    is  , and (iii)            )
!    and   has not previously extracted    then!
6:! ! ! extract 
7:! if             then
8:! ! if in the entire execution    has extracted exactly 
! ! ! ! ! one    then
9:! ! ! deliver
10:! ! else deliver SF
11:! ! halt

(s, m, 1)

s

m

s

k, 1≤k≤f+1

k−1m p

(p, m, k)

p

p k (qi, m, ji) 1≤ i≤k

k

qi

p qi s 1≤ji≤k

p

m

m

m

m

p

k = f+1

p



Agreement - 1

Lemma
If a correct process extracts m, then 

every correct process eventually extracts m

sender    in round 0:
0:! extract 
sender  in round 1:
1:! broadcast 

Process    in round !! !
2:! if   extracted     in round       and   ≠ sender then
4:! ! broadcast 
5:! if   has executed at least   accept                       in 
! ! rounds 1 through 
! ! ! (where  (i)    distinct from each other and from 
! ! !   , (ii) one    is  , and (iii)            )
!    and   has not previously extracted    then!
6:! ! ! extract 
7:! if             then
8:! ! if in the entire execution    has extracted exactly 
! ! ! ! ! one    then
9:! ! ! deliver
10:! ! else deliver SF
11:! ! halt

(s, m, 1)

s

m

s

k, 1≤k≤f+1

k−1m p

(p, m, k)

p

p k (qi, m, ji) 1≤ i≤k

k

qi

p qi s 1≤ji≤k

p

m

m

m

m

p

k = f+1

p



Agreement - 1

Lemma
If a correct process extracts m, then 

every correct process eventually extracts m

sender    in round 0:
0:! extract 
sender  in round 1:
1:! broadcast 

Process    in round !! !
2:! if   extracted     in round       and   ≠ sender then
4:! ! broadcast 
5:! if   has executed at least   accept                       in 
! ! rounds 1 through 
! ! ! (where  (i)    distinct from each other and from 
! ! !   , (ii) one    is  , and (iii)            )
!    and   has not previously extracted    then!
6:! ! ! extract 
7:! if             then
8:! ! if in the entire execution    has extracted exactly 
! ! ! ! ! one    then
9:! ! ! deliver
10:! ! else deliver SF
11:! ! halt

(s, m, 1)

s

m

s

k, 1≤k≤f+1

k−1m p

(p, m, k)

p

p k (qi, m, ji) 1≤ i≤k

k

qi

p qi s 1≤ji≤k

p

m

m

m

m

p

k = f+1

p



Agreement - 1
Proof

Let r be the earliest round in which some correct process 
extracts m. Let that process be p.

if r = 0, then p = s and p will execute broadcast(s,m,1) 
! in round 1.   By CORRECTNESS, all correct processes 
! will execute accept (s,m,1) in round 1 and extract m

if r > 0, the sender is faulty.    Since p has extracted 
! m in round r, p has accepted at least r triples with 
! properties (i), (ii), and (iii) by round r

r ≤ f  By RELAY, all correct processes will have 
! accepted those r triples by round r + 1
p will execute broadcast(p,m,r + 1) in round r + 1
By CORRECTNESS, any correct process other than 

! p, q1, q2,…,qr will have accepted r + 1 triples 
! (qk,m,jk), 1 ≤ jk ≤ r + 1, by round r + 1 
q1, q2,…,qr,p are all distinct

every correct process other than q1, q2,…,qr,p will 
! extract m
p has already extracted m; what about q1, q2,…,qr?

Lemma
If a correct process extracts m, then 

every correct process eventually extracts m

sender    in round 0:
0:! extract 
sender  in round 1:
1:! broadcast 

Process    in round !! !
2:! if   extracted     in round       and   ≠ sender then
4:! ! broadcast 
5:! if   has executed at least   accept                       in 
! ! rounds 1 through 
! ! ! (where  (i)    distinct from each other and from 
! ! !   , (ii) one    is  , and (iii)            )
!    and   has not previously extracted    then!
6:! ! ! extract 
7:! if             then
8:! ! if in the entire execution    has extracted exactly 
! ! ! ! ! one    then
9:! ! ! deliver
10:! ! else deliver SF
11:! ! halt

(s, m, 1)

s

m

s

k, 1≤k≤f+1

k−1m p

(p, m, k)

p

p k (qi, m, ji) 1≤ i≤k

k

qi

p qi s 1≤ji≤k

p

m

m

m

m

p

k = f+1

p



Agreement - 2
  Claim:                are all faulty

Suppose    were correct

p has accepted            in round  

By UNFORGEABILITY,     executed 
!broadcast             in round  

    extracted m in round 

CONTRADICTION

Case 2:
Since there are at most f faulty processes, 
some process    in                   is correct

By UNFORGEABILITY,    executed  
broadcast            in round 

    has extracted m in round 

CONTRADICTION

ql q1, q2, . . . , qf+1

(ql,m, jl) jl ≤ r

ql jl−1 < f + 1

jk−1 < rqk

jk

ql

(qk,m, jk)

qk

qk

(qk,m, jk) jk ≤ r

q1, q2, . . . , qr

r = f+1

sender    in round 0:
0:! extract 
sender  in round 1:
1:! broadcast 

Process    in round !! !
2:! if   extracted     in round       and   ≠ sender then
4:! ! broadcast 
5:! if   has executed at least   accept                       in 
! ! rounds 1 through 
! ! ! (where  (i)    distinct from each other and from 
! ! !   , (ii) one    is  , and (iii)            )
!    and   has not previously extracted    then!
6:! ! ! extract 
7:! if             then
8:! ! if in the entire execution    has extracted exactly 
! ! ! ! ! one    then
9:! ! ! deliver
10:! ! else deliver SF
11:! ! halt

(s, m, 1)

s

m

s

k, 1≤k≤f+1

k−1m p

(p, m, k)

p

p k (qi, m, ji) 1≤ i≤k

k

qi

p qi s 1≤ji≤k

p

m

m

m

m

p

k = f+1

p



Validity
A correct sender executes !  
broadcast          in round 1

By CORRECTNESS, all correct processes 
execute accept          in round 1 and 
extract 

In order to extract a different message 
! , a process must execute accept         
in some round 

By UNFORGEABILITY, and because s is 
correct, no correct process can 
extract      .

All correct processes will deliver m

m
′ != m

i ≤ f + 1

(s,m, 1)
m

(s,m′
, 1)

(s,m, 1)

m
′

sender    in round 0:
0:! extract 
sender  in round 1:
1:! broadcast 

Process    in round !! !
2:! if   extracted     in round       and   ≠ sender then
4:! ! broadcast 
5:! if   has executed at least   accept                       in 
! ! rounds 1 through 
! ! ! (where  (i)    distinct from each other and from 
! ! !   , (ii) one    is  , and (iii)            )
!    and   has not previously extracted    then!
6:! ! ! extract 
7:! if             then
8:! ! if in the entire execution    has extracted exactly 
! ! ! ! ! one    then
9:! ! ! deliver
10:! ! else deliver SF
11:! ! halt

(s, m, 1)

s

m

s

k, 1≤k≤f+1

k−1m p

(p, m, k)

p

p k (qi, m, ji) 1≤ i≤k

k

qi

p qi s 1≤ji≤k

p

m

m

m

m

p

k = f+1

p



Implementing 
broadcast and accept

A process that wants to broadcast   , does so 
through a series of witnesses

Sends    to all 
Each correct process becomes a witness by 
relaying    to all

If a process receives enough witness confirmations, 
it accepts 

m

m

m

m



Can we rely on 
witnesses?

Only if not too many faulty processes!

Otherwise, a set of faulty processes could fool 
a correct process by acting as witnesses of a 
message that was never broadcast

How large can be   with respect to   ?f n



Byzantine Generals

One General G, a set of Lieutenants Li

General can order Attack (A)  or Retreat (R)
General may be a traitor; so may be some of the 
Lieutenants

* * *
I. If G is trustworthy, every trustworthy Li must 

follow G’s orders
II. Every trustworthy Li must follow same battleplan



The plot thickens...
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A Lower Bound

Theorem
There is no algorithm that solves TRB for 
Byzantine failures if 
(Lamport, Shostak, and Pease,  The Byzantine Generals Problem,  
ACM TOPLAS, 4 (3), 382-401, 1982)

n ≤ 3f



Back to the protocol...
To broadcast a message in round  ,   sends               to all

A confirmation has the form 

A witness sends                if either:
it receives               from   directly!       or
it receives confirmations for           from at least    
! !  processes (at least one correct witness)

A process accepts          if it has received        
confirmations  (as many as possible…)

Protocol proceeds in rounds. Each round has 2 phases

f + 1

(p, m, r)

(p, m, r) n − f

(echo, p, m, r)

(echo, p, m, r)

(init, p, m, r)

(init, p, m, r) p

pr



Implementation of 
broadcast and accept

Phase  
1:!  sends               to all
Phase
2:!if   received                in phase        then
3:!!   sends                 to all    /*   becomes a witness */
4:!if   receives                 from at least       distinct processes in phase    then
5:!!   accepts 
Phase 
6:!if    has received                 from at least       distinct processes in 
! phases    .                      then
7:!!   sends                 to all processes! /*   becomes a witness */
8:!if    has received                 from at least        processes in !
! phases            .         then
9:!!   accepts 

(2r, 2r + 1, . . . , j)

(2r, 2r + 1, . . . , j − 1)

(init, p,m, r)

2r−1

2r

j >2r

(p,m, r)q

p

2r−1

(init, p,m, r)

q

q q

q

q

q

q

q

q

(p,m, r)

(echo, p,m, r)

(echo, p,m, r) n−f 2r

(echo, p,m, r) f+1

(echo, p,m, r)

(echo, p,m, r) n−f



Implementation of 
broadcast and accept

Phase  
1:!  sends               to all
Phase
2:!if   received                in phase        then
3:!!   sends                 to all    /*   becomes a witness */
4:!if   receives                 from at least       distinct processes in phase    then
5:!!   accepts 
Phase 
6:!if    has received                 from at least       distinct processes in 
! phases    .                      then
7:!!   sends                 to all processes! /*   becomes a witness */
8:!if    has received                 from at least        processes in !
! phases            .         then
9:!!   accepts 

Is termination a problem?

(2r, 2r + 1, . . . , j)

(2r, 2r + 1, . . . , j − 1)

(init, p,m, r)

2r−1

2r

j >2r

(p,m, r)q

p

2r−1

(init, p,m, r)

q

q q

q

q

q

q

q

q

(p,m, r)

(echo, p,m, r)

(echo, p,m, r) n−f 2r

(echo, p,m, r) f+1

(echo, p,m, r)

(echo, p,m, r) n−f



The implementation 
is correct

Theorem

If        , the given implementation of 
broadcast         and accept        
satisfies Unforgeability, Correctness, and 
Relay

Assumption
Channels are authenticated

n > 3f

(p, m, r) (p, m, r)



Correctness

If a correct process  
executes broadcast        
in round  , then all 
correct processes will 
execute accept          in 
round 

(p, m, r)

(p, m, r)

r

r

p



Correctness
If   is correct then 

  sends                to all in round 
(phase       )
by Validity of the underlying send and 
receive, every correct process receives                
! ! !    in phase 
every correct process becomes a 
witness
every correct process sends             
in phase
since there are at least        correct 
processes, every correct process 
receives at least       echoes in phase
every correct process executes 
accept! !      in phase    (in round  )

If a correct process  
executes broadcast        
in round  , then all 
correct processes will 
execute accept          in 
round 

(p, m, r)

(p, m, r)

r

r

p

(echo, p, m, r)

(init, p, m, r)

(init, p, m, r) r

r(p, m, r)

2r−1

2r

2rn−f

2r

n−f

p

p



Unforgeability - 1
If a correct process 
executes accept          in 
round      , and   is correct, 
then   did in fact execute 
broadcast         in round 

• Suppose   executes accept 
  in round 
•   received                 from at 
  least        distinct processes by
  phase  , where              or  
  
• Let    be the earliest phase in 
  which some correct process   
  becomes a witness to 

k = 2j − 1

k = 2j

(echo, p, m, r)

(p, m, r)

k
′

q
′

n−f

k

q

q (p, m, r)

j

(p, m, r) r

p

pj≥r

(p, m, r)

q



Unforgeability - 1
Case 1: 

   received                from 
since   is correct, it follows that  
! did execute broadcast     !   
in round 

Case 2: 
   has become a witness by 
receiving                 from  
distinct processes
at most   are faulty; one is 
correct
this process was a witness to 
! ! ! before phase 

CONTRADICTION
The first correct process 
receives          !    from  !

If a correct process 
executes accept          in 
round      , and   is correct, 
then   did in fact execute 
broadcast         in round 

• Suppose   executes accept 
  in round 
•   received                 from at 
  least        distinct processes by
  phase  , where              or  
  
• Let    be the earliest phase in 
  which some correct process   
  becomes a witness to 

k′ = 2r − 1

k′ > 2r − 1

k = 2j − 1

k = 2j

(echo, p, m, r) f+1

f

(p, m, r) k
′

q
′ (init, p, m, r) p

p

p (p, m, r)
r

p(init, p, m, r)

(echo, p, m, r)

(p, m, r)

k
′

q
′

n−f

k

q

q (p, m, r)

j

(p, m, r) r

p

pj≥r

(p, m, r)

q

q
′



Unforgeability -2

For   to accept, some correct process must 
become witness.
Earliest correct witness    becomes so in 
phase     .   ,  and only if   did indeed executed 
broadcast
Any correct process that becomes a witness later 
can only do so if a correct process is already a 
witness.
For any correct process to become a witness,  
must have executed broadcast

q

q
′

2r − 1

p

(p, m, r)

(p, m, r)

p



Relay

If a correct process  
executes accept          in 
round      , then all 
correct processes will 
execute accept         by 
round  

q

(p, m, r)

j + 1

(p, m, r)

j ≥ r



Relay
Suppose correct q executes accept          in 
round   (phase             or        )

  received at least                        from 
distinct processes by phase  

At least         of them are correct. 

All correct procs received                from at 
least          correct processes by phase 

From        , it follows that                   .  
Then, all correct processes become witnesses 
by phase 

All correct processes send                by  
phase .

Since there are at least       correct processes, 
all correct processes will accept          by 
phase         (round    or        ) 

If a correct process  
executes accept          in 
round      , then all 
correct processes will 
execute accept         by 
round  

q

(p, m, r)

j + 1

(p, m, r)

j ≥ r

n − 2f

k = 2j − 1 k = 2j

n − 2f k

k

k + 1

2j 2j + 1

(p,m, r)

k + 1

n − 2f ≥ f + 1

n − f

k

n > 3f

(p,m, r)

(echo, p,m, r)

(echo, p,m, r)

(echo, p,m, r)

q

j

n−f



Taking a step back...
Specified Consensus and TRB
In the synchronous model :

solved Consensus and TRB for General Omission 
failures
proved lower bound on rounds required by TRB
solved TRB for AFMA
proved lower bound on replication for solving 
TRB with AF
solved TRB with AF



Ordered Broadcasts
for Benign Failures



FIFO Order

If a process broadcasts a message    before it 
broadcasts a message   , then no correct process 
delivers    unless it has previously delivered 

If a process broadcasts a message    before it 
broadcasts a message   , then no process (correct or 
faulty) delivers    unless it has previously delivered 

Uniform FIFO Order

m

m

m

m

m
′

m
′

m
′

m
′



Causal Order

If the broadcast of a message    causally precedes 
the broadcast of a message    , then no correct 
process delivers    unless it has previously delivered

If the broadcast of a message    causally precedes 
the broadcast of a message   , then no process 
(correct or faulty) delivers    unless it has previously 
delivered    .

Uniform Causal Order

m
′

m
′

m
′

m

m

m
′

m

m



From FIFO to Causal

If a process broadcasts a message m and a process 
delivers m before broadcasting m’, then no correct 
process  delivers m’ unless it previously delivered m

Local Order

Causal Order = FIFO Order + Local Order



Total Order

If correct processes p and q both deliver messages 
m and m’, then p delivers m before m’ if and only if 
q delivers m before m’

If correct or faulty processes p and q both deliver 
messages m and m’, then p delivers m before m’ if 
and only if q delivers m before m’

Uniform Total Order



A Modular Approach to 
Broadcast Protocols 

(Hadzilakos & Toueg)

Reliable 
Broadcast

FIFO 
Broadcast

Causal 
Broadcast

Atomic
Broadcast

FIFO Atomic
Broadcast

Causal Atomic
Broadcast

Total Order

Total Order

Total Order

FIFO 
Order

FIFO 
Order

Causal 
Order

Causal 
Order


