
Chapter 4: Global State and Snapshot Recording

Algorithms

Ajay Kshemkalyani and Mukesh Singhal

Distributed Computing: Principles, Algorithms, and Systems

Cambridge University Press

A. Kshemkalyani and M. Singhal (Distributed Computing)Global State and Snapshot Recording Algorithms CUP 2008 1 / 51



Distributed Computing: Principles, Algorithms, and Systems

Introduction

Recording the global state of a distributed system on-the-fly is an important
paradigm.

The lack of globally shared memory, global clock and unpredictable message
delays in a distributed system make this problem non-trivial.

This chapter first defines consistent global states and discusses issues to be
addressed to compute consistent distributed snapshots.

Then several algorithms to determine on-the-fly such snapshots are presented
for several types of networks.

A. Kshemkalyani and M. Singhal (Distributed Computing)Global State and Snapshot Recording Algorithms CUP 2008 2 / 51



Distributed Computing: Principles, Algorithms, and Systems

System model

The system consists of a collection of n processes p1, p2, ..., pn that are
connected by channels.

There are no globally shared memory and physical global clock and processes
communicate by passing messages through communication channels.

Cij denotes the channel from process pi to process pj and its state is denoted
by SCij .

The actions performed by a process are modeled as three types of events:
Internal events,the message send event and the message receive event.

For a message mij that is sent by process pi to process pj , let send(mij) and
rec(mij) denote its send and receive events.

A. Kshemkalyani and M. Singhal (Distributed Computing)Global State and Snapshot Recording Algorithms CUP 2008 3 / 51



Distributed Computing: Principles, Algorithms, and Systems

System model

At any instant, the state of process pi , denoted by LSi , is a result of the
sequence of all the events executed by pi till that instant.

For an event e and a process state LSi , e∈LSi iff e belongs to the sequence
of events that have taken process pi to state LSi .

For an event e and a process state LSi , e ̸∈LSi iff e does not belong to the
sequence of events that have taken process pi to state LSi .

For a channel Cij , the following set of messages can be defined based on the
local states of the processes pi and pj

Transit: transit(LSi , LSj) = {mij |send(mij) ∈ LSi

∧
rec(mij) ̸∈ LSj }

A. Kshemkalyani and M. Singhal (Distributed Computing)Global State and Snapshot Recording Algorithms CUP 2008 4 / 51



Distributed Computing: Principles, Algorithms, and Systems

Models of communication

Recall, there are three models of communication: FIFO, non-FIFO, and Co.

In FIFO model, each channel acts as a first-in first-out message queue and
thus, message ordering is preserved by a channel.

In non-FIFO model, a channel acts like a set in which the sender process adds
messages and the receiver process removes messages from it in a random
order.

A system that supports causal delivery of messages satisfies the following
property: “For any two messages mij and mkj , if send(mij) −→ send(mkj),
then rec(mij) −→ rec(mkj)”.

A. Kshemkalyani and M. Singhal (Distributed Computing)Global State and Snapshot Recording Algorithms CUP 2008 5 / 51



Distributed Computing: Principles, Algorithms, and Systems

Consistent global state

The global state of a distributed system is a collection of the local states of
the processes and the channels.

Notationally, global state GS is defined as,

GS = {
⋃

iLSi ,
⋃

i ,jSCij }

A global state GS is a consistent global state iff it satisfies the following two
conditions :

C1: send(mij)∈LSi ⇒ mij∈SCij ⊕ rec(mij)∈LSj . (⊕ is Ex-OR
operator.)

C2: send(mij )̸∈LSi ⇒ mij ̸∈SCij ∧ rec(mij )̸∈LSj .

A. Kshemkalyani and M. Singhal (Distributed Computing)Global State and Snapshot Recording Algorithms CUP 2008 6 / 51



Distributed Computing: Principles, Algorithms, and Systems

Interpretation in terms of cuts

A cut in a space-time diagram is a line joining an arbitrary point on each
process line that slices the space-time diagram into a PAST and a FUTURE.

A consistent global state corresponds to a cut in which every message
received in the PAST of the cut was sent in the PAST of that cut.

Such a cut is known as a consistent cut.

For example, consider the space-time diagram for the computation illustrated
in Figure 4.1.

Cut C1 is inconsistent because message m1 is flowing from the FUTURE to
the PAST.

Cut C2 is consistent and message m4 must be captured in the state of
channel C21.

A. Kshemkalyani and M. Singhal (Distributed Computing)Global State and Snapshot Recording Algorithms CUP 2008 7 / 51



Distributed Computing: Principles, Algorithms, and Systems

m

m m

3

4 5

m 1

m2

3

4

1

2

time

e e e

e

e e e e

e e

e

e

e e

C C

p

p

p

p

1 1 1 1

2 2 2 2

3 3 3

4 4

1 2 3 4

42 3e1

3
1

3
2 3 4 5

1 2

21

Figure 4.1: An Interpretation in Terms of a Cut.

A. Kshemkalyani and M. Singhal (Distributed Computing)Global State and Snapshot Recording Algorithms CUP 2008 8 / 51



Distributed Computing: Principles, Algorithms, and Systems

Issues in recording a global state

The following two issues need to be addressed:

I1: How to distinguish between the messages to be recorded in the
snapshot from those not to be recorded.

-Any message that is sent by a process before recording its
snapshot, must be recorded in the global snapshot (from C1).
-Any message that is sent by a process after recording its snapshot,
must not be recorded in the global snapshot (from C2).

I2: How to determine the instant when a process takes its snapshot.

-A process pj must record its snapshot before processing a message
mij that was sent by process pi after recording its snapshot.

A. Kshemkalyani and M. Singhal (Distributed Computing)Global State and Snapshot Recording Algorithms CUP 2008 9 / 51



Distributed Computing: Principles, Algorithms, and Systems

Snapshot algorithms for FIFO channels

Chandy-Lamport algorithm

The Chandy-Lamport algorithm uses a control message, called a marker
whose role in a FIFO system is to separate messages in the channels.

After a site has recorded its snapshot, it sends a marker, along all of its
outgoing channels before sending out any more messages.

A marker separates the messages in the channel into those to be included in
the snapshot from those not to be recorded in the snapshot.

A process must record its snapshot no later than when it receives a marker on
any of its incoming channels.

A. Kshemkalyani and M. Singhal (Distributed Computing)Global State and Snapshot Recording Algorithms CUP 2008 10 / 51



Distributed Computing: Principles, Algorithms, and Systems

Chandy-Lamport algorithm

The algorithm can be initiated by any process by executing the “Marker
Sending Rule” by which it records its local state and sends a marker on each
outgoing channel.

A process executes the “Marker Receiving Rule” on receiving a marker. If the
process has not yet recorded its local state, it records the state of the channel
on which the marker is received as empty and executes the “Marker Sending
Rule” to record its local state.

The algorithm terminates after each process has received a marker on all of
its incoming channels.

All the local snapshots get disseminated to all other processes and all the
processes can determine the global state.

A. Kshemkalyani and M. Singhal (Distributed Computing)Global State and Snapshot Recording Algorithms CUP 2008 11 / 51



Distributed Computing: Principles, Algorithms, and Systems

Chandy-Lamport algorithm

Marker Sending Rule for process i

1 Process i records its state.

2 For each outgoing channel C on which a marker
has not been sent, i sends a marker along C
before i sends further messages along C.

Marker Receiving Rule for process j
On receiving a marker along channel C:

if j has not recorded its state then
Record the state of C as the empty set
Follow the “Marker Sending Rule”

else
Record the state of C as the set of messages
received along C after j ’s state was recorded
and before j received the marker along C

A. Kshemkalyani and M. Singhal (Distributed Computing)Global State and Snapshot Recording Algorithms CUP 2008 12 / 51



Distributed Computing: Principles, Algorithms, and Systems

Correctness and Complexity

Correctness

Due to FIFO property of channels, it follows that no message sent after the
marker on that channel is recorded in the channel state. Thus, condition C2
is satisfied.

When a process pj receives message mij that precedes the marker on channel
Cij , it acts as follows: If process pj has not taken its snapshot yet, then it
includes mij in its recorded snapshot. Otherwise, it records mij in the state of
the channel Cij . Thus, condition C1 is satisfied.

Complexity

The recording part of a single instance of the algorithm requires O(e)
messages and O(d) time, where e is the number of edges in the network and
d is the diameter of the network.

A. Kshemkalyani and M. Singhal (Distributed Computing)Global State and Snapshot Recording Algorithms CUP 2008 13 / 51



Distributed Computing: Principles, Algorithms, and Systems

Properties of the recorded global state

The recorded global state may not correspond to any of the global states that
occurred during the computation.

This happens because a process can change its state asynchronously before
the markers it sent are received by other sites and the other sites record their
states.

! But the system could have passed through the recorded global states in some
equivalent executions.

! The recorded global state is a valid state in an equivalent execution and if a
stable property (i.e., a property that persists) holds in the system before the
snapshot algorithm begins, it holds in the recorded global snapshot.

! Therefore, a recorded global state is useful in detecting stable properties.

A. Kshemkalyani and M. Singhal (Distributed Computing)Global State and Snapshot Recording Algorithms CUP 2008 14 / 51


