
Weakest Preconditions

COMPSCI 631

University of Massachusetts Amherst

October 24, 2017

Recap: The WHILE Language (Syntax)

Arithmetic Expressions
aexp ::= n

| x

| a1+ a2

| a1− a2

| a1∗ a2

Boolean Expressions
bexp ::= true

| b1 &&b2

| a1> a2

· · ·
Commands
cmd ::= skip

| abort

| x := a

| c1; c2

| if (b) then c1else c2

| while (b) c

Recap: The WHILE Language (Axiomatic Semantics)

Skip {P}skip{P} Abort {P}abort{false}

Assign {P[x/a]}x := a{P}

Seq
{P}c1{Q} {Q}c2{R}

{P}c1; c2{R}

If
{P ∧ b}c1{Q} {P ∧ ¬b}c2{Q}
{P}if (b) then c1else c2{Q}

Loop
{P ∧ b}c{P}

{P}while (b) c{P ∧ ¬b}

Consequence
P′ ⇒ P {P}c{Q} Q ⇒ Q′

{P′}c{Q′}

Weakest Preconditions

Definition
Given command c and postcondition Q, P is the weakest precondition for c and Q if:

1. {P}c{Q} and

2. ∀P′, if {P′}c{Q} then P′ ⇒ P.

Suppose we want to prove that {P′}c{Q} If we know the weakest precondition P,
then by the rule of consequence, we can prove:

P′ ⇒ P {P}c{Q}
{P′}c{Q}

Here is our plan:

1. We will define a function that calculates the weakest precondition: wp(c,Q) = P.

2. Thus, we only need to prove that P′ ⇒ P.

Catch: Preconditions (and postconditions) are evaluated with respect to a particular
store, e.g., σ � P means that P is true given the initial store σ and σ′ � Q means that
Q is true given the final store σ′. We need to prove that ∀σ.σ � P ⇒ P′.

Weakest Preconditions

Definition
Given command c and postcondition Q, P is the weakest precondition for c and Q if:

1. {P}c{Q} and

2. ∀P′, if {P′}c{Q} then P′ ⇒ P.

Suppose we want to prove that {P′}c{Q} If we know the weakest precondition P,
then by the rule of consequence, we can prove:

P′ ⇒ P {P}c{Q}
{P′}c{Q}

Here is our plan:

1. We will define a function that calculates the weakest precondition: wp(c,Q) = P.

2. Thus, we only need to prove that P′ ⇒ P.

Catch: Preconditions (and postconditions) are evaluated with respect to a particular
store, e.g., σ � P means that P is true given the initial store σ and σ′ � Q means that
Q is true given the final store σ′. We need to prove that ∀σ.σ � P ⇒ P′.

Weakest Preconditions

Definition
Given command c and postcondition Q, P is the weakest precondition for c and Q if:

1. {P}c{Q} and

2. ∀P′, if {P′}c{Q} then P′ ⇒ P.

Suppose we want to prove that {P′}c{Q} If we know the weakest precondition P,
then by the rule of consequence, we can prove:

P′ ⇒ P {P}c{Q}
{P′}c{Q}

Here is our plan:

1. We will define a function that calculates the weakest precondition: wp(c,Q) = P.

2. Thus, we only need to prove that P′ ⇒ P.

Catch: Preconditions (and postconditions) are evaluated with respect to a particular
store, e.g., σ � P means that P is true given the initial store σ and σ′ � Q means that
Q is true given the final store σ′. We need to prove that ∀σ.σ � P ⇒ P′.

Calculating Weakest Preconditions

wp(skip ,Q) = Q
wp(x := a,Q) = Q[x/a]

wp(c1;c2,Q) = wp(c1,wp(c2,Q))

Calculate wp(x := x0, y : = y0, t : = x, x : = y, y : = t,y = x0 ∧ x = y0)

Calculating Weakest Preconditions

wp(skip ,Q) = Q
wp(x := a,Q) = Q[x/a]
wp(c1;c2,Q) = wp(c1,wp(c2,Q))

Calculate wp(x := x0, y : = y0, t : = x, x : = y, y : = t,y = x0 ∧ x = y0)

Calculating Weakest Preconditions

wp(skip ,Q) = Q
wp(x := a,Q) = Q[x/a]
wp(c1;c2,Q) = wp(c1,wp(c2,Q))

Calculate wp(x := x0, y : = y0, t : = x, x : = y, y : = t,y = x0 ∧ x = y0)

Calculating Weakest Preconditions

wp(skip ,Q) = Q
wp(x := a,Q) = Q[x/a]
wp(c1;c2,Q) = wp(c1,wp(c2,Q))

wp(if (b) then c1else c2,Q) = b ⇒ wp(c1,Q) ∧ ¬b ⇒ wp(c2,Q)

Calculate wp(if x > 0 then r : = x else r : = −x,r =| x |)

Calculating Weakest Preconditions

wp(skip ,Q) = Q
wp(x := a,Q) = Q[x/a]
wp(c1;c2,Q) = wp(c1,wp(c2,Q))

wp(if (b) then c1else c2,Q) = b ⇒ wp(c1,Q) ∧ ¬b ⇒ wp(c2,Q)

Calculate wp(if x > 0 then r : = x else r : = −x,r =| x |)

Calculating Weakest Preconditions

wp(skip ,Q) = Q
wp(x := a,Q) = Q[x/a]
wp(c1;c2,Q) = wp(c1,wp(c2,Q))

wp(if (b) then c1else c2,Q) = b ⇒ wp(c1,Q) ∧ ¬b ⇒ wp(c2,Q)

wp(while b invariant I do c,Q) = I notice that loop is annotated with I
I is a precondition

wp(while b invariant I do c,Q) = I ∧ (∀x · · · .¬b ∧ I ⇒ Q)
... and I is a postcondition

wp(while b invariant I do c,Q) = I ∧ (∀x · · · .¬b ∧ I ⇒ Q) ∧ (∀x · · · .b ∧ I ⇒ wp(c, I))
... and I holds before and after c

Calculate wp(n := n0; r : = 0; while (n > 0) invariant I do (r : = r + m; n := n − 1),r = m · n0)

Calculating Weakest Preconditions

wp(skip ,Q) = Q
wp(x := a,Q) = Q[x/a]
wp(c1;c2,Q) = wp(c1,wp(c2,Q))

wp(if (b) then c1else c2,Q) = b ⇒ wp(c1,Q) ∧ ¬b ⇒ wp(c2,Q)

wp(while b invariant I do c,Q) = I notice that loop is annotated with I
I is a precondition

wp(while b invariant I do c,Q) = I ∧ (∀x · · · .¬b ∧ I ⇒ Q)
... and I is a postcondition

wp(while b invariant I do c,Q) = I ∧ (∀x · · · .¬b ∧ I ⇒ Q) ∧ (∀x · · · .b ∧ I ⇒ wp(c, I))
... and I holds before and after c

Calculate wp(n := n0; r : = 0; while (n > 0) invariant I do (r : = r + m; n := n − 1),r = m · n0)

Calculating Weakest Preconditions

wp(skip ,Q) = Q
wp(x := a,Q) = Q[x/a]
wp(c1;c2,Q) = wp(c1,wp(c2,Q))

wp(if (b) then c1else c2,Q) = b ⇒ wp(c1,Q) ∧ ¬b ⇒ wp(c2,Q)

wp(while b invariant I do c,Q) = I notice that loop is annotated with I
I is a precondition

wp(while b invariant I do c,Q) = I ∧ (∀x · · · .¬b ∧ I ⇒ Q)
... and I is a postcondition

wp(while b invariant I do c,Q) = I ∧ (∀x · · · .¬b ∧ I ⇒ Q) ∧ (∀x · · · .b ∧ I ⇒ wp(c, I))
... and I holds before and after c

Calculate wp(n := n0; r : = 0; while (n > 0) invariant I do (r : = r + m; n := n − 1),r = m · n0)

Calculating Weakest Preconditions

wp(skip ,Q) = Q
wp(x := a,Q) = Q[x/a]
wp(c1;c2,Q) = wp(c1,wp(c2,Q))

wp(if (b) then c1else c2,Q) = b ⇒ wp(c1,Q) ∧ ¬b ⇒ wp(c2,Q)
wp(while b invariant I do c,Q) = I ∧ (∀x · · · .¬b ∧ I ⇒ Q) ∧ (∀x · · · .b ∧ I ⇒ wp(c, I))

Calculate wp(n := n0; r : = 0; while (n > 0) invariant I do (r : = r + m; n := n − 1),r = m · n0)

What is the loop invariant I?

Let I be m · n0 = r + n ·m:

1. Before the loop, r = 0 and n0 = n.

2. If m · n0 = r + n ·m before an iteration, then the loop body first updates
r : = r + m and then n : = n − 1, thus we have (r + m) + (n − 1) ·m. Notice that
the invariant is broken between the two updates within the loop.

3. After the loop, r = m · n0 and n = 0.

Calculating Weakest Preconditions

wp(skip ,Q) = Q
wp(x := a,Q) = Q[x/a]
wp(c1;c2,Q) = wp(c1,wp(c2,Q))

wp(if (b) then c1else c2,Q) = b ⇒ wp(c1,Q) ∧ ¬b ⇒ wp(c2,Q)
wp(while b invariant I do c,Q) = I ∧ (∀x · · · .¬b ∧ I ⇒ Q) ∧ (∀x · · · .b ∧ I ⇒ wp(c, I))

Calculate wp(n := n0; r : = 0; while (n > 0) invariant I do (r : = r + m; n := n − 1),r = m · n0)

What is the loop invariant I?

Let I be m · n0 = r + n ·m:

1. Before the loop, r = 0 and n0 = n.

2. If m · n0 = r + n ·m before an iteration, then the loop body first updates
r : = r + m and then n : = n − 1, thus we have (r + m) + (n − 1) ·m. Notice that
the invariant is broken between the two updates within the loop.

3. After the loop, r = m · n0 and n = 0.

Verification using Weakest Preconditions

Is {y > 15}x : = y + 10{x > 20} verifiable?

1. Calculate wp(x := y + 10, x > 20)) = y > 10

2. Verify that y > 15⇒ y > 10

Satisfiability vs. Validity

The formula φ(x) is valid if it is true for all values of x . We write ∀x .φ(x) to mean “Is
φ(x) valid?”.
The formula φ(x) is satisfiable if it is true for some value of x . We write ∃x .φ(x) to
mean “Is φ(x) satisfiable?”

Are the following formulas valid (or not)? Are they satisfiable (or not)?

1. x > 0⇒ x + y > 0

2. x > 0 ∧ y > 0⇒ x + y > 0

3. x < 0⇒ x · x < 0

When we say “verify that y > 15⇒ y > 10” we mean “is y > 15⇒ y > 10 valid?”.

Observation: ∀x .φ(x) holds if and only if ∃x .¬φ(x) does not hold.
Alternatively, if ∃x .¬φ(x) holds, then the value of x that makes ¬φ(x) true is a
counterexample that contradicts a claim that ∀x .φ(x) holds.

Satisfiability vs. Validity

The formula φ(x) is valid if it is true for all values of x . We write ∀x .φ(x) to mean “Is
φ(x) valid?”.
The formula φ(x) is satisfiable if it is true for some value of x . We write ∃x .φ(x) to
mean “Is φ(x) satisfiable?”
Are the following formulas valid (or not)? Are they satisfiable (or not)?

1. x > 0⇒ x + y > 0

2. x > 0 ∧ y > 0⇒ x + y > 0

3. x < 0⇒ x · x < 0

When we say “verify that y > 15⇒ y > 10” we mean “is y > 15⇒ y > 10 valid?”.

Observation: ∀x .φ(x) holds if and only if ∃x .¬φ(x) does not hold.
Alternatively, if ∃x .¬φ(x) holds, then the value of x that makes ¬φ(x) true is a
counterexample that contradicts a claim that ∀x .φ(x) holds.

Satisfiability vs. Validity

The formula φ(x) is valid if it is true for all values of x . We write ∀x .φ(x) to mean “Is
φ(x) valid?”.
The formula φ(x) is satisfiable if it is true for some value of x . We write ∃x .φ(x) to
mean “Is φ(x) satisfiable?”
Are the following formulas valid (or not)? Are they satisfiable (or not)?

1. x > 0⇒ x + y > 0

2. x > 0 ∧ y > 0⇒ x + y > 0

3. x < 0⇒ x · x < 0

When we say “verify that y > 15⇒ y > 10” we mean “is y > 15⇒ y > 10 valid?”.

Observation: ∀x .φ(x) holds if and only if ∃x .¬φ(x) does not hold.
Alternatively, if ∃x .¬φ(x) holds, then the value of x that makes ¬φ(x) true is a
counterexample that contradicts a claim that ∀x .φ(x) holds.

Satisfiability vs. Validity

The formula φ(x) is valid if it is true for all values of x . We write ∀x .φ(x) to mean “Is
φ(x) valid?”.
The formula φ(x) is satisfiable if it is true for some value of x . We write ∃x .φ(x) to
mean “Is φ(x) satisfiable?”
Are the following formulas valid (or not)? Are they satisfiable (or not)?

1. x > 0⇒ x + y > 0

2. x > 0 ∧ y > 0⇒ x + y > 0

3. x < 0⇒ x · x < 0

When we say “verify that y > 15⇒ y > 10” we mean “is y > 15⇒ y > 10 valid?”.

Observation: ∀x .φ(x) holds if and only if ∃x .¬φ(x) does not hold.
Alternatively, if ∃x .¬φ(x) holds, then the value of x that makes ¬φ(x) true is a
counterexample that contradicts a claim that ∀x .φ(x) holds.

Satisfiability vs. Validity

The formula φ(x) is valid if it is true for all values of x . We write ∀x .φ(x) to mean “Is
φ(x) valid?”.
The formula φ(x) is satisfiable if it is true for some value of x . We write ∃x .φ(x) to
mean “Is φ(x) satisfiable?”
Are the following formulas valid (or not)? Are they satisfiable (or not)?

1. x > 0⇒ x + y > 0

2. x > 0 ∧ y > 0⇒ x + y > 0

3. x < 0⇒ x · x < 0

When we say “verify that y > 15⇒ y > 10” we mean “is y > 15⇒ y > 10 valid?”.

Observation: ∀x .φ(x) holds if and only if ∃x .¬φ(x) does not hold.
Alternatively, if ∃x .¬φ(x) holds, then the value of x that makes ¬φ(x) true is a
counterexample that contradicts a claim that ∀x .φ(x) holds.

Satisfiability vs. Validity

The formula φ(x) is valid if it is true for all values of x . We write ∀x .φ(x) to mean “Is
φ(x) valid?”.
The formula φ(x) is satisfiable if it is true for some value of x . We write ∃x .φ(x) to
mean “Is φ(x) satisfiable?”
Are the following formulas valid (or not)? Are they satisfiable (or not)?

1. x > 0⇒ x + y > 0

2. x > 0 ∧ y > 0⇒ x + y > 0

3. x < 0⇒ x · x < 0

When we say “verify that y > 15⇒ y > 10” we mean “is y > 15⇒ y > 10 valid?”.

Observation: ∀x .φ(x) holds if and only if ∃x .¬φ(x) does not hold.
Alternatively, if ∃x .¬φ(x) holds, then the value of x that makes ¬φ(x) true is a
counterexample that contradicts a claim that ∀x .φ(x) holds.

