
Lecture: Environments and Stores

In the last lecture, we used substitution to evaluate let-expressions and function application. Substitution is a familiar
idea from algebra, which is one of the reasons why we used it. However, it is not a very efficient implementation
strategy. Consider the following expression:

let x1 = 1 in let x2 = 2 in · · · let xn = n in x1 + · · · + xn

To evaluate this expression, we would first scan the entire program to substitute x1 with 1, then scan again to
substitute x2 with 2, and so on, so evaluation by substitution would take O(n2) steps.

We now introduce an auxiliary data structure called an environment that stores the values bound to identifiers.
Intuitively, instead of substituting, we lookup the value of identifiers in the environment.

1 Environment-based Semantics

Figure 5.1 presents an environment-based semantics for the language. Before we discuss the new semantics, we’ll
explain the more compact notation that the figure uses:

• Instead of spelling out every type of constant and binary operator in the definition of expressions, e, the figure
uses the metavariable c to denote an arbitrary constant and op2 to denote an arbitrary binary operator. In
addition, instead of spelling out the semantics of every binary operator, we assume the presence of a partial
function, δ, that consumes an operator and two constants and produces a result, if the result is defined. Note:
we write X ⇀ Y to denote a partial function, whereas X → Y is a total function.

The main reason for this change is that we can easily introduce new operators and new kinds of constants (e.g.,
strings) without changing the definition of e and ⇓.

• The syntax no longer has let-expressions. However, note that let x = e1 in e2 is equivalent to (λx.e2) e1.
Therefore, we will continue using let-expressions in examples, but you should think of them as functions that
have been immediately applied.

As a brief exercise, you should try to prove that let x = e1 in e2 ⇓ v if and only if λx.e2 e1 ⇓ v.

The primary change in fig. 5.1 is that the semantics is defined by a ternary relation, where ρ (greek letter “rho”)
is the environment. An environment is a partial function that maps identifiers to values. Therefore, instead of using
substitution, we have a new rule for identifiers (Id) that “looks up” identifiers in the environment. (Recall that we
didn’t have a rule for identifiers earlier, since they were eliminated by substitution.) The rule for constants (Const)
is updated to ignore ρ and the rules for operators and conditionals simply propagate ρ to their subexpressions.

The rules for functions (Fun) and applications (App) are significantly different. To understand why, consider the
following program:

let f = (let x = 20 in λy.x + y) in let x = 10 in f x

Using our old evaluation relation, we would substitute x with 20 and transform the named expression to λy.20 + y,
but leave the body unchanged, since it has another binding of x to 10. Therefore, we would effectively evaluate this
program, where there is no scope for getting two x’s mixed up:

let f = λy.20 + y in let x = 10 in f x

If we use environments naively and simply evaluate the function to λy.x + y without substitution, we’ll be in trouble.
In the context where this function is applied x is bound to 10 instead of 20.

To solve this problem, functions are no longer values. Instead, functions evaluate to closures, which are triples
〈ρ′, x, e′〉, where (1) ρ′ is the environment in which the function was defined (i.e., in our example, the environment

31

e

Binary Operators
op2 ::= + | > | · · ·
δ ∈ op2 × c× c ⇀ c

Constants
c ::= true True

| false False
| n Integers

Expressions
e ::= c Constants

| x Identifiers
| op2(e1, e2) Bin. Ops.
| if e1 then e2 else e3 Conditionals
| e1 e2 Applications
| λx.e Functions

Environments
ρ∈ x ⇀ v

Values
v ::= c Constants

| 〈ρ, x, e〉 Closures

(a) Syntax.

ρ, e ⇓ v

Const ρ, c ⇓ c
BinOp

ρ, e1 ⇓ c1 ρ, e2 ⇓ c2
op2(e1, e2) ⇓ δ(op2, c1, c2)

IfTrue
ρ, e1 ⇓ true ρ, e2 ⇓ v
ρ, if e1 then e2 else e3 ⇓ v

IfFalse
ρ, e1 ⇓ false ρ, e3 ⇓ v
ρ, if e1 then e2 else e3 ⇓ v

Fun ρ, λx.e ⇓ 〈ρ, x, e〉 Id ρ, x ⇓ ρ(x)

App
ρ, e1 ⇓ 〈ρ′, x, e′〉 ρ, e2 ⇓ v′ ρ′[x 7→ v′], e′ ⇓ v

ρ, e1 e2 ⇓ v

(b) Semantics.

Figure 5.1: Environment-based semantics. Contrast to fig. 4.2.

where x is correctly bound to 20), (2) x is the name of the function’s argument, and (3) e′ is the function body. In
function application (the App rule), we are careful to evaluate e′ in the environment in which it was defined, and not
the environment in which the application occurs.

Correctness At this point, we have two ways of defining the semantics of an expression: either e ⇓ v or ρ, e ⇓ v.
The environment-based semantics is more efficient than the substitution-based semantics, but it must produce results
that are equivalent to the original semantics. So, we may try to prove that both semantics map e to the same value
v. However, the definition of v has changed: our old values had functions, but our new values have closures.

However, notice that:
〈y 7→ 10, x, x + y〉 ≈ λx.x + 10

i.e., we can eliminate the environment in the closure by substituting its variables into the body. We could formalize
this intuition to relate our old and new notions of values and prove that the two semantics are equivalent to each
other.

Performance Our motivation for introducing environments was that substitution is an expensive operation. But,
are environments cheap? An obvious implementation strategy is to use a hash table to represent an environment,
but this would not be effective e.g., in the App rule, ρ is augmented with x to evaluate e1 but e2 is evaluated with
just ρ. In addition, suppose a closure holds an environment ρ that is later extended. When the closure is eventually
evaluated, it must be evaluated with the original environment (without any future extensions). Therefore, it seems
as though an implementation would require a functional map data structure, which is not terrible efficient.

An efficient implementation would use a technique known as de Brujin Indices. de Brujin indices leverage the
insight that we can always calculate the static distance between an identifier and the let-expression that introduced
it (similarly for functions). Therefore, in this program:

let x = 10 in let y = 10 in x + y

We can replace y with v0, since y is the innermost enclosing let-expression and x with v1 since x is the next let-
expression:

let · = 10 in let · = 10 in v1 + v0

The following example is a little trickier:

let x = 10 in let y = 5 + x in x + y

32

e

Binary Operators
op2 ::= + | > | · · ·
δ ∈ op2 × c× c ⇀ c

Expressions
e ::= c Constants

| x Identifiers
| op2(e1, e2) Bin. Ops.
| e1 e2 Applications
| e1; e2 Sequencing
| λx.e Functions
| ref e Allocations
| !e Dereferences
| e1:=e2 Updates

Environments
ρ∈ x ⇀ v

Stores
σ ∈ a ⇀ v

Values
v ::= c Constants

| 〈ρ, x, e〉 Closures
| a Addresses

(a) Syntax.

σ, ρ, e ⇓ σ, v

Const σ, ρ, c ⇓ σ, c
BinOp

σ1, ρ, e1 ⇓ σ2, c1 σ2, ρ, e2 ⇓ σ3, c2
σ1, ρ, op2(e1, e2) ⇓ σ3, δ(op2, c1, c2)

Fun σ, ρ, λx.e ⇓ σ, 〈ρ, x, e〉 Id σ, ρ, x ⇓ σ, ρ(x)

App

σ1, ρ, e1 ⇓ σ2, 〈ρ′, x, e′〉
σ2, ρ, e2 ⇓ σ3, v′ σ3, ρ

′[x 7→ v′], e′ ⇓ σ4, v
σ1, ρ, e1 e2 ⇓ σ4, v

Ref
σ1, ρ, e ⇓ σ2, v a 6∈ dom(σ2)

σ1, ρ, ref e ⇓ σ2[a 7→ v], a

Deref
σ1, ρ, e ⇓ σ2, a σ2(a) = v

σ1, ρ, !e ⇓ σ2, v

SetRef
σ1, ρ, e1 ⇓ σ2, a σ2, ρ, e2 ⇓ σ3, v

σ1, ρ, e1:=e2 ⇓ σ3[a 7→ v], a

Seq
σ1, ρ, e1 ⇓ σ2, v1 σ2, ρ, e2 ⇓ σ3, v2

σ1, ρ, e1; e2 ⇓ σ3, v2

(b) Semantics.

Figure 5.2: Mutable references.

This example has two references to x. The first x refers to the innermost let-expression v0. However, the second x
refers to the next let-expression, since y is v0 in its context:

let · = 10 in let · = 5 + v0 in v1 + v0

Since this technique gives us fixed indices for variables, we can use array-like data structures to lookup variables
in constant time.

There are other issues to consider in a real implementation. For example, how long does it take to allocate a
closure in memory? How much memory do closures consume? When can they be allocated on the stack? Are there
cases where they don’t need to be allocated at all?

2 Store-Passing

We’ve seen that some kinds of expressions can be rewritten to use other expressions in the language. For example,
we’ve seen that let-expressions can be rewritten to function applications. Therefore, we can omit rules for let-
expressions from the semantics. However, this form of rewriting is much harder to do for certain features, such as
mutable. It is easier to change the semantics.

Figure 5.2 defines a language that supports mutable references in a style similar to OCaml. There are three main
ideas here:

• An expression that creates a reference, such as ref 1 + 2 is not a value. Instead, this expression stores the value
of 1 + 2 at a new address (a) in the store (σ). These addresses (or pointers, if you prefer) are a new kind of
value.

• Certain expressions, such as allocation and dereferencing can change the contents of the store and these changes
should then be visible for the rest of the execution of the program. Therefore, the store is threaded through
the semantics: notice that the ⇓ relation produces a value and a new store.

• Although addresses (or pointers) are values in this language, they are opaque to the program: the only way to
create a new pointer is to use ref and there is no support for pointer arithmetic as in C/C++. Therefore, the
language is memory safe.

33

34

