
Type Checking

So far, we’ve been working with languages that don’t have a static type system. Therefore, our programs may have
lurking type errors that won’t be caught until they are run. A type checker is a decision procedure that proves the
absence of type errors. In particular, a type checker can prove the absence of type errors even if the program itself
would run forever.

1 Typing Rules

Figure 9.1 presents a typed version of the language we examined in the last lecture. We’ve elided the semantics for
the language, since it is essentially the same. Instead, the figure presents a (slightly modified) syntax and the type
system for the language, which we present using the same inference rule notation that we used earlier.

We use the metavariable T to represent types. The types include Int, Bool, and T1 → T2, which is the type of a
function that takes arguments of type T1 and produces results of type T2. To type-check variables, we need a type
environment (Γ) which is a partial function from variables to types. We Γ ` e : T to mean “in the type environment
Γ, the expression e has type T ”, or simply “Γ proves that e has type T ”.

To type-check constants (T-Const), we assume the existence of a total function ty that maps constants to their
types. We type-check identifiers (T-Id) by looking them up in the environment. To type-check binary operations
e1 e2 , we calculate the types of e1 and e2 and use the auxiliary function ∆, which returns the type of value that
op2 would produce given e1 and e2. Note that ∆ is a partial function. E.g., if the operation is arithmetic and the
expressions have type Bool, then ∆ is not defined.

To type-check if-expressions (T-If), we require the condition to have type Bool and constraint the both branches
to have the same type T . This means that expressions such as these are untypable,

if true then 10 else true

even though it may be obvious to you that it always produces a value of type Int.
To type-check functions (T-Fun), we need to change their syntax. The argument of a function is now annotated

with its type: λx : T1.e. Given this annotation, we type-check the function body e in a type environment that is
augmented with x : T1. If we show that the body has type T2 in an environment where x has type T1, then the
function has type T1 → T2. To type-check function applications (T-App), we calculate the type of the function and
the actual argument, and ensure that the actual argument type is the same as the type of argument that the function
expects. If so, the type of an application is the type of the function body.

Correctness We’ve seen how to formally define a type system, but we haven’t yet discussed what it means for a
type system to be correct. Intuitively, a type system is making a prediction about the kind of value that an expression
will produce, and a type system is correct if its predictions are always accurate. The reading for today describes a
widely-used approach for showing a type system is correct.
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Binary Operators
op2 ::= + | > | · · ·

ty ∈ c→ T
∆ ∈ op2 × T × T ⇀ T

Constants
c ::= true True

| false False
| n Integers

Types
T ::= Int Integer type

| Bool Boolean type
| T1 → T2 Function types

Expressions
e ::= c Constants

| x Identifiers
| op2(e1, e2) Bin. Ops.
| if e1 then e2 else e3 Conditionals
| e1 e2 Applications
| λx : T.e Functions

Type Environments
Γ∈ x ⇀ T

(a) Syntax.

Γ ` e : T

T-Const Γ ` c : ty(c) T-Id Γ ` x : Γ(x)

T-BinOp
Γ ` e1 : T1 Γ ` e2 : T2

Γ ` op2(e1, e2) : ∆(op2, T1, T2)

T-If
Γ ` e1 : Bool Γ ` e2 : T Γ ` e3 : T

Γ ` if e1 then e2 else e3 : T

T-Fun
Γ[x 7→ T1] ` e : T2

Γ ` λx : T1.e : T1 → T2

T-App
Γ ` e1 : T1 → T2 Γ ` e2 : T1

Γ ` e1 e2 : T2

(b) Type Checking.

Figure 9.1: Simple Types.
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