Consensus and Reliable Broadcast

Broadcast

 $\ensuremath{\mathfrak{O}}$ If a process sends a message m , then every process eventually delivers m

Broadcast

 $\ensuremath{\mathfrak{O}}$ If a process sends a message m , then every process eventually delivers m

Broadcast

 $\ensuremath{\mathfrak{O}}$ If a process sends a message m , then every process eventually delivers m

How can we adapt the spec for an environment where processes can fail? And what does "fail" mean?

Crash

Fail-stop — - - - - Crash

Reliable Broadcast

Validity

If the sender is correct and broadcasts a message m, then all correct processes eventually deliver m

Agreement

If a correct process delivers a message m , then all correct processes eventually deliver m

Integrity

Every correct process delivers at most one message, and if it delivers m, then some process must have broadcast m

Terminating Reliable Broadcast

Validity

If the sender is correct and broadcasts a message m, then all correct processes eventually deliver m

Agreement

If a correct process delivers a message m , then all correct processes eventually deliver m

Integrity

Every correct process delivers at most one message, and if it delivers $m \neq SF$, then some process must have broadcast m

Termination

Every correct process eventually delivers some message

Consensus

Validity

If all processes that propose a value propose v , then all correct processes eventually decide v

Agreement

If a correct process decides v, then all correct processes eventually decide v

Integrity

Every correct process decides at most one value, and if it decides v, then some process must have proposed v

Termination Every correct process eventually decides some value

Properties of send(m) and receive(m)

Benign failures:

Validity If p sends m to q, and p, q, and the link between them are correct, then q eventually receives m

Uniform* Integrity For any message m, q receives m at most once from p, and only if p sent m to q

* A property is uniform if it applies to both correct and faulty processes

Properties of send(m) and receive(m)

Arbitrary failures:

Integrity For any message m , if p and q are correct then q receives m at most once from p, and only if p sent m to q

Questions, Questions...

- Are these problems solvable at all?
- © Can they be solved independent of the failure model?
- Does solvability depend on the ratio between faulty and correct processes?
- Does solvability depend on assumptions about the reliability of the network?
- Are the problems solvable in both synchronous and asynchronous systems?
- If a solution exists, how expensive is it?

Plan

- Synchronous Systems
 - Consensus for synchronous systems with crash failures
 - Lower bound on the number of rounds
 - Reliable Broadcast for arbitrary failures with message authentication
 - Lower bound on the ratio of faulty processes for Consensus with arbitrary failures
 - Reliable Broadcast for arbitrary failures
- Asynchronous Systems
 - Impossibility of Consensus for crash failures
 - Failure detectors
 - PAXOS

Model

- Synchronous Message Passing
 - □ Execution is a sequence of rounds
 - □In each round every process takes a step
 - sends messages to neighbors
 - -receives messages sent in that round
 - changes its state
- No communication failures

A simple Consensus algorithm

Process p_i :

```
Initially V = \{v_i\}
```

To execute propose(v_i)

1: send $\{v_i\}$ to all

decide(x) occurs as follows:

2: for all
$$j$$
, $0 \le j \le n-1$, $j \ne i$ do

3: receive S_j from p_j

4:
$$V := V \cup S_j$$

5: decide min(V)

 v_4

Suppose $v_1=\overline{v_3}=\overline{v_4}$ at the end of round 1 Can p_3 decide?

Suppose $v_1=\overline{v_3}=\overline{v_4}$ at the end of round 1 Can p_3 decide?

A process that receives a proposal in round 1, relays it to others during round 2.

- A process that receives a proposal in round 1, relays it to others during round 2.
- Suppose p_3 hasn't heard from p_2 at the end of round 2. Can p_3 decide?

- A process that receives a proposal in round 1, relays it to others during round 2.
- Suppose p_3 hasn't heard from p_2 at the end of round 2. Can p_3 decide?

- A process that receives a proposal in round 1, relays it to others during round 2.
- Suppose p_3 hasn't heard from p_2 at the end of round 2. Can p_3 decide?

- A process that receives a proposal in round 1, relays it to others during round 2.
- Suppose p_3 hasn't heard from p_2 at the end of round 2. Can p_3 decide?

- A process that receives a proposal in round 1, relays it to others during round 2.
- Suppose p_3 hasn't heard from p_2 at the end of round 2. Can p_3 decide?

Echoing values

- A process that receives a proposal in round 1, relays it to others during round 2.
- Suppose p_3 hasn't heard from p_2 at the end of round 2. Can p_3 decide?

What is going on

- \bullet A correct process p^* has not received all proposals by the end of round i . Can p^* decide?
- Another process may have received the missing proposal at the end of round i and be ready to relay it in round i+1

Dangerous Chains

Dangerous chain

The last process in the chain is correct, all others are faulty

Living dangerously

How many rounds can a dangerous chain span?

- $\Box f$ faulty processes
- \square at most f+1 nodes in the chain
- \square spans at most f rounds

It is safe to decide by the end of round f+1!

The Algorithm

Code for process p_i :

```
Initially V = \{v_i\}
To execute propose(v_i)
  round k, 1 \le k \le f+1
1: send \{v \in V : p_i \text{ has not already sent } v\} to all 2: for all j, 0 \le j \le n-1, j \ne i do
3: receive S_j from p_j
4: V := V \cup S_j
decide(x) occurs as follows:
5: if k = f+1 then
6: decide min(V)
```

```
Initially V = \{v_i\}

To execute propose(v_i)

round k, 1 \le k \le f+1

1: send \{v \in V : p_i \text{ has not already sent } v\} to all

2: for all j, 0 \le j \le n-1, j \ne i do

3: receive S_j from p_j

4: V := V \cup S_j

decide(x) occurs as follows:

5: if k = f+1 then

6: decide min(V)
```

Termination

```
Initially V = \{v_i\}

To execute propose(v_i)

round k, 1 \le k \le f+1

1: send \{v \in V : p_i \text{ has not already sent } v\} to all

2: for all j, 0 \le j \le n-1, j \ne i do

3: receive S_j from p_j

4: V := V \cup S_j

decide(x) occurs as follows:

5: if k = f+1 then

6: decide min(V)
```

Termination

Every correct process
reaches round f + 1
Decides on min(V) --- which is well defined

```
Initially V = \{v_i\}

To execute propose(v_i)

round k, 1 \le k \le f+1

1: send \{v \in V : p_i \text{ has not already sent } v\} to all

2: for all j, 0 \le j \le n-1, j \ne i do

3: receive S_j from p_j

4: V := V \cup S_j

decide(x) occurs as follows:

5: if k = f+1 then

6: decide min(V)
```

Integrity

At most one value:

Only if it was proposed:

Termination

Every correct process

- @reaches round f + 1
- Decides on min(V) --- which is well
 defined

```
Initially V = \{v_i\}

To execute propose(v_i)

round k, 1 \le k \le f+1

1: send \{v \in V : p_i \text{ has not already sent } v\} to all

2: for all j, 0 \le j \le n-1, j \ne i do

3: receive S_j from p_j

4: V := V \cup S_j

decide(x) occurs as follows:

5: if k = f+1 then

6: decide min(V)
```

Integrity

At most one value:
- one decide, and min(V) is unique
Only if it was proposed:

Termination

Every correct process

- reaches round f + 1
- Decides on min(V) --- which is well
 defined

```
Initially V = \{v_i\}

To execute propose(v_i)

round k, 1 \le k \le f+1

1: send \{v \in V : p_i \text{ has not already sent } v\} to all

2: for all j, 0 \le j \le n-1, j \ne i do

3: receive S_j from p_j

4: V := V \cup S_j

decide(x) occurs as follows:

5: if k = f+1 then

6: decide min(V)
```

Termination

Every correct process

- reaches round f + 1
- Decides on min(V) --- which is well
 defined

Integrity

At most one value:

- one decide, and min(V) is unique

Only if it was proposed:

- To be decided upon, must be in V at round f+1
- if value = v_i , then it is proposed in round 1
- else, suppose received in round k. By induction:
- k = 1:
 - by Uniform Integrity of underlying send
 and receive, it must have been sent in round 1
 - by the protocol and because only crash failures, it must have been proposed
- Induction Hypothesis: all values received up to round k = j have been proposed
- -k = j+1
 - sent in round j+1 (Uniform Integrity of send and synchronous model)
 - must have been part of V of sender at end of round j
 - by protocol, must have been received by sender by end of round j
 - by induction hypothesis, must have been proposed

Validity

```
Initially V = \{v_i\}

To execute propose(v_i)

round k, 1 \le k \le f+1

1: send \{v \in V : p_i \text{ has not already sent } v\} to all

2: for all j, 0 \le j \le n-1, j \ne i do

3: receive S_j from p_j

4: V := V \cup S_j

decide(x) occurs as follows:

5: if k = f+1 then

6: decide min(V)
```

Validity

```
Initially V = \{v_i\}

To execute propose(v_i)

round k, 1 \le k \le f+1

1: send \{v \in V : p_i \text{ has not already sent } v\} to all

2: for all j, 0 \le j \le n-1, j \ne i do

3: receive S_j from p_j

4: V := V \cup S_j

decide(x) occurs as follows:

5: if k = f+1 then

6: decide min(V)
```

- $\ensuremath{\mathfrak{G}}$ Suppose every process proposes v^*
- $\ensuremath{\mathfrak{G}}$ Since only crash model, only v^* can be sent
- $\ensuremath{\mathfrak{O}}$ By Uniform Integrity of send and receive, only v^* can be received
- \odot By protocol, $V = \{v^*\}$
- \otimes min(V) = v^*

```
Initially V = \{v_i\}

To execute propose(v_i)

round k, 1 \le k \le f+1

1: send \{v \in V : p_i \text{ has not already sent } v\} to all

2: for all j, 0 \le j \le n-1, j \ne i do

3: receive S_j from p_j

4: V := V \cup S_j

decide(x) occurs as follows:

5: if k = f+1 then

6: decide min(V)
```

Lemma 1

For any $r \ge 1$, if a process p receives a value v in round r, then there exists a sequence of processes p_0, p_1, \ldots, p_r such that $p_r = p$, p_0 is v's proponent, and in each round p_{k-1} sends v and p_k receives it. Furthermore, all processes in the sequence are distinct.

Proof

By induction on the length of the sequence

```
Initially V = \{v_i\}

To execute propose(v_i)

round k, 1 \le k \le f+1

1: send \{v \in V : p_i \text{ has not already sent } v\} to all

2: for all j, 0 \le j \le n-1, j \ne i do

3: receive S_j from p_j

4: V := V \cup S_j

decide(x) occurs as follows:

5: if k = f+1 then

6: decide min(V)
```

Lemma 2:

In every execution, at the end of round $f\!+\!1$, $V_i\!=\!V_j$ for every correct processes p_i and p_j

```
Initially V = \{v_i\}

To execute propose(v_i)

round k, 1 \le k \le f+1

1: send \{v \in V : p_i \text{ has not already sent } v\} to all

2: for all j, 0 \le j \le n-1, j \ne i do

3: receive S_j from p_j

4: V := V \cup S_j

decide(x) occurs as follows:

5: if k = f+1 then

6: decide min(V)
```

Lemma 2:

In every execution, at the end of round $f\!+\!1$, $V_i\!=\!V_j$ for every correct processes p_i and p_j

Agreement follows from Lemma 2, since min is a deterministic function

```
Initially V = \{v_i\}

To execute propose(v_i)

round k, 1 \le k \le f+1

1: send \{v \in V : p_i \text{ has not already sent } v\} to all

2: for all j, 0 \le j \le n-1, j \ne i do

3: receive S_j from p_j

4: V := V \cup S_j

decide(x) occurs as follows:

5: if k = f+1 then

6: decide min(V)
```

Lemma 2:

In every execution, at the end of round $f\!+\!1$, $V_i\!=\!V_j$ for every correct processes p_i and p_j

Agreement follows from Lemma 2, since min is a deterministic function

Proof:

ullet Show that if a correct p has x in its V at the end of round f+1, then every correct has x in its V at the end of round f+1

```
Initially V = \{v_i\}

To execute propose(v_i)

round k, 1 \le k \le f+1

1: send \{v \in V : p_i \text{ has not already sent } v\} to all

2: for all j, 0 \le j \le n-1, j \ne i do

3: receive S_j from p_j

4: V := V \cup S_j

decide(x) occurs as follows:

5: if k = f+1 then

6: decide min(V)
```

Lemma 2:

In every execution, at the end of round $f\!+\!1$, $V_i\!=\!V_j$ for every correct processes p_i and p_j

Agreement follows from Lemma 2, since min is a deterministic function

Proof:

- ullet Show that if a correct p has x in its V at the end of round f+1, then every correct has x in its V at the end of round f+1
- ullet Let r be earliest round x is added to the V of a correct p. Let that process be p^*
- ullet If $r \le f$, then p^* sends x in round $r+1 \le f+1$; every correct process receives x and adds x to its V in round r+1

```
Initially V = \{v_i\}

To execute propose(v_i)

round k, 1 \le k \le f+1

1: send \{v \in V : p_i \text{ has not already sent } v\} to all

2: for all j, 0 \le j \le n-1, j \ne i do

3: receive S_j from p_j

4: V := V \cup S_j

decide(x) occurs as follows:

5: if k = f+1 then

6: decide min(V)
```

Lemma 2:

In every execution, at the end of round $f\!+\!1$, $V_i\!=\!V_j$ for every correct processes p_i and p_j

Agreement follows from Lemma 2, since min is a deterministic function

Proof:

- ullet Show that if a correct p has x in its V at the end of round f+1, then every correct has x in its V at the end of round f+1
- ullet Let r be earliest round x is added to the V of a correct p. Let that process be p^*
- If $r \le f$, then p^* sends x in round $r+1 \le f+1$; every correct process receives x and adds x to its Y in round x+1
- ullet What if $r\!=\!f\!+\!1$?

```
Initially V = \{v_i\}

To execute propose(v_i)

round k, 1 \le k \le f+1

1: send \{v \in V : p_i \text{ has not already sent } v\} to all

2: for all j, 0 \le j \le n-1, j \ne i do

3: receive S_j from p_j

4: V := V \cup S_j

decide(x) occurs as follows:

5: if k = f+1 then

6: decide min(V)
```

Lemma 2:

In every execution, at the end of round $f\!+\!1$, $V_i\!=\!V_j$ for every correct processes p_i and p_j

Agreement follows from Lemma 2, since min is a deterministic function

Proof:

- ullet Show that if a correct p has x in its V at the end of round f+1, then every correct has x in its V at the end of round f+1
- ullet Let r be earliest round x is added to the V of a correct p. Let that process be p^*
- ullet If $r \leq f$, then p^* sends x in round $r+1 \leq f+1$; every correct process receives x and adds x to its V in round r+1
- \bullet What if r = f + 1?
- ullet By Lemma 1, there exists a sequence of distinct processes $p_0,\ldots,p_{f+1}=p^*$
- ullet Consider processes p_0,\ldots,p_f
- \bullet f+1 processes; only f faulty
- ullet one of p_0,\dots,p_f is correct, and adds x to its V before p^* does it in round r

CONTRADICTION!

Terminating Reliable Broadcast

Validity

If the sender is correct and broadcasts a message m, then all correct processes eventually deliver m

Agreement

If a correct process delivers a message m , then all correct processes eventually deliver m

Integrity

Every correct process delivers at most one message, and if it delivers $m \neq SF$, then some process must have broadcast m

Termination

Every correct process eventually delivers some message

TRB for benign failures

```
Sender in round 1:

1: send m to all

Process p in round k, 1 ≤ k ≤ f+1

1: if delivered m in round k-1 and p ≠ sender then

2: send m to all

3: halt

4: receive round k messages

5: if received m then

6: deliver(m)

7: if k = f+1 then halt

8: else if k = f+1

9: deliver(SF)

10: halt
```

Terminates in f+1 rounds

How can we do better?

find a protocol whose round complexity is proportional to t -the number of failures that actually occurred-rather than to f-the max number of failures that may occur

Early stopping: the idea

- If |faulty(p,i)| < i there can be no active dangerous chains, and p can safely deliver SF

Early Stopping: The Protocol

```
Let faulty(p, k) be the set of processes that have failed to send a message to
p in any round 1, \ldots, k
1: if p = sender then value := m = else value:= ?
Process p in round k, 1 \le k \le f+1
2: send value to all
3: if value \neq ? and delivered m in round k-1 then halt
4: receive round k values from all
5: faulty(p, k) := faulty(p, k - 1) \cup \{q \mid p \text{ received no value from } q \text{ in round } k\}
6: if received value v \neq ? then
7:
    value := v
      deliver value
8:
9: else if k = f + 1 or |faulty(p, k)| < k then
     value := SF
10:
```

deliver value

12: if k=f+1 then halt

11:

Termination

```
Let faulty(p, k) be the set of processes that have
failed to send a message to p in any round 1, \ldots, k
 1: if p = sender then value := m else value:= ?
 Process p in round k, 1 \le k \le f+1
      send value to all
 2:
      if value \neq? and delivered m in round k-1 then halt
      receive round k values from all
      faulty(p, k) := faulty(p, k - 1) \cup \{q \mid p\}
 5:
       received no value from q in round k}
      if received value v \neq ? then
          value := v
 7:
 8:
          deliver value
      else if k = f + 1 or |faulty(p, k)| < k then
 9:
 10:
          value := SF
          deliver value
 11:
 12:
         if k = f + 1 then halt
```

Termination

```
Let faulty(p, k) be the set of processes that have
failed to send a message to p in any round 1, \ldots, k
 1: if p = sender then value := m else value:= ?
 Process p in round k, 1 \le k \le f+1
 2:
      send value to all
      if value \neq? and delivered m in round k-1 then half
      receive round k values from all
      faulty(p, k) := faulty(p, k - 1) \cup \{q \mid p\}
       received no value from q in round k}
      if received value v \neq ? then
          value := v
 7:
 8:
          deliver value
      else if k = f + 1 or |faulty(p, k)| < k then
 10:
          value := SF
         deliver value
 11:
 12:
         if k = f + 1 then halt
```

- If in any round a process receives a value, then it delivers the value in that round
- If a process has received only "?" for f+1 rounds, then it delivers SF in round f+1

Validity

```
Let faulty(p, k) be the set of processes that have
failed to send a message to p in any round 1, \ldots, k
 1: if p = sender then value := m else value:= ?
 Process p in round k, 1 \le k \le f+1
 2:
      send value to all
      if value \neq ? and delivered m in round k-1 then halt
      receive round k values from all
      faulty(p, k) := faulty(p, k - 1) \cup \{q \mid p\}
 5:
       received no value from q in round k}
      if received value v \neq ? then
          value := v
 7:
 8:
          deliver value
       else if k = f + 1 or |faulty(p, k)| < k then
 9:
 10:
          value := SF
          deliver value
 11:
 12:
         if k = f + 1 then halt
```

Validity

```
Let faulty(p, k) be the set of processes that have
failed to send a message to p in any round 1, \ldots, k
 1: if p = sender then value := m = else value:= ?
 Process p in round k, 1 \le k \le f+1
      send value to all
 2:
      if value \neq? and delivered m in round k-1 then halt
      receive round k values from all
      faulty(p, \overline{k}) := faulty(p, k - \overline{1}) \cup \{q \mid p\}
 5:
       received no value from q in round k}
      if received value v \neq ? then
          value := v
 7:
          deliver value
 8:
       else if k = f + 1 or |faulty(p, k)| < k then
 9:
 10:
          value := SF
          deliver value
 11:
```

if k = f + 1 then halt

12:

- By Validity of the underlying send and receive, every correct process will receive m
 by the end of round 1
- By the protocol, every correct process will deliver m by the end of round 1

```
Let faulty(p, k) be the set of processes that have
failed to send a message to p in any round 1, \ldots, k
 1: if p = sender then value := m else value:= ?
 Process p in round k, 1 \le k \le f+1
 2:
      send value to all
      if value \neq? and delivered m in round k-1 then halt
      receive round k values from all
      faulty(p, k) := faulty(p, k - 1) \cup \{q \mid p\}
 5:
       received no value from q in round k}
      if received value v \neq ? then
          value := v
 7:
 8:
          deliver value
      else if k = f + 1 or |faulty(p, k)| < k then
 9:
 10:
          value := SF
         deliver value
 11:
 12:
         if k = f + 1 then halt
```

Lemma 1

For any $r \ge 1$, if a process p delivers $m \ne \mathrm{SF}$ in round r, then there exists a sequence of processes p_0, p_1, \ldots, p_r such that $p_0 = \mathrm{sender}, \ p_r = p$, and in each round $k, 1 \le k \le r$, p_{k-1} sent m and p_k received it. Furthermore, all processes in the sequence are distinct, unless r=1 and $p_0 = p_1 = \mathrm{sender}$

Lemma 2:

For any $r \ge 1$, if a process p sets value to SF in round r, then there exist some $j \le r$ and a sequence of distinct processes $q_j, q_{j+1}, \ldots, q_r = p$ such that q_j only receives "?" in rounds 1 to j, $|faulty(q_j, j)| < j$, and in each round $k, j+1 \le k \le r$, q_{k-1} sends SF to q_k and q_k receives SF

```
Let faulty(p, k) be the set of processes that have
failed to send a message to p in any round 1, \ldots, k
    if p = sender then value := m else value:= ?
 Process p in round k, 1 \le k \le f+1
      send value to all
      if value \neq ? and delivered m in round k-1 then halt
      receive round k values from all
      faulty(p, k) := faulty(p, k - 1) \cup \{q \mid p\}
      received no value from q in round k}
      if received value v \neq ? then
 7:
         value := v
 8:
         deliver value
 9:
      else if k = f + 1 or |faulty(p, k)| < k then
         value := SF
 10:
        deliver value
 11:
 12:
         if k = f + 1 then halt
                       Lemma 3:
```

It is impossible for p and q, not necessarily correct or distinct, to set value in the same round r to m and SF, respectively

```
Let faulty(p, k) be the set of processes that have
failed to send a message to p in any round 1, \ldots, k
 1: if p = sender then value := m = else value:= ?
 Process p in round k, 1 \le k \le f+1
      send value to all
      if value \neq? and delivered m in round k-1 then halt
      receive round k values from all
      faulty(p, k) := faulty(p, k - 1) \cup \{q \mid p\}
      received no value from q in round k}
      if received value v \neq ? then
 7:
          value := v
 8:
          deliver value
      else if k = f + 1 or |faulty(p, k)| < k then
 9:
         value := SF
 10:
 11:
        deliver value
 12:
         if k = f + 1 then halt
                       Lemma 3:
```

It is impossible for p and q, not necessarily correct or distinct, to set value in the same round ${\bf r}$ to m and SF, respectively

Proof

By contradiction $\label{eq:suppose} \text{Suppose } p \text{ sets value = } m \text{ and } q \text{ sets } \\ \text{value = SF}$

By Lemmas 1 and 2 there exist p_0,\dots,p_r q_j,\dots,q_r

with the appropriate characteristics Since q_j did not receive m from process p_{k-1} $1 \le k \le j$ in round k q_j must conclude that p_0, \ldots, p_{j-1} are all faulty processes But then, $|faulty(q_j,j)| \ge j$

CONTRADICTION

```
Let faulty(p, k) be the set of processes that have
failed to send a message to p in any round 1, \ldots, k
 1: if p = sender then value := m = else value:= ?
 Process p in round k, 1 \le k \le f+1
      send value to all
     if value \neq ? and delivered m in round k-1 then halt
    receive round k values from all
      faulty(p, k) := faulty(p, k - 1) \cup \{q \mid p\}
      received no value from q in round k}
      if received value v \neq ? then
         value := v
 7:
          deliver value
 8:
      else if k = f + 1 or |faulty(p, k)| < k then
 9:
         value := SF
 10:
         deliver value
 11:
         if k = f + 1 then halt
 12:
```

```
Let faulty(p, k) be the set of processes that have
failed to send a message to p in any round 1, \ldots, k
 1: if p = sender then value := m = else value:= ?
 Process p in round k, 1 \le k \le f+1
      send value to all
      if value \neq ? and delivered m in round k-1 then halt
      receive round k values from all
      faulty(p,k) := faulty(p,k-1) \cup \{q \mid p\}
      received no value from q in round k}
      if received value v \neq ? then
 7:
         value := v
 8:
         deliver value
      else if k = f + 1 or |faulty(p, k)| < k then
 9:
         value := SF
 10:
 11:
        deliver value
 12:
        if k = f + 1 then halt
```

Proof

If no correct process ever receives m, then every correct process delivers SF in round f + 1

Let r be the earliest round in which a correct process delivers value ≠ SF

r ≤ f

- ☐ By Lemma 3, no (correct) process can set value differently in round r
- \square In round $r + 1 \le f + 1$, that correct process sends its value to all
- \square Every correct process receives and delivers the value in round $r + 1 \le f + 1$

r = f + 1

- \square By Lemma 1, there exists a sequence p_0 , ..., p_{f+1}
 - $= p_r$ of distinct processes
- ☐ Consider processes p₀, ..., p_f
 - @f+1 processes; only f faulty
 - \odot one of p_0 , ..., p_f is correct-- let it be p_c
 - To send v in round c + 1, p_c must have set its value to v and delivered v in round c < r

CONTRADICTION

Integrity

```
Let faulty(p, k) be the set of processes that have
failed to send a message to p in any round 1, \ldots, k
    if p = sender then value := m else value:= ?
 Process p in round k, 1 \le k \le f+1
 2:
      send value to all
      if value \neq ? and delivered m in round k-1 then halt
      receive round k values from all
      faulty(p, k) := faulty(p, k - 1) \cup \{q \mid p\}
      received no value from q in round k}
      if received value v \neq ? then
          value := v
 7:
          deliver value
 8:
      else if k = f + 1 or |faulty(p, k)| < k then
 9:
         value := SF
 10:
         deliver value
 11:
         if k = f + 1 then halt
 12:
```

Integrity

```
Let faulty(p, k) be the set of processes that have
failed to send a message to p in any round 1, \ldots, k
 1: if p = sender then value := m = else value:= ?
 Process p in round k, 1 \le k \le f+1
      send value to all
      if value \neq? and delivered m in round k-1 then halt
      receive round k values from all
      faulty(p,k) := faulty(p,k-1) \cup \{q \mid p\}
      received no value from q in round k}
      if received value v \neq ? then
 7:
          value := v
 8:
          deliver value
      else if k = f + 1 or |faulty(p, k)| < k then
 9:
          value := SF
 10:
         deliver value
 11:
 12:
         if k = f + 1 then halt
```

- - ☐ Failures are benign, and a process executes at most one deliver event before halting
- If m ≠ SF, only if m was broadcast
 - ☐ From Lemma 1 in the proof of Agreement

A Lower Bound

Theorem

There is no algorithm that solves the consensus problem in fewer than f+1 rounds in the presence of f crash failures, if $n \geq f+2$

We consider a special case (f=1) to study the proof technique

Views

Let α be an execution. The view of process p_i in α , denoted by $\alpha|p_i$, is the subsequence of computation and message receive events that occur in p_i together with the state of p_i in the initial configuration of α

Views

Let α be an execution. The view of process p_i in α , denoted by $\alpha|p_i$, is the subsequence of computation and message receive events that occur in p_i together with the state of p_i in the initial configuration of α

Definition Let α_1 and α_2 be two executions of consensus and let p_i be a correct process in both α_1 and α_2 .

 $lpha_1$ is similar to $lpha_2$ with respect to p_i , denoted $\alpha_1 \sim_{p_i} \alpha_2$ if

$$\alpha_1 | p_i = \alpha_2 | p_i$$

Definition Let α_1 and α_2 be two executions of consensus and let p_i be a correct process in both α_1 and α_2 .

 $lpha_1$ is similar to $lpha_2$ with respect to p_i , denoted $\alpha_1\sim_{p_i}\alpha_2$ if $lpha_1|p_i=lpha_2|p_i$

Note If $\alpha_1 \sim_{p_i} \alpha_2$ then p_i decides the same value in both executions

Definition Let α_1 and α_2 be two executions of consensus and let p_i be a correct process in both α_1 and α_2 .

 $lpha_1$ is similar to $lpha_2$ with respect to p_i , denoted $\alpha_1 \sim_{p_i} \alpha_2$ if

$$\alpha_1|p_i = \alpha_2|p_i|$$

Note If $\alpha_1 \sim_{p_i} \alpha_2$ then p_i decides the same value in both executions

Lemma If $\alpha_1 \sim_{p_i} \alpha_2$ and p_i is correct, then $\operatorname{dec}(\alpha_1) = \operatorname{dec}(\alpha_2)$

Definition Let α_1 and α_2 be two executions of consensus and let p_i be a correct process in both α_1 and α_2 .

 $lpha_1$ is similar to $lpha_2$ with respect to p_i , denoted $lpha_1\sim_{p_i}lpha_2$ if $lpha_1|p_i=lpha_2|p_i$

Note If $\alpha_1 \sim_{p_i} \alpha_2$ then p_i decides the same value in both executions

Lemma If $\alpha_1 \sim_{p_i} \alpha_2$ and p_i is correct, then $\operatorname{dec}(\alpha_1) = \operatorname{dec}(\alpha_2)$

The transitive closure of $\alpha_1 \sim_{p_i} \alpha_2$ is denoted $\alpha_1 \approx \alpha_2$.

We say that $\alpha_1 \approx \alpha_2$ if there exist executions $\beta_1, \beta_2, \ldots, \beta_{k+1}$ such that $\alpha_1 = \beta_1 \sim_{p_{i_1}} \beta_2 \sim_{p_{i_2}} \ldots, \sim_{p_{i_k}} \beta_{k+1} = \alpha_2$

Definition Let α_1 and α_2 be two executions of consensus and let p_i be a correct process in both α_1 and α_2 .

 $lpha_1$ is similar to $lpha_2$ with respect to p_i , denoted $\alpha_1 \sim_{p_i} \alpha_2$ if $lpha_1 | p_i = lpha_2 | p_i$

Note If $\alpha_1 \sim_{p_i} \alpha_2$ then p_i decides the same value in both executions

Lemma If $\alpha_1 \sim_{p_i} \alpha_2$ and p_i is correct, then $dec(\alpha_1) = dec(\alpha_2)$

The transitive closure of $\alpha_1 \sim_{p_i} \alpha_2$ is denoted $\alpha_1 \approx \alpha_2$.

We say that $\alpha_1 \approx \alpha_2$ if there exist executions $\beta_1, \beta_2, \ldots, \beta_{k+1}$ such that $\alpha_1 = \beta_1 \sim_{p_{i_1}} \beta_2 \sim_{p_{i_2}} \ldots, \sim_{p_{i_k}} \beta_{k+1} = \alpha_2$

Lemma If $\alpha_1 \approx \alpha_2$ then $\operatorname{dec}(\alpha_1) = \operatorname{dec}(\alpha_2)$

Single-Failure Case

There is no algorithm that solves consensus in fewer than two rounds in the presence of one crash failure, if $n \ge 3$

The Idea

By contradiction

- Consider a one-round execution in which each process proposes 0. What is the decision value?
- Consider another one-round execution in which each process proposes 1. What is the decision value?
- Show that there is a chain of similar executions that relate the two executions.

So what?

Definition

- no failures occur
- lacksquare only processes $p_0,\ldots,\overline{p_{i-1}}$ propose 1

Definition

- o no failures occur
- $only processes <math>p_0, \ldots, p_{i-1}$ propose 1

Definition

- no failures occur
- $only processes <math>p_0, \ldots, p_{i-1}$ propose 1

Definition

- no failures occur
- $only processes <math>p_0, \ldots, p_{i-1}$ propose 1

Definition

- no failures occur
- $only processes <math>p_0, \ldots, p_{i-1}$ propose 1

Definition

- no failures occur
- $only processes <math>p_0, \ldots, p_{i-1}$ propose 1

Definition

- no failures occur
- $only processes <math>p_0, \ldots, p_{i-1}$ propose 1

α^i s

Definition

- o no failures occur

α^i s

Definition

- o no failures occur

Definition

 α^i is the execution of the algorithm in which

- o no failures occur
- lacktriangledown only processes p_0,\ldots,p_{i-1} propose 1

 p_0

 p_{i-1} 1

Adjacent α^i s are similar!

Starting from α^i , we build a set of executions α^i_j where $0 \leq j \leq n-1$ as follows:

 α_j^i is obtained from α^i after removing the messages that p_i sends to the j-th highest numbered processors (excluding itself)

 α^{i}

 α_0^i

 $lpha^i$

 α_1^i

 $\begin{array}{c} \alpha^i \\ \varnothing \\ \alpha^i_1 \end{array}$

 α^i

 α_2^i

 $\begin{array}{c} \alpha^i \\ \aleph \\ \alpha^i_2 \end{array}$

$$\begin{array}{c} \alpha^i \\ \varnothing \\ \alpha^i_{n-1} \end{array}$$

$$\begin{array}{c} \alpha^i \\ \varnothing \\ \alpha^i_{n-1} \end{array}$$

$$p_0$$
 1 ϕ
 p_{i-1} 1 ϕ
 p_i 1 ϕ
 p_{i+1} 0 ϕ

$$\begin{array}{c} \alpha^i \\ \varnothing \\ \alpha^i_{n-1} \end{array}$$

$$\beta_{n-1}^i$$

$$p_0$$
 1 p_{i-1} 1 p_i 1 p_{i+1} 0 p_{i+1} 0

$$p_{i-1}$$
 1 ϕ
 p_i 1 ϕ
 p_{i+1} 0 ϕ

$$\begin{array}{c} \alpha^i \\ \varnothing \\ \alpha^i_{n-1} \end{array}$$

$$\approx$$

$$\beta_{n-1}^i$$

$$\begin{array}{c} \alpha^i \\ \varnothing \\ \alpha^i_{n-1} \end{array}$$

$$\approx$$

$$\beta_{n-2}^i$$

$$\begin{array}{c} \alpha^i \\ \varnothing \\ \alpha^i_{n-1} \end{array}$$

$$\approx$$

$$\beta_{n-3}^i$$

$$\begin{array}{c} \alpha^i \\ \varnothing \\ \alpha^i_{n-1} \end{array}$$

$$\approx$$

$$p_{0}$$
 1 p_{i-1} 1 p_{i} 1 p_{i+1} 0 p_{i+1} 0

$$egin{array}{c} lpha^{i+1} \ lpha^i \ eta^i_0 \end{array}$$

Arbitrary failures with message authentication

Fail-stop — - - - - Crash

Send Omission

Receive Omission

- Process can send conflicting messages to different receivers
- Messages are signed with unforgeable signatures

General Omission

Arbitrary failures with message authentication

Arbitrary (Byzantine) failures

Valid messages

A valid message m has the following form:

```
in round 1:
```

```
m:s_{id} (m is signed by the sender)
```

in round r > 1, if received by p from q:

```
m:p_1:p_2:\ldots:p_r where
```

- $p_1 =$ sender; $p_r = q$
- p_1, \ldots, p_r are distinct from each other and from p
- message has not been tampered with

AFMA: The Idea

- If a message is valid,
 - □ it "extracts" the value from the message
 - □ it relays the message, with its own signature appended
- - $lue{}$ if it extracted exactly one message, p delivers it
 - \square otherwise, p delivers SF

AFMA: The Protocol

```
Initialization for process p:
 if p = \overline{\text{sender and } p \text{ wishes to broadcast } m \text{ then}}
   extracted := relay := \{m\}
Process p in round k, 1 \le k \le f+1
  for each s \in \text{relay}
    send s:p to all
 receive round k messages from all processes
 relay := Ø
  for each valid message received s = m : p_1 : p_2 : \ldots : p_k
   if m \not\in \text{extracted then}
    extracted := extracted \cup \{m\}
    relay := relay \cup \{s\}
At the end of round f+1
   if \exists m such that extracted = \{m\} then
    deliver m
   else deliver SF
```

Termination

```
Initialization for process p:
 if p = sender and p wishes to broadcast m then
   extracted := relay := \{m\}
Process p in round k, 1 \le k \le f+1
  for each s \in \text{relay}
    send s:p to all
  receive round k messages from all processes
 relay := \emptyset
  for each valid message received s = m : p_1 : p_2 : \ldots : p_k
   if m \not\in \text{extracted then}
     extracted := extracted \cup \{m\}
     relay := relay \cup \{s\}
At the end of round f+1
   if \exists m such that extracted = \{m\} then
     deliver m
   else deliver SF
```

In round f+1, every correct process delivers either m or SF and then halts

Agreement

```
Initialization for process p:
 if p = sender and p wishes to broadcast m then
   extracted := relay := \{m\}
Process p in round k, 1 \le k \le f+1
  for each s \in \text{relay}
    send s:p to all
  receive round k messages from all processes
 relay := \emptyset
  for each valid message received s = m : p_1 : p_2 : \ldots : p_k
   if m \not\in extracted then
     extracted := extracted \cup \{m\}
     relay := relay \cup \{s\}
At the end of round f+1
   if \exists m such that extracted = \{m\} then
     deliver m
   else deliver SF
```

Lemma. If a correct process extracts m , then every correct process eventually extracts m

Proof

Let r be the earliest round in which some correct process extracts m. Let that process be p.

ullet if p is the sender, then in round 1 p sends a valid message to all.

All correct processes extract that message in round 1

ullet otherwise, p has received in round r a message

$$m:p_1:p_2:\ldots:p_r$$

- Claim: p_1, p_2, \dots, p_r are all faulty
- true for $p_1 = s$
- Suppose $p_j, 1 \le j \le r$, were correct
- ullet p_j signed and relayed message in round j
- p_j extracted message in round j-1

CONTRADICTION

• If $r \le f, p$ will send a valid message

$$m: p_1: p_2: \ldots: p_r: p$$

in round $r+1 \le f+1$ and every correct process will extract it in round $r+1 \le f+1$

- ullet If r=f+1, by Claim above, p_1,p_2,\ldots,p_{f+1} faulty
- At most f faulty processes
- CONTRADICTION

Validity

```
Initialization for process p:
 if p = sender and p wishes to broadcast m then
   extracted := relay := \{m\}
Process p in round k, 1 \le k \le f+1
  for each s \in \text{relay}
    send s:p to all
  receive round k messages from all processes
 relay := \emptyset
  for each valid message received s = m : p_1 : p_2 : \ldots : p_k
   if m \notin \text{extracted then}
     extracted := extracted \cup \{m\}
     relay := relay \cup \{s\}
At the end of round f+1
   if \exists m such that extracted = \{m\} then
     deliver m
   else deliver SF
```

Validity

```
Initialization for process p:
 if p = sender and p wishes to broadcast m then
   extracted := relay := \{m\}
Process p in round k, 1 \le k \le f+1
  for each s \in \text{relay}
    send s:p to all
  receive round k messages from all processes
 relay := \emptyset
  for each valid message received s = m : p_1 : p_2 : \ldots : p_k
   if m \not\in \text{extracted then}
     extracted := extracted \cup \{m\}
     relay := relay \cup \{s\}
At the end of round f+1
   if \exists m such that extracted = \{m\} then
     deliver m
   else deliver SF
```

From Agreement and the observation that the sender, if correct, delivers its own message.

TRB for arbitrary failures

Fail-stop — - - - - Crash

Send Omission

Receive Omission

Srikanth, T.K., Toueg S.

Simulating Authenticated Broadcasts to Derive Simple Fault-Tolerant Algorithms

Distributed Computing 2 (2), 80-94

General Omission

Arbitrary failures with message authentication

Arbitrary (Byzantine) failures

AF: The Idea

- Identify the essential properties of message authentication that made AFMA work
- Implement these properties without using message authentication

AF: The Approach

Introduce two primitives

```
broadcast(p, m, i) (executed by p in round i) accept(p, m, i) (executed by q in round j \ge i)
```

- Give axiomatic definitions of broadcast and accept
- Derive an algorithm that solves TRB for AF using these primitives
- Show an implementation of these primitives that does not use message authentication

Properties of broadcast and accept

- Correctness If a correct process p executes broadcast(p,m,i) in round i, then all correct processes will execute accept(p,m,i) in round i
- Unforgeability If a correct process q executes accept(p,m,i) in round $j \ge i$, and p is correct, then p did in fact execute broadcast(p,m,i) in round i
- Relay If a correct process q executes accept(p,m,i) in round $j \ge i$, then all correct processes will execute accept(p,m,i) by round j+1

AF: The Protocol - 1

```
sender s in round 0:
0: extract m
sender s in round 1:
1: broadcast(s, m, 1)
Process p in round k, 1 \le k \le f+1
2: if p extracted m in round k-1 and p \neq sender then
      broadcast(p, m, k)
5: if p has executed at least k accept(q_i, m, j_i) 1 \le i \le k in rounds 1 through k
        (where (i) q_i distinct from each other and from p_i (ii) one q_i is s_i and
     (iii) 1 \le j_i \le k) and p has not previously extracted m then
      extract m
7: if k = f + 1 then
8:
      if in the entire execution p has extracted exactly one m then
          deliver m
9:
10:
     else deliver SF
11:
      halt
```

Termination

```
sender s in round 0:
0: extract m
sender s in round 1:
1: broadcast(s, m, 1)
Process p in round k, 1 \le k \le f+1
2: if p extracted m in round k-1 and p \neq sender then
        broadcast(p, m, k)
5: if p has executed at least k accept(q_i, m, j_i) 1 \le i \le k in
        rounds 1 through k
            (where (i) q_i distinct from each other and from
            p, (ii) one q_i is s, and (iii) 1 \le j_i \le k)
      and p has not previously extracted m then
6:
            extract m
   if k = f+1 then
        if in the entire execution p has extracted exactly
                     one m then
9:
            deliver m
        else deliver SF
10:
11:
        halt
```

In round f+1, every correct process delivers either m or SF and then halts

```
sender s in round 0:
0: extract m
sender s in round 1:
1: broadcast(s, m, 1)
Process p in round k, 1 \le k \le f+1
2: if p extracted m in round k-1 and p \neq sender then
        broadcast(p, m, k)
5: if p has executed at least k accept(q_i, m, j_i) 1 \le i \le k in
        rounds 1 through k
            (where (i) q_i distinct from each other and from
             p, (ii) one q_i is s, and (iii) 1 \le j_i \le k)
      and p has not previously extracted m then
             extract m
   if k = f+1 then
        if in the entire execution p has extracted exactly
                     one m then
9:
            deliver m
        else deliver SF
10:
11:
        halt
```

Lemma

If a correct process extracts m, then every correct process eventually extracts m

```
sender s in round 0:
0: extract m
sender s in round 1:
1: broadcast(s, m, 1)
Process p in round k, 1 \le k \le f+1
2: if p extracted m in round k-1 and p \neq sender then
        broadcast(p, m, k)
5: if p has executed at least k accept(q_i, m, j_i) 1 \le i \le k in
        rounds 1 through k
            (where (i) q_i distinct from each other and from
             p, (ii) one q_i is s, and (iii) 1 \le j_i \le k)
      and p has not previously extracted m then
             extract m
   if k = f+1 then
        if in the entire execution p has extracted exactly
                     one m then
9:
            deliver m
        else deliver SF
10:
11:
        halt
```

Lemma

If a correct process extracts m, then every correct process eventually extracts m

```
sender s in round 0:
0: extract m
sender s in round 1:
1: broadcast(s, m, 1)
Process p in round k, 1 \le k \le f+1
2: if p extracted m in round k-1 and p \neq sender then
        broadcast(p, m, k)
5: if p has executed at least k accept(q_i, m, j_i) 1 \le i \le k in
        rounds 1 through k
            (where (i) q_i distinct from each other and from
             p, (ii) one q_i is s, and (iii) 1 \le j_i \le k)
      and p has not previously extracted m then
             extract m
7: if k = f+1 then
        if in the entire execution p has extracted exactly
                     one m then
9:
            deliver m
        else deliver SF
10:
11:
        halt
```

Lemma

If a correct process extracts m, then every correct process eventually extracts m

Proof

Let r be the earliest round in which some correct process extracts m. Let that process be p.

- if r = 0, then p = s and p will execute broadcast(s,m,1) in round 1. By <u>CORRECTNESS</u>, all correct processes will execute **accept** (s,m,1) in round 1 and extract m
- if r > 0, the sender is faulty. Since p has extracted m in round r, p has accepted at least r triples with properties (i), (ii), and (iii) by round r
 - $r \le f$ By <u>RELAY</u>, all correct processes will have accepted those r triples by round r + 1
 - \square p will execute broadcast(p,m,r + 1) in round r + 1
 - By <u>CORRECTNESS</u>, any correct process other than p, q_1 , q_2 ,..., q_r will have accepted r+1 triples (q_k,m,j_k) , $1 \le j_k \le r+1$, by round r+1
 - □ q1, q2,...,q_r,p are all distinct
 - every correct process other than q_1 , q_2 ,..., q_r ,p will extract m
 - \square p has already extracted m; what about q₁, q₂,...,q_r?

```
sender s in round 0:
0: extract m
sender s in round 1:
1: broadcast(s, m, 1)
Process p in round k, 1 \le k \le f+1
2: if p extracted m in round k-1 and p \neq sender then
        broadcast(p, m, k)
5: if p has executed at least k accept(q_i, m, j_i) 1 \le i \le k in
        rounds 1 through k
             (where (i) q_i distinct from each other and from
             p, (ii) one q_i is s, and (iii) 1 \le j_i \le k)
       and p has not previously extracted m then
             extract m
6:
7: if k = f+1 then
        if in the entire execution p has extracted exactly
                     one m then
9:
             deliver m
        else deliver SF
10:
11:
        halt
```

Claim: q_1, q_2, \ldots, q_r are all faulty

- > Suppose q_k were correct
- > p has accepted (q_k,m,j_k) in round $j_k \leq r$
- > By <u>UNFORGEABILITY</u>, q_k executed broadcast (q_k,m,j_k) in round j_k
- $>q_k$ extracted m in round $j_{k-1} < r$

CONTRADICTION

- \square Case 2: r = f+1
 - \square Since there are at most f faulty processes, some process q_l in $q_1, q_2, \ldots, q_{f+1}$ is correct
 - \square By <u>UNFORGEABILITY</u>, q_l executed broadcast (q_l, m, j_l) in round $j_l \leq r$
 - $\ \square \ q_l$ has extracted m in round $j_{l-1} < f+1$

CONTRADICTION

Validity

```
sender s in round 0:
0: extract m
sender s in round 1:
1: broadcast(s, m, 1)
Process p in round k, 1 \le k \le f+1
2: if p extracted m in round k-1 and p \neq sender then
        broadcast(p, m, k)
5: if p has executed at least k accept(q_i, m, j_i) 1 \le i \le k in
        rounds 1 through k
             (where (i) q_i distinct from each other and from
             p, (ii) one q_i is s, and (iii) 1 \le j_i \le k)
       and \overline{p} has not previously extracted \overline{m} then
             extract m
7: if k = f+1 then
        if in the entire execution p has extracted exactly
                      one m then
9:
             deliver m
         else deliver SF
10:
11:
         halt
```

- $\ensuremath{\mathfrak{O}}$ By CORRECTNESS, all correct processes execute $\operatorname{accept}(s,m,1)$ in round 1 and extract m
- In order to extract a different message m' , a process must execute $\mathrm{accept}(s,m',1)$ in some round $i\leq f+1$
- All correct processes will deliver m

Implementing broadcast and accept

- - \square Sends m to all
 - \square Each correct process becomes a witness by relaying m to all
- $\ensuremath{\mathfrak{O}}$ If a process receives enough witness confirmations, it accepts m

Can we rely on witnesses?

- Only if not too many faulty processes!
- Otherwise, a set of faulty processes could fool a correct process by acting as witnesses of a message that was never broadcast

Byzantine Generals

- One General G, a set of Lieutenants L_i
- General can order Attack (A) or Retreat (R)
- General may be a traitor; so may be some of the Lieutenants

* * *

- I. If G is trustworthy, every trustworthy L_i must follow G's orders
- II. Every trustworthy Li must follow same battleplan

A Lower Bound

Theorem

There is no algorithm that solves TRB for Byzantine failures if $n \leq 3f$

(Lamport, Shostak, and Pease, The Byzantine Generals Problem, ACM TOPLAS, 4 (3), 382-401, 1982)

Back to the protocol...

lacktriangledown To broadcast a message in round r, p sends (init,p,m,r) to all

or

- - \square it receives (init, p, m, r) from p directly
 - \square it receives confirmations for (p,m,r) from at least f+1 processes (at least one correct witness)
- Protocol proceeds in rounds. Each round has 2 phases

Implementation of broadcast and accept

```
Phase 2r-1
1: p sends (init, p, m, r) to all
Phase 2r
2: if q received (init, p, m, r) in phase 2r-1 then
      q sends (echo, p, m, r) to all /*q becomes a witness */
4: if q receives (echo, p, m, r) from at least n-f distinct processes in phase 2r then
5: q accepts (p, m, r)
Phase j > 2r
6: if q has received (echo, p, m, r) from at least f+1 distinct processes in
  phases (2r, 2r+1, \ldots, j-1) then
     q sends (echo, p, m, r) to all processes /* q becomes a witness */
8: if q has received (echo, p, m, r) from at least n-f processes in
  phases (2r, 2r + 1, \ldots, j) then
9: q accepts (p, m, r)
```

Implementation of broadcast and accept

```
Phase 2r-1
1: p sends (init, p, m, r) to all
Phase 2r
2: if q received (init, p, m, r) in phase 2r-1 then
      q sends (echo, p, m, r) to all /*q becomes a witness */
4: if q receives (echo, p, m, r) from at least n-f distinct processes in phase 2r then
5: q accepts (p, m, r)
Phase j > 2r
6: if q has received (echo, p, m, r) from at least f+1 distinct processes in
  phases (2r, 2r+1, \ldots, j-1) then
     q sends (echo, p, m, r) to all processes /* q becomes a witness */
8: if q has received (echo, p, m, r) from at least n-f processes in
  phases (2r, 2r + 1, \ldots, j) then
9: q accepts (p, m, r)
```

Is termination a problem?

The implementation is correct

Theorem

If n>3f, the given implementation of broadcast(p,m,r) and accept(p,m,r) satisfies Unforgeability, Correctness, and Relay

Assumption

Channels are authenticated

Correctness

If a correct process p executes broadcast(p,m,r) in round r, then all correct processes will execute $\operatorname{accept}(p,m,r)$ in round r

Correctness

If a correct process p executes broadcast(p, m, r) in round r, then all correct processes will execute $\operatorname{accept}(p, m, r)$ in round r

If p is correct then

- $\ \square \ p \ {\rm sends} \ (init,p,m,r) \ {\rm to} \ {\rm all} \ {\rm in} \ {\rm round} \ r$ (phase $2r\!-\!1$)
- \square by Validity of the underlying send and receive, every correct process receives (init, p, m, r) in phase
- every correct process becomes a witness
- $\hfill\Box$ every correct process sends (echo,p,m,r) in phase 2r
- $\hfill\Box$ since there are at least n-f correct processes, every correct process receives at least n-f echoes in phase 2r
- $\hfill\Box$ every correct process executes accept (p,m,r) in phase 2r (in round r)

Unforgeability - 1

If a correct process q executes accept(p,m,r) in round $j \ge r$, and p is correct, then p did in fact execute broadcast(p,m,r) in round r

- Suppose q executes $\operatorname{accept}(p,m,r)$ in round j
- q received (echo,p,m,r) from at least n-f distinct processes by phase k , where k=2j-1 or k=2j
- Let k' be the earliest phase in which some correct process q' becomes a witness to (p, m, r)

Unforgeability - 1

If a correct process q executes accept(p,m,r) in round $j \ge r$, and p is correct, then p did in fact execute broadcast(p,m,r) in round r

- ullet Suppose q executes $\mathit{accept}(p, m, r)$ in round j
- q received (echo,p,m,r) from at least n-f distinct processes by phase k , where k=2j-1 or k=2j
- Let k' be the earliest phase in which some correct process q' becomes a witness to (p, m, r)

Case 1: k' = 2r - 1

- \square q' received (init, p, m, r) from p
- $\ \square$ since p is correct, it follows that p did execute broadcast(p,m,r) in round r

Case 2: k' > 2r - 1

- $\ \square \ q'$ has become a witness by receiving (echo,p,m,r) from f+1 distinct processes
- \square at most f are faulty; one is correct
- $\hfill\Box$ this process was a witness to (p,m,r) before phase k^\prime

CONTRADICTION

The first correct process receives (init, p, m, r) from p!

Unforgeability -2

- $\ensuremath{\mathfrak{O}}$ Earliest correct witness q' becomes so in phase 2r-1 , and only if p did indeed executed broadcast (p,m,r)
- Any correct process that becomes a witness later can only do so if a correct process is already a witness.
- $\ensuremath{\text{6}}$ For any correct process to become a witness, p must have executed broadcast (p,m,r)

Relay

If a correct process q executes accept(p,m,r) in round $j \geq r$, then all correct processes will execute accept(p,m,r) by round j+1

Relay

If a correct process q executes accept(p,m,r) in round $j \geq r$, then all correct processes will execute accept(p,m,r) by round j+1

- Suppose correct q executes accept(p, m, r) in round j (phase k=2j-1 or k=2j)

- $\ensuremath{\mathfrak{O}}$ All correct procs received (echo,p,m,r) from at least n-2f correct processes by phase k
- $\ensuremath{\mathfrak{O}}$ From n>3f , it follows that $n-2f\geq f+1$. Then, all correct processes become witnesses by phase k
- $oldsymbol{arphi}$ All correct processes send (echo,p,m,r) by phase k+1
- Since there are at least n-f correct processes, all correct processes will accept(p,m,r) by phase k+1 (round 2j or 2j+1)

Taking a step back...

- Specified Consensus and TRB
- In the synchronous model:
 - □solved Consensus and TRB for General Omission failures
 - proved lower bound on rounds required by TRB
 - □solved TRB for AFMA
 - proved lower bound on replication for solving TRB with AF
 - □solved TRB with AF

Ordered Broadcasts for Benign Failures

FIFO Order

If a process broadcasts a message m before it broadcasts a message m^\prime , then no correct process delivers m^\prime unless it has previously delivered m

Uniform FIFO Order

If a process broadcasts a message m before it broadcasts a message m', then no process (correct or faulty) delivers m' unless it has previously delivered m

Causal Order

If the broadcast of a message m causally precedes the broadcast of a message m^\prime , then no correct process delivers m^\prime unless it has previously delivered m

Uniform Causal Order

If the broadcast of a message m causally precedes the broadcast of a message m^\prime , then no process (correct or faulty) delivers m^\prime unless it has previously delivered m.

From FIFO to Causal

Local Order

If a process broadcasts a message m and a process delivers m before broadcasting m', then no correct process delivers m' unless it previously delivered m

Causal Order = FIFO Order + Local Order

Total Order

If correct processes p and q both deliver messages m and m', then p delivers m before m' if and only if q delivers m before m'

Uniform Total Order

If correct or faulty processes p and q both deliver messages m and m', then p delivers m before m' if and only if q delivers m before m'

A Modular Approach to Broadcast Protocols

(Hadzilakos & Toueg)

