
Consensus and
Reliable Broadcast

Broadcast
If a process sends a message , then every process
eventually delivers m

m

Broadcast
If a process sends a message , then every process
eventually delivers

p0

p1

p2

p3

m

m

Broadcast
If a process sends a message , then every process
eventually delivers

How can we adapt the spec for an environment
where processes can fail? And what does “fail” mean?

p0

p1

p2

p3

m

m

A hierarchy of
failure models

Crash

A hierarchy of
failure models

CrashFail-stop

A hierarchy of
failure models

Crash

Send Omission Receive Omission

Fail-stop

A hierarchy of
failure models

Crash

Send Omission

General Omission

Receive Omission

Fail-stop

A hierarchy of
failure models

Crash

Send Omission

General Omission

Receive Omission

benign failures

Fail-stop

A hierarchy of
failure models

Crash

Arbitrary failures with
message authentication

Send Omission

General Omission

Receive Omission

benign failures

Fail-stop

A hierarchy of
failure models

Crash

Arbitrary failures with
message authentication

Arbitrary (Byzantine) failures

Send Omission

General Omission

Receive Omission

benign failures

Fail-stop

Reliable Broadcast
Validity! ! If the sender is correct and broadcasts a
! ! message , then all correct processes
! ! eventually deliver
Agreement!! If a correct process delivers a message ,
! ! then all correct processes eventually
! ! deliver
Integrity! ! Every correct process delivers at most one
! ! message, and if it delivers , then some
! ! process must have broadcast

m

m

m

m

m

m

Terminating
Reliable Broadcast

Validity! ! If the sender is correct and broadcasts a
! ! message , then all correct processes
! ! eventually deliver
Agreement!! If a correct process delivers a message ,
! ! then all correct processes eventually
! ! deliver
Integrity! ! Every correct process delivers at most one
! ! message, and if it delivers ≠ SF, then
! ! some process must have broadcast
Termination !Every correct process eventually delivers
! ! some message

m

m

m

m

m

m

Consensus
Validity! ! If all processes that propose a value
! ! propose , then all correct processes
! ! eventually decide
Agreement!! If a correct process decides , then all
! ! correct processes eventually !decide
Integrity! ! Every correct process decides at most one
! ! value, and if it decides , then some
! ! process must have proposed
Termination !Every correct process eventually decides
! ! some value

v

v

v

v

v

v

Properties of
send(m) and receive(m)
Benign failures:

Validity If sends to , and , , and
the link between them are correct, then
eventually receives

Uniform* Integrity For any message ,
receives at most once from , and only if
sent to

* A property is uniform if it applies to both
 correct and faulty processes

m

m

m

m

m

p p

q

qq

q

q

pp

Properties of
send() and receive()

Arbitrary failures:

Integrity For any message , if and
are correct then receives at most once
from , and only if sent to

m qp

q

q m

mpp

mm

Questions, Questions…
Are these problems solvable at all?
Can they be solved independent of the failure
model?
Does solvability depend on the ratio between
faulty and correct processes?
Does solvability depend on assumptions about
the reliability of the network?
Are the problems solvable in both synchronous
and asynchronous systems?
If a solution exists, how expensive is it?

Plan
Synchronous Systems

Consensus for synchronous systems with crash failures
Lower bound on the number of rounds
Reliable Broadcast for arbitrary failures with message
authentication
Lower bound on the ratio of faulty processes for
Consensus with arbitrary failures
Reliable Broadcast for arbitrary failures

Asynchronous Systems
Impossibility of Consensus for crash failures
Failure detectors
PAXOS

Model

Synchronous Message Passing
Execution is a sequence of rounds
In each round every process takes a step

sends messages to neighbors
receives messages sent in that round
changes its state

Network is fully connected (an -clique)

No communication failures

n

A simple
Consensus algorithm

Initially
To execute propose()
1:!! send { } to all
decide() occurs as follows:
2: ! for all do
3:!!! receive from
4:!!! :=
5:!! decide min()

Process :pi

V = {vi}

pj

vi

vi

x

j, 0≤j≤n−1, j #= i

Sj

V ∪ SjV

V

An execution

p1 p2 p3 p4

p1 p2 p3 p4

v1

v2

v3

v4

An execution

p1 p2 p3 p4

p1 p2 p3 p4

v1

v2

v3

v4

An execution

p1 p2 p3 p4

p1 p2 p3 p4

v1

v2

v3

v4

An execution

p1 p2 p3 p4

p1 p2 p3 p4

v1

v2

v3

v4

v1

v4

Suppose at the end of round 1
Can decide?

v1 = v3 = v4

p3

An execution

p1 p2 p3 p4

p1 p2 p3 p4

v1

v2

v3

v4

v1

v4

Suppose at the end of round 1
Can decide?

v1 = v3 = v4

p3

An execution

p1 p2 p3 p4

p1 p2 p3 p4

v1

v2

v3

v4

v1

v4

v2

Suppose at the end of round 1
Can decide?

v1 = v3 = v4

p3

An execution

p1 p2 p3 p4

p1 p2 p3 p4

v1

v2

v3

v4

v1

v4

v2

Suppose at the end of round 1
Can decide?

v1 = v3 = v4

p3

An execution

p1 p2 p3 p4

p1 p2 p3 p4

v1

v2

v3

v4

v1

v4

v2

v1 v1

Suppose at the end of round 1
Can decide?

v1 = v3 = v4

p3

An execution

p1 p2 p3 p4

p1 p2 p3 p4

v1

v2

v3

v4

v1

v4

v2

v1 v1

v4

Suppose at the end of round 1
Can decide?

v1 = v3 = v4

p3

An execution

p1 p2 p3 p4

p1 p2 p3 p4

v1

v2

v3

v4

v1

v4

v2

v1 v1

v4

v3v3

Suppose at the end of round 1
Can decide?

v1 = v3 = v4

p3

Echoing values

A process that receives a proposal in round 1,
relays it to others during round 2.

Echoing values

A process that receives a proposal in round 1,
relays it to others during round 2.

Suppose hasn’t heard from at the end of
round 2. Can decide?

p3 p2

p3

Echoing values

A process that receives a proposal in round 1,
relays it to others during round 2.

Suppose hasn’t heard from at the end of
round 2. Can decide?

p3 p2

p3

p1 p2 p3 p4

p1 p2 p3 p4

p1 p2 p3 p4

round 1

round 2

Echoing values

A process that receives a proposal in round 1,
relays it to others during round 2.

Suppose hasn’t heard from at the end of
round 2. Can decide?

p3 p2

p3

p1 p2 p3 p4

p1 p2 p3 p4

p1 p2 p3 p4

round 1

round 2

Echoing values

A process that receives a proposal in round 1,
relays it to others during round 2.

Suppose hasn’t heard from at the end of
round 2. Can decide?

p3 p2

p3

p1 p2 p3 p4

p1 p2 p3 p4

p1 p2 p3 p4

round 1

round 2

Echoing values

A process that receives a proposal in round 1,
relays it to others during round 2.

Suppose hasn’t heard from at the end of
round 2. Can decide?

p3 p2

p3

p1 p2 p3 p4

p1 p2 p3 p4

p1 p2 p3 p4

round 1

round 2

Echoing values

A process that receives a proposal in round 1,
relays it to others during round 2.

Suppose hasn’t heard from at the end of
round 2. Can decide?

p3 p2

p3

p1 p2 p3 p4

p1 p2 p3 p4

p1 p2 p3 p4

round 1

round 2

What is going on

A correct process has not received all
proposals by the end of round . Can
decide?

Another process may have received the
missing proposal at the end of round and
be ready to relay it in round

p
∗

p
∗

i

i + 1

i

Dangerous Chains

Dangerous chain
The last process in the chain is correct, all
others are faulty

round 1

round 2

rounds

round

p
∗

p
∗

p
∗

p
∗

p0

p1

p2

pi−1

pi

3...i − 1

i

Living dangerously

How many rounds can a dangerous chain span?

 faulty processes

at most nodes in the chain

spans at most rounds

It is safe to decide by the end of round !

f

f+1

f

f+1

The Algorithm

Initially
To execute propose()
! round
1:!!send { has not already sent } to all
2:!!for all do
3:!!! receive from
4:!!! :=
decide() occurs as follows:
5: if then
6: decide min()

Code for process :pi

k=f+1

j, 0≤j≤n−1, j #= i

k, 1≤k≤f+1

V ={vi}

v∈V : pi v

V

V ∪ Sj

Sj pj

vi

x

V

Termination and
Integrity

Termination

Initially

To execute propose()
! round !
1:! ! send { has not already sent } to all
2:! ! for all do
3:! ! ! receive from
4:! ! ! :=

decide(x) occurs as follows:
5:! if then
6:! ! decide min()

V ={vi}

vi

Sj pj

V ∪ SjV

k=f+1

V

k, 1≤k≤f+1

j, 0≤j≤n−1, j #= i

v∈V : pi v

Termination and
Integrity

Termination
Every correct process

reaches round f + 1
Decides on min(V) --- which is well
defined

Initially

To execute propose()
! round !
1:! ! send { has not already sent } to all
2:! ! for all do
3:! ! ! receive from
4:! ! ! :=

decide(x) occurs as follows:
5:! if then
6:! ! decide min()

V ={vi}

vi

Sj pj

V ∪ SjV

k=f+1

V

k, 1≤k≤f+1

j, 0≤j≤n−1, j #= i

v∈V : pi v

Termination and
Integrity

Termination
Every correct process

reaches round f + 1
Decides on min(V) --- which is well
defined

Integrity
At most one value:

Only if it was proposed:

Initially

To execute propose()
! round !
1:! ! send { has not already sent } to all
2:! ! for all do
3:! ! ! receive from
4:! ! ! :=

decide(x) occurs as follows:
5:! if then
6:! ! decide min()

V ={vi}

vi

Sj pj

V ∪ SjV

k=f+1

V

k, 1≤k≤f+1

j, 0≤j≤n−1, j #= i

v∈V : pi v

Termination and
Integrity

Termination
Every correct process

reaches round f + 1
Decides on min(V) --- which is well
defined

Integrity
At most one value:
 – one decide, and min(V) is unique

Only if it was proposed:

Initially

To execute propose()
! round !
1:! ! send { has not already sent } to all
2:! ! for all do
3:! ! ! receive from
4:! ! ! :=

decide(x) occurs as follows:
5:! if then
6:! ! decide min()

V ={vi}

vi

Sj pj

V ∪ SjV

k=f+1

V

k, 1≤k≤f+1

j, 0≤j≤n−1, j #= i

v∈V : pi v

Termination and
Integrity

Termination
Every correct process

reaches round f + 1
Decides on min(V) --- which is well
defined

Integrity
At most one value:
 – one decide, and min(V) is unique

Only if it was proposed:

 – To be decided upon, must be in V at round f+1
 – if value = vi, then it is proposed in round 1
 – else, suppose received in round k. By induction:
 – k = 1:
 • by Uniform Integrity of underlying send
 and receive, it must have been sent in round 1
 • by the protocol and because only crash
 failures, it must have been proposed
 – Induction Hypothesis: all values received up to
 round k = j have been proposed
 – k = j+1
 • sent in round j+1 (Uniform Integrity of send
 and synchronous model)
 • must have been part of V of sender at end
 of round j
 • by protocol, must have been received by sender
 by end of round j
 • by induction hypothesis, must have been proposed

Initially

To execute propose()
! round !
1:! ! send { has not already sent } to all
2:! ! for all do
3:! ! ! receive from
4:! ! ! :=

decide(x) occurs as follows:
5:! if then
6:! ! decide min()

V ={vi}

vi

Sj pj

V ∪ SjV

k=f+1

V

k, 1≤k≤f+1

j, 0≤j≤n−1, j #= i

v∈V : pi v

Validity
Initially

To execute propose()
! round !
1:! ! send { has not already sent } to all
2:! ! for all do
3:! ! ! receive from
4:! ! ! :=

decide(x) occurs as follows:
5:! if then
6:! ! decide min()

V ={vi}

vi

Sj pj

V ∪ SjV

k=f+1

V

k, 1≤k≤f+1

j, 0≤j≤n−1, j #= i

v∈V : pi v

Validity
Suppose every process proposes

Since only crash model, only can
be sent

By Uniform Integrity of send and
receive, only can be received

By protocol, = { }

min() =

decide()

v
∗

v
∗

v
∗

v
∗

v
∗

v
∗

Initially

To execute propose()
! round !
1:! ! send { has not already sent } to all
2:! ! for all do
3:! ! ! receive from
4:! ! ! :=

decide(x) occurs as follows:
5:! if then
6:! ! decide min()

V ={vi}

vi

Sj pj

V ∪ SjV

k=f+1

V

k, 1≤k≤f+1

j, 0≤j≤n−1, j #= i

v∈V : pi v

V

V

Agreement
Lemma 1
For any , if a process receives
a value in round , then there
exists a sequence of processes
! ! such that , is
! .’s proponent, and in each round
! sends and receives it.
Furthermore, all processes in the
sequence are distinct.

Proof
By induction on the length of
the sequence

Initially

To execute propose()
! round !
1:! ! send { has not already sent } to all
2:! ! for all do
3:! ! ! receive from
4:! ! ! :=

decide(x) occurs as follows:
5:! if then
6:! ! decide min()

V ={vi}

vi

Sj pj

V ∪ SjV

k=f+1

V

k, 1≤k≤f+1

j, 0≤j≤n−1, j #= i

v∈V : pi v

r≥1 p

v r

p0, p1, . . . , pr pr =p p0

v

pk−1 pkv

Agreement

Lemma 2:
!In every execution, at the end of round ,
! ! for every correct processes and

Initially

To execute propose()
! round !
1:! ! send { has not already sent } to all
2:! ! for all do
3:! ! ! receive from
4:! ! ! :=

decide(x) occurs as follows:
5:! if then
6:! ! decide min()

V ={vi}

vi

Sj pj

V ∪ SjV

k=f+1

V

k, 1≤k≤f+1

j, 0≤j≤n−1, j #= i

v∈V : pi v

f+1

Vi =Vj pi pj

Agreement

Lemma 2:
!In every execution, at the end of round ,
! ! for every correct processes and

Agreement follows from Lemma 2, since
min is a deterministic function

Initially

To execute propose()
! round !
1:! ! send { has not already sent } to all
2:! ! for all do
3:! ! ! receive from
4:! ! ! :=

decide(x) occurs as follows:
5:! if then
6:! ! decide min()

V ={vi}

vi

Sj pj

V ∪ SjV

k=f+1

V

k, 1≤k≤f+1

j, 0≤j≤n−1, j #= i

v∈V : pi v

f+1

Vi =Vj pi pj

Agreement

Lemma 2:
!In every execution, at the end of round ,
! ! for every correct processes and

Proof:
• Show that if a correct has in its at
! the end of round , then every correct
! has in its at the end of round

Agreement follows from Lemma 2, since
min is a deterministic function

Initially

To execute propose()
! round !
1:! ! send { has not already sent } to all
2:! ! for all do
3:! ! ! receive from
4:! ! ! :=

decide(x) occurs as follows:
5:! if then
6:! ! decide min()

V ={vi}

vi

Sj pj

V ∪ SjV

k=f+1

V

k, 1≤k≤f+1

j, 0≤j≤n−1, j #= i

v∈V : pi v

p x V

f+1 p

x V f+1

f+1

Vi =Vj pi pj

Agreement

Lemma 2:
!In every execution, at the end of round ,
! ! for every correct processes and

Proof:
• Show that if a correct has in its at
! the end of round , then every correct
! has in its at the end of round
• Let be earliest round is added to the
! of a correct . Let that process be

• If , then sends in round ;
! every correct process receives and adds
! to its in round

Agreement follows from Lemma 2, since
min is a deterministic function

Initially

To execute propose()
! round !
1:! ! send { has not already sent } to all
2:! ! for all do
3:! ! ! receive from
4:! ! ! :=

decide(x) occurs as follows:
5:! if then
6:! ! decide min()

V ={vi}

vi

Sj pj

V ∪ SjV

k=f+1

V

k, 1≤k≤f+1

j, 0≤j≤n−1, j #= i

v∈V : pi v

p x V

f+1 p

x V f+1

r x V

p p
∗

r≤f p
∗

x r+1≤f+1

x x

V r+1

f+1

Vi =Vj pi pj

Agreement

Lemma 2:
!In every execution, at the end of round ,
! ! for every correct processes and

Proof:
• Show that if a correct has in its at
! the end of round , then every correct
! has in its at the end of round
• Let be earliest round is added to the
! of a correct . Let that process be

• If , then sends in round ;
! every correct process receives and adds
! to its in round
• What if ?

Agreement follows from Lemma 2, since
min is a deterministic function

Initially

To execute propose()
! round !
1:! ! send { has not already sent } to all
2:! ! for all do
3:! ! ! receive from
4:! ! ! :=

decide(x) occurs as follows:
5:! if then
6:! ! decide min()

V ={vi}

vi

Sj pj

V ∪ SjV

k=f+1

V

k, 1≤k≤f+1

j, 0≤j≤n−1, j #= i

v∈V : pi v

p x V

f+1 p

x V f+1

r

r=f+1

x V

p p
∗

r≤f p
∗

x r+1≤f+1

x x

V r+1

f+1

Vi =Vj pi pj

Agreement

Lemma 2:
!In every execution, at the end of round ,
! ! for every correct processes and

Proof:
• Show that if a correct has in its at
! the end of round , then every correct
! has in its at the end of round
• Let be earliest round is added to the
! of a correct . Let that process be

• If , then sends in round ;
! every correct process receives and adds
! to its in round
• What if ?
• By Lemma 1, there exists a sequence of
! distinct processes
• Consider processes
• processes; only faulty
• one of is correct, and adds to
! its before does it in round
CONTRADICTION!Agreement follows from Lemma 2, since

min is a deterministic function

p0, . . . , pf

p0, . . . , pf

Initially

To execute propose()
! round !
1:! ! send { has not already sent } to all
2:! ! for all do
3:! ! ! receive from
4:! ! ! :=

decide(x) occurs as follows:
5:! if then
6:! ! decide min()

V ={vi}

vi

Sj pj

V ∪ SjV

k=f+1

V

k, 1≤k≤f+1

j, 0≤j≤n−1, j #= i

v∈V : pi v

p x V

f+1 p

x V f+1

r

r=f+1

x V

p p
∗

r≤f p
∗

x r+1≤f+1

x x

V r+1

p0, . . . , pf+1 = p
∗

f+1 f

p
∗

r

x

V

f+1

Vi =Vj pi pj

Terminating
Reliable Broadcast

Validity! ! If the sender is correct and broadcasts a
! ! message , then all correct processes
! ! eventually deliver
Agreement!! If a correct process delivers a message ,
! ! then all correct processes eventually
! ! deliver
Integrity! ! Every correct process delivers at most one
! ! message, and if it delivers ≠ SF, then
! ! some process must have broadcast
Termination !Every correct process eventually delivers
! ! some message

m

m

m

m

m

m

TRB for benign failures

Sender in round 1:
1:! send m to all

Process p in round ! k, 1 ≤ k ≤ f+1! !
1:! if delivered m in round k-1 and p ≠ sender then
2:! ! send m to all
3:! ! halt
4:! receive round k messages
5:! if received m then
6:! ! deliver(m)
7:! ! if k = f+1 then halt
8:! else if k = f+1
9:! ! deliver(SF)
10:!! halt

Terminates in rounds

 How can we do better?
find a protocol whose round
complexity is proportional to
! –the number of failures
that actually occurred–
rather than to ..–the max
number of failures that may
occur

f

f+1

t

Early stopping:
the idea

Suppose processes can detect the set of
processes that have failed by the end of
round

Call that set

If there can be no active
dangerous chains, and can safely deliver SF

faulty(p, i)

|faulty(p, i)| < i

p

i

Early Stopping:
The Protocol

Let be the set of processes that have failed to send a message to
! ! in any round

1:! if = sender then value := else value:= ?

Process in round !

2:! send value to all
3:! if value ≠ ? and delivered in round then halt
4:! receive round values from all
5:! { | received no value from in round }
6: if received value ≠ ? then
7:!! value :=
8:!! deliver value
9:! else if or then
10:! ! value := SF
11:!! deliver value
12:! ! if then halt

|faulty(p, k)| < k

1, . . . , k

k, 1≤k≤f+1

p

p

k

p

v

k=f+1

k=f+1

v

k−1

m

m

pq q k

faulty(p, k)

faulty(p, k) := faulty(p, k − 1)∪

Termination

k−1

Let be the set of processes that have
failed to send a message to in any round

1:! if = sender then value := else value:= ?

Process in round !

2:! send value to all
3:! if value ≠ ?! and delivered in round then halt
4:! receive round values from all
5:! { |
 received no value from in round }
6:! if received value ≠ ? then
7:! ! value :=
8:! ! deliver value
9:! else if or then
10:! ! value := SF
11:! ! deliver value
12:! ! if then halt

1, . . . , k

p m

p k, 1≤k≤f+1

k=f+1 |faulty(p, k)|<k

k=f+1

v

v

k

q p

q k

p

m

faulty(p, k) := faulty(p, k − 1)∪

faulty(p, k)

Termination

If in any round a process
receives a value, then it
delivers the value in that
round

If a process has received
only “?” for rounds,
then it delivers SF in
round

f+1

f+1

k−1

Let be the set of processes that have
failed to send a message to in any round

1:! if = sender then value := else value:= ?

Process in round !

2:! send value to all
3:! if value ≠ ?! and delivered in round then halt
4:! receive round values from all
5:! { |
 received no value from in round }
6:! if received value ≠ ? then
7:! ! value :=
8:! ! deliver value
9:! else if or then
10:! ! value := SF
11:! ! deliver value
12:! ! if then halt

1, . . . , k

p m

p k, 1≤k≤f+1

k=f+1 |faulty(p, k)|<k

k=f+1

v

v

k

q p

q k

p

m

faulty(p, k) := faulty(p, k − 1)∪

faulty(p, k)

Validity

k−1

Let be the set of processes that have
failed to send a message to in any round

1:! if = sender then value := else value:= ?

Process in round !

2:! send value to all
3:! if value ≠ ?! and delivered in round then halt
4:! receive round values from all
5:! { |
 received no value from in round }
6:! if received value ≠ ? then
7:! ! value :=
8:! ! deliver value
9:! else if or then
10:! ! value := SF
11:! ! deliver value
12:! ! if then halt

1, . . . , k

p m

p k, 1≤k≤f+1

k=f+1 |faulty(p, k)|<k

k=f+1

v

v

k

q p

q k

p

m

faulty(p, k) := faulty(p, k − 1)∪

faulty(p, k)

Validity

If the sender is correct then
it sends to all in round 1

By Validity of the underlying
send and receive, every
correct process will receive
by the end of round 1

By the protocol, every correct
process will deliver by the
end of round 1

m

m

m

k−1

Let be the set of processes that have
failed to send a message to in any round

1:! if = sender then value := else value:= ?

Process in round !

2:! send value to all
3:! if value ≠ ?! and delivered in round then halt
4:! receive round values from all
5:! { |
 received no value from in round }
6:! if received value ≠ ? then
7:! ! value :=
8:! ! deliver value
9:! else if or then
10:! ! value := SF
11:! ! deliver value
12:! ! if then halt

1, . . . , k

p m

p k, 1≤k≤f+1

k=f+1 |faulty(p, k)|<k

k=f+1

v

v

k

q p

q k

p

m

faulty(p, k) := faulty(p, k − 1)∪

faulty(p, k)

Agreement - 1
Lemma 1:

! For any , if a process delivers
! ≠ SF in round r, then there exists a
sequence of processes such
that = sender, , and in each
round , sent and
received it. Furthermore, all processes
in the sequence are distinct, unless
and sender

Lemma 2:
! For any , if a process sets value

to SF in round , then there exist
some and a sequence of distinct
processes !

! such that only receives “?” in
rounds 1 to , , and in
each round , sends
SF to and receives SF

p0, p1, . . . , pr

p0 pr = p

pk−1 pk

p0 = p1 =

m

m

qj , qj+1, . . . , qr = p

qj

qk qk

qk−1

|faulty(qj , j)| < j

k, j+1≤k≤r

j≤r

k, 1≤k≤r

r≥1 p

r=1

r≥1 p

r

j

k−1

Let be the set of processes that have
failed to send a message to in any round

1:! if = sender then value := else value:= ?

Process in round !

2:! send value to all
3:! if value ≠ ?! and delivered in round then halt
4:! receive round values from all
5:! { |
 received no value from in round }
6:! if received value ≠ ? then
7:! ! value :=
8:! ! deliver value
9:! else if or then
10:! ! value := SF
11:! ! deliver value
12:! ! if then halt

1, . . . , k

p m

p k, 1≤k≤f+1

k=f+1 |faulty(p, k)|<k

k=f+1

v

v

k

q p

q k

p

m

faulty(p, k) := faulty(p, k − 1)∪

faulty(p, k)

Agreement - 2

Lemma 3:
! It is impossible for and , not necessarily

correct or distinct, to set value in the same
round r to and SF, respectively

k−1

Let be the set of processes that have
failed to send a message to in any round

1:! if = sender then value := else value:= ?

Process in round !

2:! send value to all
3:! if value ≠ ?! and delivered in round then halt
4:! receive round values from all
5:! { |
 received no value from in round }
6:! if received value ≠ ? then
7:! ! value :=
8:! ! deliver value
9:! else if or then
10:! ! value := SF
11:! ! deliver value
12:! ! if then halt

1, . . . , k

p m

p k, 1≤k≤f+1

k=f+1 |faulty(p, k)|<k

k=f+1

v

v

k

q p

q k

p

m

faulty(p, k) := faulty(p, k − 1)∪

faulty(p, k)

qp

m

Agreement - 2
Proof

By contradiction
Suppose sets value = and sets
value = SF

By Lemmas 1 and 2 there exist

with the appropriate characteristics
Since did not receive from
process in round
 must conclude that are
all faulty processes
But then,

CONTRADICTION

p0, . . . , pr

qj , . . . , qr

|faulty(qj , j)| ≥ j

p0, . . . , pj−1

pk−1

qj

qj

mp q

Lemma 3:
! It is impossible for and , not necessarily

correct or distinct, to set value in the same
round r to and SF, respectively

qp

m

m

1≤k≤j k

k−1

Let be the set of processes that have
failed to send a message to in any round

1:! if = sender then value := else value:= ?

Process in round !

2:! send value to all
3:! if value ≠ ?! and delivered in round then halt
4:! receive round values from all
5:! { |
 received no value from in round }
6:! if received value ≠ ? then
7:! ! value :=
8:! ! deliver value
9:! else if or then
10:! ! value := SF
11:! ! deliver value
12:! ! if then halt

1, . . . , k

p m

p k, 1≤k≤f+1

k=f+1 |faulty(p, k)|<k

k=f+1

v

v

k

q p

q k

p

m

faulty(p, k) := faulty(p, k − 1)∪

faulty(p, k)

Agreement - 3

k−1

Let be the set of processes that have
failed to send a message to in any round

1:! if = sender then value := else value:= ?

Process in round !

2:! send value to all
3:! if value ≠ ?! and delivered in round then halt
4:! receive round values from all
5:! { |
 received no value from in round }
6:! if received value ≠ ? then
7:! ! value :=
8:! ! deliver value
9:! else if or then
10:! ! value := SF
11:! ! deliver value
12:! ! if then halt

1, . . . , k

p m

p k, 1≤k≤f+1

k=f+1 |faulty(p, k)|<k

k=f+1

v

v

k

q p

q k

p

m

faulty(p, k) := faulty(p, k − 1)∪

faulty(p, k)

Agreement - 3
Let r be the earliest round in which a correct process
delivers value ≠ SF

r ≤ f
By Lemma 3, no (correct) process can set value
differently in round r
In round r + 1 ≤ f + 1, that correct process
sends its value to all
Every correct process receives and delivers the
value in round r + 1 ≤ f + 1

r = f + 1
By Lemma 1, there exists a sequence p0, …, pf+1

= pr of distinct processes

Consider processes p0, …, pf

f + 1 processes; only f faulty
one of p0, …, pf is correct-- let it be pc
To send v in round c + 1, pc must have set

its value to v and delivered v in round c < r
CONTRADICTION

Proof
If no correct process ever receives m, then every

correct process delivers SF in round f + 1

k−1

Let be the set of processes that have
failed to send a message to in any round

1:! if = sender then value := else value:= ?

Process in round !

2:! send value to all
3:! if value ≠ ?! and delivered in round then halt
4:! receive round values from all
5:! { |
 received no value from in round }
6:! if received value ≠ ? then
7:! ! value :=
8:! ! deliver value
9:! else if or then
10:! ! value := SF
11:! ! deliver value
12:! ! if then halt

1, . . . , k

p m

p k, 1≤k≤f+1

k=f+1 |faulty(p, k)|<k

k=f+1

v

v

k

q p

q k

p

m

faulty(p, k) := faulty(p, k − 1)∪

faulty(p, k)

Integrity

k−1

Let be the set of processes that have
failed to send a message to in any round

1:! if = sender then value := else value:= ?

Process in round !

2:! send value to all
3:! if value ≠ ?! and delivered in round then halt
4:! receive round values from all
5:! { |
 received no value from in round }
6:! if received value ≠ ? then
7:! ! value :=
8:! ! deliver value
9:! else if or then
10:! ! value := SF
11:! ! deliver value
12:! ! if then halt

1, . . . , k

p m

p k, 1≤k≤f+1

k=f+1 |faulty(p, k)|<k

k=f+1

v

v

k

q p

q k

p

m

faulty(p, k) := faulty(p, k − 1)∪

faulty(p, k)

Integrity
At most one

Failures are benign, and
a process executes at
most one deliver event
before halting

If ≠ SF, only if
was broadcast

From Lemma 1 in the
proof of Agreement

m

mm

k−1

Let be the set of processes that have
failed to send a message to in any round

1:! if = sender then value := else value:= ?

Process in round !

2:! send value to all
3:! if value ≠ ?! and delivered in round then halt
4:! receive round values from all
5:! { |
 received no value from in round }
6:! if received value ≠ ? then
7:! ! value :=
8:! ! deliver value
9:! else if or then
10:! ! value := SF
11:! ! deliver value
12:! ! if then halt

1, . . . , k

p m

p k, 1≤k≤f+1

k=f+1 |faulty(p, k)|<k

k=f+1

v

v

k

q p

q k

p

m

faulty(p, k) := faulty(p, k − 1)∪

faulty(p, k)

A Lower Bound

Theorem
There is no algorithm that solves the
consensus problem in fewer than
rounds in the presence of crash
failures, if

We consider a special case to study
!! the proof technique

n ≥ f+2

f+1

f

(f =1)

Views
Let α be an execution. The view of process
in ., denoted by , is the subsequence of
computation and message receive events that
occur in together with the state of in the
initial configuration of

p1 p2 p3 p4

p1 p2 p3 p4

α|pi

pipi

pi

α

α

Views
Let α be an execution. The view of process
in ., denoted by , is the subsequence of
computation and message receive events that
occur in together with the state of in the
initial configuration of

p1 p2 p3 p4

p1 p2 p3 p4

from . from .

α|p3

α|pi

pipi

pi

α

α

p1 p4

Similarity
Definition Let and be two
executions of consensus and let
! be a correct process in both
! and .
 is similar to with respect
to , denoted if

α1 α2

pi

α1 α2

α1 α2

pi α1 ∼pi
α2

α1|pi = α2|pi

Similarity
Definition Let and be two
executions of consensus and let
! be a correct process in both
! and .
 is similar to with respect
to , denoted if

α1 α2

pi

α1 α2

α1 α2

pi α1 ∼pi
α2

α1|pi = α2|pi

Note If then
decides the same value in
both executions

α1 ∼pi
α2 pi

Similarity
Definition Let and be two
executions of consensus and let
! be a correct process in both
! and .
 is similar to with respect
to , denoted if

α1 α2

pi

α1 α2

α1 α2

pi α1 ∼pi
α2

α1|pi = α2|pi

Note If then
decides the same value in
both executions

α1 ∼pi
α2 pi

Lemma If and is
correct, then dec() = dec()

α1 ∼pi
α2 pi

α1 α2

Similarity
Definition Let and be two
executions of consensus and let
! be a correct process in both
! and .
 is similar to with respect
to , denoted if

α1 α2

pi

α1 α2

α1 α2

pi α1 ∼pi
α2

α1|pi = α2|pi

Note If then
decides the same value in
both executions

α1 ∼pi
α2 pi

Lemma If and is
correct, then dec() = dec()

α1 ∼pi
α2 pi

The transitive closure of !
is denoted! .

We say that ! if there exist
executions ! ! such that

α1 ∼pi
α2

α1 ≈ α2

α1 ≈ α2

β1, β2, . . . , βk+1

α1 = β1 ∼pi1
β2 ∼pi2

. . . ,∼pik
βk+1 = α2

α1 α2

Similarity
Definition Let and be two
executions of consensus and let
! be a correct process in both
! and .
 is similar to with respect
to , denoted if

α1 α2

pi

α1 α2

α1 α2

pi α1 ∼pi
α2

α1|pi = α2|pi

Note If then
decides the same value in
both executions

α1 ∼pi
α2 pi

Lemma If and is
correct, then dec() = dec()

α1 ∼pi
α2 pi

The transitive closure of !
is denoted! .

We say that ! if there exist
executions ! ! such that

α1 ∼pi
α2

α1 ≈ α2

α1 ≈ α2

β1, β2, . . . , βk+1

α1 = β1 ∼pi1
β2 ∼pi2

. . . ,∼pik
βk+1 = α2

Lemma If then
! dec() = dec()

α1 ≈ α2

α1 α2

α1 α2

Single-Failure Case

There is no algorithm that solves consensus
in fewer than two rounds in the presence of
one crash failure, if n≥3

The Idea
By contradiction

Consider a one-round execution in which each
process proposes 0. What is the decision value?

Consider another one-round execution in which
each process proposes 1. What is the decision
value?

Show that there is a chain of similar
executions that relate the two executions.

So what?

 s
Definition
 is the execution of the algorithm in

which
no failures occur
only processes propose 1

α
i

p0, . . . , pi−1

α
i

 s
Definition
 is the execution of the algorithm in

which
no failures occur
only processes propose 1

α
i

p0, . . . , pi−1

α
0

0

0

0

0

0

p0

pi−1

pi+1

pi

pn−1

α
i

 s
Definition
 is the execution of the algorithm in

which
no failures occur
only processes propose 1

α
i

p0, . . . , pi−1

α
0

0

0

0

0

0

p0

pi−1

pi+1

pi

pn−1

α
i

 s
Definition
 is the execution of the algorithm in

which
no failures occur
only processes propose 1

α
i

p0, . . . , pi−1

α
0

0

0

0

0

0

p0

pi−1

pi+1

pi

pn−1

α
i

 s
Definition
 is the execution of the algorithm in

which
no failures occur
only processes propose 1

α
i

p0, . . . , pi−1

α
0

0

0

0

0

0

p0

pi−1

pi+1

pi

pn−1

α
i

 s
Definition
 is the execution of the algorithm in

which
no failures occur
only processes propose 1

α
i

p0, . . . , pi−1

α
0

0

0

0

0

0

p0

pi−1

pi+1

pi

pn−1

α
i

 s
Definition
 is the execution of the algorithm in

which
no failures occur
only processes propose 1

α
i

p0, . . . , pi−1

α
0

0

0

0

0

0

p0

pi−1

pi+1

pi

pn−1

α
i

 s
Definition
 is the execution of the algorithm in

which
no failures occur
only processes propose 1

α
i

p0, . . . , pi−1

α
0

0

0

0

0

0

p0

pi−1

pi+1

pi

pn−1

p0

pi−1

pi+1

pi

pn−1

1

0

0

0

1

α
i

α
i

 s
Definition
 is the execution of the algorithm in

which
no failures occur
only processes propose 1

α
i

p0, . . . , pi−1

α
0

0

0

0

0

0

p0

pi−1

pi+1

pi

pn−1

α
i+1

p0

pi−1

pi+1

pi

pn−1

1

1

0

0

1

p0

pi−1

pi+1

pi

pn−1

1

0

0

0

1

α
i

α
i

 s
Definition
 is the execution of the algorithm in

which
no failures occur
only processes propose 1

α
i

p0, . . . , pi−1

1

α
n

1

1

1

1

p0

pi−1

pi+1

pi

pn−1

α
0

0

0

0

0

0

p0

pi−1

pi+1

pi

pn−1

α
i+1

p0

pi−1

pi+1

pi

pn−1

1

1

0

0

1

p0

pi−1

pi+1

pi

pn−1

1

0

0

0

1

α
i

α
i

Adjacent s are similar!

Starting from , we build a set of executions
! where as follows:

 is obtained from after removing the
messages that sends to the j-th highest

numbered processors (excluding itself)

α
i

α
i

α
i
j 0 ≤ j ≤ n−1

α
i
j α

i

pi

The executions

The executions
p0

pi−1

pi+1

pi

pn−1

1

0

0

0

1

α
i

0

The executions
p0

pi−1

pi+1

pi

pn−1

1

0

0

0

1

α
i

0

p0

pi−1

pi+1

pi

pn−1

1

0

0

0

1

α
i

1

The executions
p0

pi−1

pi+1

pi

pn−1

1

0

0

0

1

α
i

0

p0

pi−1

pi+1

pi

pn−1

1

0

0

0

1

α
i

1

The executions
p0

pi−1

pi+1

pi

pn−1

1

0

0

0

1

α
i

0

p0

pi−1

pi+1

pi

pn−1

1

0

0

0

1

α
i

1

The executions
p0

pi−1

pi+1

pi

pn−1

1

0

0

0

1

α
i

0

p0

pi−1

pi+1

pi

pn−1

1

0

0

0

1

α
i

1

…

The executions
p0

pi−1

pi+1

pi

pn−1

1

0

0

0

1

α
i

0

p0

pi−1

pi+1

pi

pn−1

1

0

0

0

1

α
i

1

…

p0

pi−1

pi+1

pi

pn−1

1

0

0

0

1

α
i

n−1

The executions
p0

pi−1

pi+1

pi

pn−1

1

0

0

0

1

α
i

0

p0

pi−1

pi+1

pi

pn−1

1

0

0

0

1

α
i

1

…

p0

pi−1

pi+1

pi

pn−1

1

0

0

0

1

α
i

n−1

The executions
p0

pi−1

pi+1

pi

pn−1

1

0

0

0

1

α
i

0

p0

pi−1

pi+1

pi

pn−1

1

0

0

0

1

α
i

1

…

p0

pi−1

pi+1

pi

pn−1

1

0

0

0

1

α
i

n−1

Indistinguishability

p0

pi−1

pi+1

pi

pn−1

1

0
0

0

1

α
i

α
i

0

Indistinguishability

p0

pi−1

pi+1

pi

pn−1

1

0
0

0

1

α
i

α
i

1

Indistinguishability

p0

pi−1

pi+1

pi

pn−1

1

0
0

0

1

α
i

α
i

1

≈

Indistinguishability

p0

pi−1

pi+1

pi

pn−1

1

0
0

0

1

α
i

α
i

2

Indistinguishability

p0

pi−1

pi+1

pi

pn−1

1

0
0

0

1

α
i

α
i

2

≈

Indistinguishability

p0

pi−1

pi+1

pi

pn−1

1

0
0

0

1

α
i

α
i

n−1

≈

Indistinguishability

p0

pi−1

pi+1

pi

pn−1

1

0
0

0

1

α
i

α
i

n−1

≈

Indistinguishability

p0

pi−1

pi+1

pi

pn−1

1

0
0

0

1

α
i

α
i

n−1

p0

pi−1

pi+1

pi

pn−1

1

1
0

0

1

βi

n−1

≈

Indistinguishability

p0

pi−1

pi+1

pi

pn−1

1

0
0

0

1

α
i

α
i

n−1

p0

pi−1

pi+1

pi

pn−1

1

1
0

0

1

βi

n−1
≈

≈

Indistinguishability

p0

pi−1

pi+1

pi

pn−1

1

0
0

0

1

α
i

α
i

n−1

p0

pi−1

pi+1

pi

pn−1

1

1
0

0

1

≈

≈

βi

n−2

Indistinguishability

p0

pi−1

pi+1

pi

pn−1

1

0
0

0

1

α
i

α
i

n−1

p0

pi−1

pi+1

pi

pn−1

1

1
0

0

1

≈

≈

βi

n−3

Indistinguishability

p0

pi−1

pi+1

pi

pn−1

1

0
0

0

1

α
i

α
i

n−1

p0

pi−1

pi+1

pi

pn−1

1

1
0

0

1

≈

≈

βi

0

Indistinguishability

p0

pi−1

pi+1

pi

pn−1

1

0
0

0

1

α
i

α
i

n−1

p0

pi−1

pi+1

pi

pn−1

1

1
0

0

1

≈

≈

βi

0

α
i+1

≈

Indistinguishability

p0

pi−1

pi+1

pi

pn−1

1

0
0

0

1

α
i

p0

pi−1

pi+1

pi

pn−1

1

1
0

0

1

≈ α
i+1

Arbitrary failures with
message authentication

Crash

Arbitrary failures with
message authentication

Arbitrary (Byzantine) failures

Send Omission

General Omission

Receive Omission

Fail-stop

Process can send
conflicting messages
to different receivers
Messages are signed
with unforgeable
signatures

Valid messages

A valid message has the following form:

in round 1:
 . (is signed by the sender)

in round > 1, if received by from :
 where

 = sender;
 are distinct from each other and from
message has not been tampered with
p1, . . . , pr

p1 pr = q

m

m

r p q

p

m : sid

m : p1 : p2 : . . . : pr

AFMA: The Idea

A correct process discards all non-valid messages
it receives
If a message is valid,

it “extracts” the value from the message
it relays the message, with its own signature
appended

At round :
if it extracted exactly one message, delivers it
otherwise, delivers SF

p

p

p

f+1

AFMA: The Protocol
Initialization for process :
! if = sender and wishes to broadcast then
! !extracted := relay :=

Process in round
! for each relay
! ! send to all
! receive round messages from all processes
! relay :=
! for each valid message received
! ! if extracted then
! ! ! extracted := extracted
! ! ! relay := relay

At the end of round
! ! if such that extracted = then
! ! ! deliver
! !else deliver SF

p

{m}

p

p p m

k, 1≤k≤f+1

s ∈

k

∅

s = m : p1 : p2 : . . . : pk

m !∈

∪ {m}

∪ {s}

f+1

∃m {m}

m

s : p

Termination

In round , every
correct process delivers
either or SF and then
halts

m

f+1

Initialization for process :
! if = sender and wishes to broadcast then
! ! extracted := relay :=

Process in round
! for each relay
! ! send to all
! receive round messages from all processes
! relay :=
! for each valid message received
! ! if extracted then
! ! ! extracted := extracted
! ! ! relay := relay

At the end of round
! ! if such that extracted = then
! ! ! deliver
! ! else deliver SF

p p m

{m}

p k, 1≤k≤f+1

s ∈

k

∅

s = m : p1 : p2 : . . . : pk

m !∈

∪ {m}

∪ {s}

f+1

∃m {m}

m

p

s : p

Lemma. If a correct process
extracts , then every correct
process eventually extracts

Agreement
Proof
Let be the earliest round in which some correct process
extracts . Let that process be .
• if is the sender, then in round 1 sends a valid
message to all.
All correct processes extract that message in round 1
• otherwise, has received in round a message
! !

• Claim: are all faulty
– true for
– Suppose , were correct
• signed and relayed message in round
• extracted message in round

CONTRADICTION
• If will send a valid message
!
! in round and every correct process will

extract it in round
• If , by Claim above, faulty
– At most faulty processes
– CONTRADICTiONm

m

r

m p

pp

p r

m : p1 : p2 : . . . : pr

p1, p2, . . . , pr

p1 = s

pj , 1≤j≤r

pj j

pj j−1

r≤f, p

m : p1 : p2 : . . . : pr : p

r+1≤f+1

r+1≤f+1

r =f+1 p1, p2, . . . , pf+1

f

Initialization for process :
! if = sender and wishes to broadcast then
! ! extracted := relay :=

Process in round
! for each relay
! ! send to all
! receive round messages from all processes
! relay :=
! for each valid message received
! ! if extracted then
! ! ! extracted := extracted
! ! ! relay := relay

At the end of round
! ! if such that extracted = then
! ! ! deliver
! ! else deliver SF

p p m

{m}

p k, 1≤k≤f+1

s ∈

k

∅

s = m : p1 : p2 : . . . : pk

m !∈

∪ {m}

∪ {s}

f+1

∃m {m}

m

p

s : p

Validity
Initialization for process :
! if = sender and wishes to broadcast then
! ! extracted := relay :=

Process in round
! for each relay
! ! send to all
! receive round messages from all processes
! relay :=
! for each valid message received
! ! if extracted then
! ! ! extracted := extracted
! ! ! relay := relay

At the end of round
! ! if such that extracted = then
! ! ! deliver
! ! else deliver SF

p p m

{m}

p k, 1≤k≤f+1

s ∈

k

∅

s = m : p1 : p2 : . . . : pk

m !∈

∪ {m}

∪ {s}

f+1

∃m {m}

m

p

s : p

Validity

From Agreement and the
observation that the
sender, if correct,
delivers its own message.

Initialization for process :
! if = sender and wishes to broadcast then
! ! extracted := relay :=

Process in round
! for each relay
! ! send to all
! receive round messages from all processes
! relay :=
! for each valid message received
! ! if extracted then
! ! ! extracted := extracted
! ! ! relay := relay

At the end of round
! ! if such that extracted = then
! ! ! deliver
! ! else deliver SF

p p m

{m}

p k, 1≤k≤f+1

s ∈

k

∅

s = m : p1 : p2 : . . . : pk

m !∈

∪ {m}

∪ {s}

f+1

∃m {m}

m

p

s : p

TRB for
arbitrary failures

Crash

Arbitrary failures with
message authentication

Arbitrary (Byzantine) failures

Send Omission

General Omission

Receive Omission

Fail-stop

Srikanth, T.K., Toueg S.
Simulating Authenticated

Broadcasts to Derive Simple
Fault-Tolerant Algorithms
Distributed Computing 2 (2),

80-94

AF: The Idea

Identify the essential properties of message
authentication that made AFMA work

Implement these properties without using
message authentication

AF: The Approach

Introduce two primitives
broadcast (executed by in round)
accept !! (executed by in round)

Give axiomatic definitions of broadcast and accept
Derive an algorithm that solves TRB for AF using
these primitives
Show an implementation of these primitives that
does not use message authentication

q

p

j≥ i

i(p, m, i)
(p, m, i)

Properties of
broadcast and accept

Correctness If a correct process executes
broadcast in round , then all correct
processes will execute accept in round

Unforgeability If a correct process executes
accept in round , and is correct, then
did in fact execute broadcast in round

Relay If a correct process executes accept
in round , then all correct processes will
execute accept by round

p

p

i

i

p

i

(p, m, i) j≥ i

(p, m, i)

(p, m, i)

(p, m, i)

(p, m, i) j+1

(p, m, i)
j≥ i

q

q

AF: The Protocol - 1
sender in round 0:
0:!extract

sender in round 1:
1:!broadcast
Process in round
2:!if extracted in round and ≠ sender then
4:!! broadcast
5:!if has executed at least accept in rounds 1 through

! (where (i) distinct from each other and from , (ii) one is , and
(iii)) and has not previously extracted then

6:!! extract
7:!if then
8:!! if in the entire execution has extracted exactly one then
9:!! deliver
10:! else deliver SF
11:! halt

(p,m, k)

m

k=f+1

(s,m, 1)

m

s

s

k, 1≤k≤f+1

1≤ i≤k

1≤ji≤k

p

p

p

pm k−1

m

m

p

(qi,m, ji)

mp

k k

qi qip s

Termination

In round , every
correct process delivers
either or SF and then
halts

f+1

m

sender in round 0:
0:! extract
sender in round 1:
1:! broadcast

Process in round !! !
2:! if extracted in round and ≠ sender then
4:! ! broadcast
5:! if has executed at least accept in
! ! rounds 1 through
! ! ! (where (i) distinct from each other and from
! ! ! , (ii) one is , and (iii))
! and has not previously extracted then!
6:! ! ! extract
7:! if then
8:! ! if in the entire execution has extracted exactly
! ! ! ! ! one then
9:! ! ! deliver
10:! ! else deliver SF
11:! ! halt

(s, m, 1)

s

m

s

k, 1≤k≤f+1

k−1m p

(p, m, k)

p

p k (qi, m, ji) 1≤ i≤k

k

qi

p qi s 1≤ji≤k

p

m

m

m

m

p

k = f+1

p

Agreement - 1

Lemma
If a correct process extracts m, then

every correct process eventually extracts m

sender in round 0:
0:! extract
sender in round 1:
1:! broadcast

Process in round !! !
2:! if extracted in round and ≠ sender then
4:! ! broadcast
5:! if has executed at least accept in
! ! rounds 1 through
! ! ! (where (i) distinct from each other and from
! ! ! , (ii) one is , and (iii))
! and has not previously extracted then!
6:! ! ! extract
7:! if then
8:! ! if in the entire execution has extracted exactly
! ! ! ! ! one then
9:! ! ! deliver
10:! ! else deliver SF
11:! ! halt

(s, m, 1)

s

m

s

k, 1≤k≤f+1

k−1m p

(p, m, k)

p

p k (qi, m, ji) 1≤ i≤k

k

qi

p qi s 1≤ji≤k

p

m

m

m

m

p

k = f+1

p

Agreement - 1

Lemma
If a correct process extracts m, then

every correct process eventually extracts m

sender in round 0:
0:! extract
sender in round 1:
1:! broadcast

Process in round !! !
2:! if extracted in round and ≠ sender then
4:! ! broadcast
5:! if has executed at least accept in
! ! rounds 1 through
! ! ! (where (i) distinct from each other and from
! ! ! , (ii) one is , and (iii))
! and has not previously extracted then!
6:! ! ! extract
7:! if then
8:! ! if in the entire execution has extracted exactly
! ! ! ! ! one then
9:! ! ! deliver
10:! ! else deliver SF
11:! ! halt

(s, m, 1)

s

m

s

k, 1≤k≤f+1

k−1m p

(p, m, k)

p

p k (qi, m, ji) 1≤ i≤k

k

qi

p qi s 1≤ji≤k

p

m

m

m

m

p

k = f+1

p

Agreement - 1
Proof

Let r be the earliest round in which some correct process
extracts m. Let that process be p.

if r = 0, then p = s and p will execute broadcast(s,m,1)
! in round 1. By CORRECTNESS, all correct processes
! will execute accept (s,m,1) in round 1 and extract m

if r > 0, the sender is faulty. Since p has extracted
! m in round r, p has accepted at least r triples with
! properties (i), (ii), and (iii) by round r

r ≤ f By RELAY, all correct processes will have
! accepted those r triples by round r + 1
p will execute broadcast(p,m,r + 1) in round r + 1
By CORRECTNESS, any correct process other than

! p, q1, q2,…,qr will have accepted r + 1 triples
! (qk,m,jk), 1 ≤ jk ≤ r + 1, by round r + 1
q1, q2,…,qr,p are all distinct

every correct process other than q1, q2,…,qr,p will
! extract m
p has already extracted m; what about q1, q2,…,qr?

Lemma
If a correct process extracts m, then

every correct process eventually extracts m

sender in round 0:
0:! extract
sender in round 1:
1:! broadcast

Process in round !! !
2:! if extracted in round and ≠ sender then
4:! ! broadcast
5:! if has executed at least accept in
! ! rounds 1 through
! ! ! (where (i) distinct from each other and from
! ! ! , (ii) one is , and (iii))
! and has not previously extracted then!
6:! ! ! extract
7:! if then
8:! ! if in the entire execution has extracted exactly
! ! ! ! ! one then
9:! ! ! deliver
10:! ! else deliver SF
11:! ! halt

(s, m, 1)

s

m

s

k, 1≤k≤f+1

k−1m p

(p, m, k)

p

p k (qi, m, ji) 1≤ i≤k

k

qi

p qi s 1≤ji≤k

p

m

m

m

m

p

k = f+1

p

Agreement - 2
 Claim: are all faulty

Suppose were correct

p has accepted in round

By UNFORGEABILITY, executed
!broadcast in round

 extracted m in round

CONTRADICTION

Case 2:
Since there are at most f faulty processes,
some process in is correct

By UNFORGEABILITY, executed
broadcast in round

 has extracted m in round

CONTRADICTION

ql q1, q2, . . . , qf+1

(ql,m, jl) jl ≤ r

ql jl−1 < f + 1

jk−1 < rqk

jk

ql

(qk,m, jk)

qk

qk

(qk,m, jk) jk ≤ r

q1, q2, . . . , qr

r = f+1

sender in round 0:
0:! extract
sender in round 1:
1:! broadcast

Process in round !! !
2:! if extracted in round and ≠ sender then
4:! ! broadcast
5:! if has executed at least accept in
! ! rounds 1 through
! ! ! (where (i) distinct from each other and from
! ! ! , (ii) one is , and (iii))
! and has not previously extracted then!
6:! ! ! extract
7:! if then
8:! ! if in the entire execution has extracted exactly
! ! ! ! ! one then
9:! ! ! deliver
10:! ! else deliver SF
11:! ! halt

(s, m, 1)

s

m

s

k, 1≤k≤f+1

k−1m p

(p, m, k)

p

p k (qi, m, ji) 1≤ i≤k

k

qi

p qi s 1≤ji≤k

p

m

m

m

m

p

k = f+1

p

Validity
A correct sender executes !
broadcast in round 1

By CORRECTNESS, all correct processes
execute accept in round 1 and
extract

In order to extract a different message
! , a process must execute accept
in some round

By UNFORGEABILITY, and because s is
correct, no correct process can
extract .

All correct processes will deliver m

m
′ != m

i ≤ f + 1

(s,m, 1)
m

(s,m′
, 1)

(s,m, 1)

m
′

sender in round 0:
0:! extract
sender in round 1:
1:! broadcast

Process in round !! !
2:! if extracted in round and ≠ sender then
4:! ! broadcast
5:! if has executed at least accept in
! ! rounds 1 through
! ! ! (where (i) distinct from each other and from
! ! ! , (ii) one is , and (iii))
! and has not previously extracted then!
6:! ! ! extract
7:! if then
8:! ! if in the entire execution has extracted exactly
! ! ! ! ! one then
9:! ! ! deliver
10:! ! else deliver SF
11:! ! halt

(s, m, 1)

s

m

s

k, 1≤k≤f+1

k−1m p

(p, m, k)

p

p k (qi, m, ji) 1≤ i≤k

k

qi

p qi s 1≤ji≤k

p

m

m

m

m

p

k = f+1

p

Implementing
broadcast and accept

A process that wants to broadcast , does so
through a series of witnesses

Sends to all
Each correct process becomes a witness by
relaying to all

If a process receives enough witness confirmations,
it accepts

m

m

m

m

Can we rely on
witnesses?

Only if not too many faulty processes!

Otherwise, a set of faulty processes could fool
a correct process by acting as witnesses of a
message that was never broadcast

How large can be with respect to ?f n

Byzantine Generals

One General G, a set of Lieutenants Li

General can order Attack (A) or Retreat (R)
General may be a traitor; so may be some of the
Lieutenants

* * *
I. If G is trustworthy, every trustworthy Li must

follow G’s orders
II. Every trustworthy Li must follow same battleplan

The plot thickens...

G

L1 L2

One traitor

The plot thickens...

G

L1 L2

One traitor

The plot thickens...

G

L1 L2

One traitor

The plot thickens...

G

L1 L2

One traitor

The plot thickens...

G

L1 L2

One traitor

The plot thickens...

G

L1 L2

One traitor

The plot thickens...

G

L1

G

L1
L2L2

One traitor

The plot thickens...

G

L1

G

L1
L2L2

One traitor

The plot thickens...

G

L1

G

L1
L2L2

One traitor

The plot thickens...

G

L1

G

L1
L2L2

One traitor

The plot thickens...

G

L1

G

L1
L2L2

One traitor

The plot thickens...

G

L1

G

L1
L2L2

One traitor

The plot thickens...

G

L1

G

L1 L2

G

L1
L2L2

One traitor

The plot thickens...

G

L1

G

L1 L2

G

L1
L2L2

One traitor

The plot thickens...

G

L1

G

L1 L2

G

L1
L2L2

One traitor

The plot thickens...

G

L1

G

L1 L2

G

L1
L2L2

One traitor

The plot thickens...

G

L1

G

L1 L2

G

L1
L2L2

One traitor

The plot thickens...

G

L1

G

L1 L2

G

L1
L2L2

One traitor

The plot thickens...

G

L1

G

L1 L2

G

L1
L2L2

One traitor

A Lower Bound

Theorem
There is no algorithm that solves TRB for
Byzantine failures if
(Lamport, Shostak, and Pease, The Byzantine Generals Problem,
ACM TOPLAS, 4 (3), 382-401, 1982)

n ≤ 3f

Back to the protocol...
To broadcast a message in round , sends to all

A confirmation has the form

A witness sends if either:
it receives from directly! or
it receives confirmations for from at least
! ! processes (at least one correct witness)

A process accepts if it has received
confirmations (as many as possible…)

Protocol proceeds in rounds. Each round has 2 phases

f + 1

(p, m, r)

(p, m, r) n − f

(echo, p, m, r)

(echo, p, m, r)

(init, p, m, r)

(init, p, m, r) p

pr

Implementation of
broadcast and accept

Phase
1:! sends to all
Phase
2:!if received in phase then
3:!! sends to all /* becomes a witness */
4:!if receives from at least distinct processes in phase then
5:!! accepts
Phase
6:!if has received from at least distinct processes in
! phases . then
7:!! sends to all processes! /* becomes a witness */
8:!if has received from at least processes in !
! phases . then
9:!! accepts

(2r, 2r + 1, . . . , j)

(2r, 2r + 1, . . . , j − 1)

(init, p,m, r)

2r−1

2r

j >2r

(p,m, r)q

p

2r−1

(init, p,m, r)

q

q q

q

q

q

q

q

q

(p,m, r)

(echo, p,m, r)

(echo, p,m, r) n−f 2r

(echo, p,m, r) f+1

(echo, p,m, r)

(echo, p,m, r) n−f

Implementation of
broadcast and accept

Phase
1:! sends to all
Phase
2:!if received in phase then
3:!! sends to all /* becomes a witness */
4:!if receives from at least distinct processes in phase then
5:!! accepts
Phase
6:!if has received from at least distinct processes in
! phases . then
7:!! sends to all processes! /* becomes a witness */
8:!if has received from at least processes in !
! phases . then
9:!! accepts

Is termination a problem?

(2r, 2r + 1, . . . , j)

(2r, 2r + 1, . . . , j − 1)

(init, p,m, r)

2r−1

2r

j >2r

(p,m, r)q

p

2r−1

(init, p,m, r)

q

q q

q

q

q

q

q

q

(p,m, r)

(echo, p,m, r)

(echo, p,m, r) n−f 2r

(echo, p,m, r) f+1

(echo, p,m, r)

(echo, p,m, r) n−f

The implementation
is correct

Theorem

If , the given implementation of
broadcast and accept
satisfies Unforgeability, Correctness, and
Relay

Assumption
Channels are authenticated

n > 3f

(p, m, r) (p, m, r)

Correctness

If a correct process
executes broadcast
in round , then all
correct processes will
execute accept in
round

(p, m, r)

(p, m, r)

r

r

p

Correctness
If is correct then

 sends to all in round
(phase)
by Validity of the underlying send and
receive, every correct process receives
! ! ! in phase
every correct process becomes a
witness
every correct process sends
in phase
since there are at least correct
processes, every correct process
receives at least echoes in phase
every correct process executes
accept! ! in phase (in round)

If a correct process
executes broadcast
in round , then all
correct processes will
execute accept in
round

(p, m, r)

(p, m, r)

r

r

p

(echo, p, m, r)

(init, p, m, r)

(init, p, m, r) r

r(p, m, r)

2r−1

2r

2rn−f

2r

n−f

p

p

Unforgeability - 1
If a correct process
executes accept in
round , and is correct,
then did in fact execute
broadcast in round

• Suppose executes accept
 in round
• received from at
 least distinct processes by
 phase , where or

• Let be the earliest phase in
 which some correct process
 becomes a witness to

k = 2j − 1

k = 2j

(echo, p, m, r)

(p, m, r)

k
′

q
′

n−f

k

q

q (p, m, r)

j

(p, m, r) r

p

pj≥r

(p, m, r)

q

Unforgeability - 1
Case 1:

 received from
since is correct, it follows that
! did execute broadcast !
in round

Case 2:
 has become a witness by
receiving from
distinct processes
at most are faulty; one is
correct
this process was a witness to
! ! ! before phase

CONTRADICTION
The first correct process
receives ! from !

If a correct process
executes accept in
round , and is correct,
then did in fact execute
broadcast in round

• Suppose executes accept
 in round
• received from at
 least distinct processes by
 phase , where or

• Let be the earliest phase in
 which some correct process
 becomes a witness to

k′ = 2r − 1

k′ > 2r − 1

k = 2j − 1

k = 2j

(echo, p, m, r) f+1

f

(p, m, r) k
′

q
′ (init, p, m, r) p

p

p (p, m, r)
r

p(init, p, m, r)

(echo, p, m, r)

(p, m, r)

k
′

q
′

n−f

k

q

q (p, m, r)

j

(p, m, r) r

p

pj≥r

(p, m, r)

q

q
′

Unforgeability -2

For to accept, some correct process must
become witness.
Earliest correct witness becomes so in
phase . , and only if did indeed executed
broadcast
Any correct process that becomes a witness later
can only do so if a correct process is already a
witness.
For any correct process to become a witness,
must have executed broadcast

q

q
′

2r − 1

p

(p, m, r)

(p, m, r)

p

Relay

If a correct process
executes accept in
round , then all
correct processes will
execute accept by
round

q

(p, m, r)

j + 1

(p, m, r)

j ≥ r

Relay
Suppose correct q executes accept in
round (phase or)

 received at least from
distinct processes by phase

At least of them are correct.

All correct procs received from at
least correct processes by phase

From , it follows that .
Then, all correct processes become witnesses
by phase

All correct processes send by
phase .

Since there are at least correct processes,
all correct processes will accept by
phase (round or)

If a correct process
executes accept in
round , then all
correct processes will
execute accept by
round

q

(p, m, r)

j + 1

(p, m, r)

j ≥ r

n − 2f

k = 2j − 1 k = 2j

n − 2f k

k

k + 1

2j 2j + 1

(p,m, r)

k + 1

n − 2f ≥ f + 1

n − f

k

n > 3f

(p,m, r)

(echo, p,m, r)

(echo, p,m, r)

(echo, p,m, r)

q

j

n−f

Taking a step back...
Specified Consensus and TRB
In the synchronous model :

solved Consensus and TRB for General Omission
failures
proved lower bound on rounds required by TRB
solved TRB for AFMA
proved lower bound on replication for solving
TRB with AF
solved TRB with AF

Ordered Broadcasts
for Benign Failures

FIFO Order

If a process broadcasts a message before it
broadcasts a message , then no correct process
delivers unless it has previously delivered

If a process broadcasts a message before it
broadcasts a message , then no process (correct or
faulty) delivers unless it has previously delivered

Uniform FIFO Order

m

m

m

m

m
′

m
′

m
′

m
′

Causal Order

If the broadcast of a message causally precedes
the broadcast of a message , then no correct
process delivers unless it has previously delivered

If the broadcast of a message causally precedes
the broadcast of a message , then no process
(correct or faulty) delivers unless it has previously
delivered .

Uniform Causal Order

m
′

m
′

m
′

m

m

m
′

m

m

From FIFO to Causal

If a process broadcasts a message m and a process
delivers m before broadcasting m’, then no correct
process delivers m’ unless it previously delivered m

Local Order

Causal Order = FIFO Order + Local Order

Total Order

If correct processes p and q both deliver messages
m and m’, then p delivers m before m’ if and only if
q delivers m before m’

If correct or faulty processes p and q both deliver
messages m and m’, then p delivers m before m’ if
and only if q delivers m before m’

Uniform Total Order

A Modular Approach to
Broadcast Protocols

(Hadzilakos & Toueg)

Reliable
Broadcast

FIFO
Broadcast

Causal
Broadcast

Atomic
Broadcast

FIFO Atomic
Broadcast

Causal Atomic
Broadcast

Total Order

Total Order

Total Order

FIFO
Order

FIFO
Order

Causal
Order

Causal
Order

