LAN switching and Bridges

CS491G: Computer Networking Lab
V. Arun

Slides adapted from Liebeherr and El Zarki, and Kurose and Ross
Outline

• Interconnection devices
• Bridges/LAN switches vs. Routers
• Learning Bridges
• Transparent bridges
Introduction

• Several different devices for interconnecting networks
Ethernet Hub

- Connects hosts to Ethernet LAN and connects multiple Ethernet LANs
- Collisions are propagated
Bridges/LAN switches

- A *bridge or LAN switch* is a device that interconnects two or more *Local Area Networks (LANs)* and forwards packets between these networks.
- Bridges/LAN switches operate at the Data Link Layer (Layer 2)
Terminology: Bridge, LAN switch, Ethernet switch

There are different terms to refer to a data-link layer interconnection device:
• The term **bridge** was coined in the early 1980s.
• Today, the terms **LAN switch** or (in the context of Ethernet) **Ethernet switch** are used.

Convention:
• We will use the three terms interchangeably.
Ethernet Hubs vs. Ethernet Switches

• An Ethernet switch is a packet switch for Ethernet frames
 • Buffering of frames prevents collisions.
 • Each port is isolated and builds its own collision domain
• An Ethernet Hub does not perform buffering:
 • Collisions occur if two frames arrive at the same time.
Dual Speed Ethernet Hub

- Dual-speed hubs operate at 10 Mbps and 100 Mbps per second.
- Conceptually these hubs operate like two Ethernet hubs separated by a bridge.
Routers

- Routers operate at the Network Layer (Layer 3)
- Interconnect IP networks
Gateways

- The term “Gateway” is used with different meanings in different contexts
- “Gateway” is a generic term for routers (Level 3)
- “Gateway” is also used for a device that interconnects different Layer 3 networks and which performs translation of protocols (“Multi-protocol router”)
Bridges versus Routers

- An enterprise network (e.g., university) with a large number of local area networks (LANs) can use routers or bridges
 - 1980s: LANs interconnection via bridges
 - Late 1980s and early 1990s: increasingly use of routers
 - Since mid1990s: LAN switches replace most routers
 - Late 2000s: Switches and SDN
A Routed Enterprise Network
A Switched Enterprise Network
Interconnecting networks: Bridges versus Routers

<table>
<thead>
<tr>
<th>Routers</th>
<th>Bridges/LAN switches</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Each host’s IP address must be configured</td>
<td>• MAC addresses of hosts are hardwired</td>
</tr>
<tr>
<td>• If network is reconfigured, IP addresses may need to be reassigned</td>
<td>• No network configuration needed</td>
</tr>
<tr>
<td>• Routing done via RIP or OSPF</td>
<td>• Routing done by</td>
</tr>
<tr>
<td>• Each router manipulates packet header (e.g., reduces TTL field)</td>
<td>− learning bridge algorithm</td>
</tr>
<tr>
<td></td>
<td>− spanning tree algorithm</td>
</tr>
<tr>
<td></td>
<td>• Bridges do not manipulate frames</td>
</tr>
</tbody>
</table>
Bridges

Overall design goal: **Complete transparency**

“Plug-and-play”

Self-configuring without hardware or software changes

Bridges should not impact operation of existing LANs

Three parts to understanding bridges:

1. **Forwarding of Frames**
2. **Learning of Addresses**
3. **Spanning Tree Algorithm**
(1) Frame Forwarding

- Each bridge maintains a **MAC forwarding table**
- Forwarding table plays the same role as the routing table of an IP router
- Entries have the form (MAC address, port, age), where

 - **MAC address**: host name or group address
 - **port**: port number of bridge
 - **age**: aging time of entry (in seconds)

 with interpretation:

 a machine with **MAC address** lies in direction of the **port** number from the bridge. The entry is **age** time units old.

<table>
<thead>
<tr>
<th>MAC address</th>
<th>port</th>
<th>age</th>
</tr>
</thead>
<tbody>
<tr>
<td>a0:e1:34:82:ca:34</td>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>45:6d:20:23:fe:2e</td>
<td>2</td>
<td>20</td>
</tr>
</tbody>
</table>
(1) Frame Forwarding

- Assume a MAC frame arrives on port x.

 Is MAC address of destination in forwarding table for ports A, B, or C?

 - Found?
 - Forward the frame on the appropriate port
 - Not found?
 - Flood the frame, i.e., send the frame on all ports except port x.
(2) Address Learning (Learning Bridges)

- Routing entries set automatically with a simple heuristic:

 Source field of a frame that arrives on a port tells which hosts are reachable from this port.

```
<table>
<thead>
<tr>
<th>Port 1</th>
<th>Port 2</th>
<th>Port 3</th>
<th>Port 4</th>
<th>Port 5</th>
<th>Port 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>x, y</td>
<td>x, y</td>
<td>x, y</td>
<td>x, y</td>
<td>x, y</td>
<td>x, y</td>
</tr>
</tbody>
</table>
```
(2) Address Learning (Learning Bridges)

Learning Algorithm:

- For each frame received, the source stores the source field in the forwarding database together with the port where the frame was received.
- All entries are deleted after some time (default is 15 seconds).
Example

- Consider the following packets:
 \((\text{Src}=A, \text{Dest}=F)\), \((\text{Src}=C, \text{Dest}=A)\), \((\text{Src}=E, \text{Dest}=C)\)

- What have the bridges learned?
Need for a forwarding between networks

- What do bridges do if some LANs are reachable only in multiple hops?
- What do bridges do if the path between two LANs is not unique?
Consider the two LANs that are connected by two bridges.

Assume host \(n \) is transmitting a frame \(F \) with unknown destination.

What is happening?

- Bridges A and B flood the frame to LAN 2.
- Bridge B sees \(F \) on LAN 2 (with unknown destination), and copies the frame back to LAN 1.
- Bridge A does the same.
- Duplication causes “broadcast storm”

Where’s the problem? What’s the solution?
Transparent Bridges

• Three principal approaches can be found:
 – Fixed Routing
 – Source Routing
 – Spanning Tree Routing (IEEE 802.1d)

• We only discuss the last one

• Bridges that execute the spanning tree algorithm are called transparent bridges
Spanning Tree Protocol (IEEE 802.1d)

- Spanning Tree Protocol (SPT) is a solution to prevent loops when forwarding frames between LANs
 - Standardized as IEEE 802.1d

- SPT organizes bridges and LANs as spanning tree in a dynamic environment
 - Frames are forwarded only along the branches of the spanning tree
 - Trees don’t have loops

- Bridges exchange messages to configure the bridge (Bridge Protocol Data Unit or BPDUs) to build tree.
Configuration BPDUs

- **Destination MAC address**
- **Source MAC address**
 - Configuration Message
 - **protocol identifier**
 - **version**
 - **message type**
 - **flags**
 - **root ID**
 - **Cost**
 - **bridge ID**
 - **port ID**
 - **message age**
 - **maximum age**
 - **hello time**
 - **forward delay**

 - **Set to 0**
 - **Set to 0**
 - **Set to 0**

 - **lowest bit is "topology change bit (TC bit)"**
 - **ID of root**
 - **Cost of the path from the bridge sending this message**
 - **ID of bridge sending this message**
 - **ID of port from which message is sent**

 - **Time between BPDUs from the root (default: 1sec)**
 - **Time between recalculations of the spanning tree (default: 15 secs)**
 - **time since root sent a message on which this message is based**
What do the BPDUs do?

With the help of the BPDUs, bridges can:

• Elect a single bridge as the root bridge.
• Calculate the distance of the shortest path to the root bridge
• Each LAN can determine a designated bridge, which is the bridge closest to the root. The designated bridge will forward packets towards the root bridge.
• Each bridge can determine a root port, the port that gives the best path to the root.
• Select ports to be included in the spanning tree.
Concepts

• Each bridge as a unique identifier: Bridge ID
 Bridge ID = Priority : 2 bytes
 Bridge MAC address: 6 bytes
 – Priority is configured
 – Bridge MAC address is lowest MAC addresses of all ports

• Each port of a bridge has a unique identifier (port ID).

• **Root Bridge:** The bridge with the lowest identifier is the root of the spanning tree.

• **Root Port:** Each bridge has a root port which identifies the next hop from a bridge to the root.
Concepts

• **Root Path Cost**: For each bridge, the cost of the min-cost path to the root.

• **Designated Bridge, Designated Port**: Single bridge on a LAN that provides the minimal cost path to the root for this LAN:
 - if two bridges have the same cost, select one with highest priority
 - if min-cost bridge has two or more ports on the LAN, select port with lowest ID

• **Note**: We assume that “cost” of a path is the number of “hops”.
Steps of Spanning Tree Algorithm

• Each bridge is sending out BPDUs that contain the following information:

 - root bridge (what the sender thinks it is)
 - root path cost for sending bridge
 - Identifies sending bridge
 - Identifies the sending port

 | root ID | cost | bridge ID | port ID |

• Transmission of BPDUs results in the distributed computation of a spanning tree
• Convergence of the algorithm is very quick
Ordering of Messages

- We define an ordering of BPDU messages

We say M1 advertises a better path than M2 ("M1<<M2") if

 (R1 < R2),
 Or (R1 == R2) and (C1 < C2),
 Or (R1 == R2) and (C1 == C2) and (B1 < B2),
 Or (R1 == R2) and (C1 == C2) and (B1 == B2) and (P1 < P2)
Initializing the Spanning Tree Protocol

• Initially, all bridges assume they are the root bridge.
• Each bridge B sends BPDUs of this form on its LANs from each port P:

```
B 0 B P
```

• Each bridge looks at the BPDUs received on all its ports and its own transmitted BPDUs.
• Root bridge updated to the smallest received root ID that has been received so far
Each bridge B looks on all its ports for BPDUs that are better than its own BPDUs.

Suppose a bridge with BPDU:

\[
\begin{array}{c}
M1 \\
\end{array}
\begin{array}{cccc}
R1 & C1 & B1 & P1 \\
\end{array}
\]

receives a “better” BPDU:

\[
\begin{array}{c}
M2 \\
\end{array}
\begin{array}{cccc}
R2 & C2 & B2 & P2 \\
\end{array}
\]

Then it will update the BPDU to:

\[
\begin{array}{cccc}
R2 & C2+1 & B1 & P1 \\
\end{array}
\]

However, the new BPDU is not necessarily sent out.

On each bridge, the port where the “best BPDU” (via relation “<” “<”) was received is the *root port of the bridge*.
• Say, B has generated a BPDU for each port x

| R | Cost | B | x |

• B will send this BPDU on port x only if its BPDU is better (via relation “<<“) than any BPDU that B received from port x.

• In this case, B also assumes that it is the designated bridge for the LAN to which the port connects

• And port x is the designated port of that LAN
Selecting the Ports for the Spanning Tree

- Each bridge makes a local decision which of its ports are part of the spanning tree.
- Now B can decide which ports are in the spanning tree:
 - B’s root port is part of the spanning tree
 - All designated ports are part of the spanning tree
 - All other ports are not part of the spanning tree

- B’s ports that are in the spanning tree will forward packets (=forwarding state)
- B’s ports that are not in the spanning tree will not forward packets (=blocking state)
Building the Spanning Tree

- Consider the network on the right.
- Assume that the bridges have calculated the designated ports (D) and the root ports (R) as indicated.

- What is the spanning tree?
 - On each LAN, connect R ports to the D ports on this LAN
Example

- Assume that all bridges send out their BPDU’s once per second, and assume that all bridges send their BPDUs at the same time.
- Assume that all bridges are turned on simultaneously at time T=0 sec.
Example: BPDU’s sent by the bridges

<table>
<thead>
<tr>
<th></th>
<th>Bridge 1</th>
<th>Bridge 2</th>
<th>Bridge 3</th>
<th>Bridge 5</th>
<th>Bridge 6</th>
<th>Bridge 7</th>
</tr>
</thead>
<tbody>
<tr>
<td>T=0sec</td>
<td>(1,0,1,port)</td>
<td>(2,0,2,port)</td>
<td>(3,0,3,port)</td>
<td>(5,0,5,port)</td>
<td>(6,0,6,port)</td>
<td>(7,0,7,port)</td>
</tr>
<tr>
<td></td>
<td>sent on ports:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T=1sec</td>
<td>(1,0,1,port)</td>
<td>(2,0,2,port)</td>
<td>(1,1,3,port)</td>
<td>(1,1,5,port)</td>
<td>(1,1,6,port)</td>
<td>(1,1,7,port)</td>
</tr>
<tr>
<td></td>
<td>A,B</td>
<td>A,B</td>
<td>A,C</td>
<td>B,C</td>
<td>A,C,D</td>
<td>A</td>
</tr>
<tr>
<td>T=2sec</td>
<td>(1,0,1,port)</td>
<td>(1,2,2,port)</td>
<td>(1,1,3,port)</td>
<td>(1,1,5,port)</td>
<td>(1,1,6,port)</td>
<td>(1,1,7,port)</td>
</tr>
<tr>
<td></td>
<td>A,B</td>
<td>none</td>
<td>A,C</td>
<td>B,C</td>
<td>D</td>
<td>none</td>
</tr>
</tbody>
</table>

- In the table (1,0,1,port) means that the BPDU is (1,0,1,A) if the BPDU is sent on port A and (1,0,1,B) if it is sent on port B.
- At T=1, Bridge 7 receives two BPDUs from Bridge 1: (1,0,1,A) and (1,0,1,B). We assume that A is numerically smaller than B. If not, then the root port of Bridge 7 changes.
Example: Settings after convergence

<table>
<thead>
<tr>
<th></th>
<th>Bridge 1</th>
<th>Bridge 2</th>
<th>Bridge 3</th>
<th>Bridge 5</th>
<th>Bridge 6</th>
<th>Bridge 7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Root Port</td>
<td>-</td>
<td>A</td>
<td>B</td>
<td>A</td>
<td>B</td>
<td>B</td>
</tr>
<tr>
<td>Designated Ports</td>
<td>A,B</td>
<td>-</td>
<td>A,C</td>
<td>B,C</td>
<td>D</td>
<td>-</td>
</tr>
<tr>
<td>Blocked ports</td>
<td>-</td>
<td>B</td>
<td>-</td>
<td>-</td>
<td>A,C</td>
<td>A,C</td>
</tr>
</tbody>
</table>

Resulting tree:
VLANS
VLANs: motivation

- CS user moves office to EE, but wants connect to CS switch?
- single broadcast domain:
 - all layer-2 broadcast traffic (ARP, DHCP, unknown location of destination MAC address) must cross entire LAN
 - security/privacy, efficiency issues
VLANs

Virtual Local Area Network

switch(es) supporting VLAN capabilities can be configured to define multiple virtual LANS over single physical LAN infrastructure.

port-based VLAN: switch ports grouped (by switch management software) so that *single* physical switch ……

… operates as *multiple* virtual switches

Electrical Engineering (VLAN ports 1-8)

Computer Science (VLAN ports 9-15)

Electrical Engineering (VLAN ports 1-8)

Computer Science (VLAN ports 9-16)

•Link Layer •5-41
Port-based VLAN

- **traffic isolation**: frames to/from ports 1-8 can only reach ports 1-8
 - can also define VLAN based on MAC addresses of endpoints, rather than switch port

- **dynamic membership**: ports can be dynamically assigned among VLANs

- **forwarding between VLANS**: done via routing (just as with separate switches)
 - in practice vendors sell combined switches plus routers
VLANS spanning multiple switches

- **trunk port**: carries frames between VLANS defined over multiple physical switches
 - frames forwarded within VLAN between switches can’t be vanilla 802.1 frames (must carry VLAN ID info)
 - 802.1q protocol adds/removed additional header fields for frames forwarded between trunk ports

Electrical Engineering (VLAN ports 1-8)
Computer Science (VLAN ports 9-15)
Ports 2,3,5 belong to EE VLAN
Ports 4,6,7,8 belong to CS VLAN

* Link Layer • 5-43
802.1Q VLAN frame format

- **802.1 frame**
 - preamble
 - dest. address
 - source address
 - data (payload)
 - CRC

- **802.1Q frame**
 - preamble
 - dest. address
 - source address
 - data (payload)
 - CRC
 - 2-byte Tag Protocol Identifier (value: 81-00)
 - Recomputed CRC
 - Tag Control Information (12 bit VLAN ID field, 3 bit priority field like IP TOS)