Weakest Preconditions

COMPSCI 631

University of Massachusetts Amherst

October 24, 2017

Recap: The WHILE Language (Syntax)

Arithmetic Expressions
aexp = n
| x

| aj+ ap
| a— a
| ar* az

Boolean Expressions
bexp = true
| bl &&b2
| a;> ap

Commands
cmd skip

abort

€1 @
if (b) then cjelse c

|
I xX:=a
|
|
| while (b) ¢

Recap: The WHILE Language (Axiomatic Semantics)

Skip {P}skip{P} ABORT {P}abort{false}
AssiaN {P[x/a]}x:= a{P}

{Pra{Q} {Q}e{R}
T Py Ry
{P A b}a{Q} {P A -b}c{Q}
{P}if (b) then crelse c2{Q}
{P A b}c{P}
{P}while (b) c{P A —b}

Ir

Loopr

P =P {P}c{Q} Q= Q

CONSEQUENCE

{P'}e{Q}

Weakest Preconditions

Definition

Given command ¢ and postcondition Q, P is the weakest precondition for ¢ and Q if:
1. {P}c{Q} and
2. VP, if {P'}c{Q} then P' = P.

Weakest Preconditions

Definition
Given command ¢ and postcondition Q, P is the weakest precondition for ¢ and Q if:

1. {P}c{Q} and

2. VP, if {P'}c{Q} then P' = P.
Suppose we want to prove that {P’}c{Q} If we know the weakest precondition P,
then by the rule of consequence, we can prove:

P =P {P}c{Q}
{P'}e{Q}

Here is our plan:
1. We will define a function that calculates the weakest precondition: wp(c, Q) = P.

2. Thus, we only need to prove that P’ = P.

Weakest Preconditions

Definition

Given command ¢ and postcondition Q, P is the weakest precondition for ¢ and Q if:
1. {P}c{Q} and
2. VP, if {P'}c{Q} then P' = P.

Suppose we want to prove that {P’}c{Q} If we know the weakest precondition P,
then by the rule of consequence, we can prove:

P'=P {P}{Q}
{P'}<{Q}

Here is our plan:
1. We will define a function that calculates the weakest precondition: wp(c, Q) = P.
2. Thus, we only need to prove that P’ = P.

Catch: Preconditions (and postconditions) are evaluated with respect to a particular
store, e.g., 0 F P means that P is true given the initial store o and ¢’ £ Q means that
Q is true given the final store o’. We need to prove that Vo.o = P = P’.

Calculating Weakest Preconditions

wp(skip, Q)
Wp(x:: a, Q)

([]]
3

Qlx/4]

Calculating Weakest Preconditions

Q
Q[x/4]
wp(er, wp(ez, Q))

wp(skip, Q)
Wp(x:: a, Q)
WP(Cl?Cb Q)

Calculating Weakest Preconditions

wp(skip, Q) = Q
Wp(x:: a, Q) = Q[x/a]
wp(eric, Q) = wp(e, wp(e, Q))

Calculate wp(x:=x0,y :=y0,t :=x, x 1=y, y =ty =x90 AX=y)

Calculating Weakest Preconditions

Q

Qlx/a]

wp(er, wp(er; Q))

b = wp(ea, Q) A —=b = wp(e, Q)

wp(skip, Q)

Wp(x:: a, Q)

wp(eiicr, Q)

Wp(if (b) then cjelse cp, Q)

Calculating Weakest Preconditions

wp(skip, Q) = @
wp(x=a,Q) = Q[x/a]
wp(eiie2, Q) = wp(er, wp(ez, Q))

Wp(if (b) then cjelse o, Q) b= Wp(cl7 Q) A—b = Wp(cz, Q)

Calculate wp(if x > Othenr:=xelse r := —x,r =| x |)

Calculating Weakest Preconditions

wp(skip, Q)
Wp(x:: a, Q)
wp(ericz, Q)

Q)

Wp(if (b) then cielse o,

Q
= QIx/4]
wp(er, wp(e, Q))
b = wp(c1, Q) A =b = wp(e, Q)

wp(while binvariant | doc, Q) = | notice that loop is annotated with |
| is a precondition

Calculating Weakest Preconditions

wp(skip, Q)
Wp(x:: a, Q)
wp(ericz, Q)

Q)

Wp(if (b) then cielse o,

Q
= QIx/4]
wp(er, wp(e, Q))
b = wp(c1, Q) A =b = wp(e, Q)

wp(while binvariant | doc, Q) = | notice that loop is annotated with |
| is a precondition

wp(while binvariant 1 doc,Q) = [A(Vx--- . =bAl= Q)
. and [is a postcondition

Calculating Weakest Preconditions

wp(skip, Q)
Wp(x:: a, Q)
wp(ericz, Q)

Q)

Wp(if (b) then cielse o,

Q
= QIx/4]
wp(er, wp(e, Q))
b = wp(c1, Q) A =b = wp(e, Q)

wp(while binvariant | doc, Q) = | notice that loop is annotated with |
| is a precondition

wp(while binvariant 1 doc,Q) = [A(Vx--- . =bAl= Q)
. and [is a postcondition

Wp(while b invariant | do c, Q) = I/\(VX SbA T = Q)/\(VX bAT = Wp(c,’))
. and | holds before and after ¢

Calculate wp(n := n0; r := 0; while (n > 0) invariant | do (r :=r+ m;n:=n — 1),r =m- ng)

Calculating Weakest Preconditions

Q

Qlx/4]

wp(e1, wp(ez, Q))

b= wp(a, Q) A =b = wp(e, Q)

= IANWVx--- 2bAT= Q)A(x--- .bAT = wp(c,1))

Wp(skip7
Wp(x:: a,

Q)
Q)
wp(etier, Q)
Q)
Q)

Wp(if (b) then cjelse cp,
wp(while b invariant 1 do c,

Calculate wp(n := n0; r : = 0; while (n > 0) invariant | do (r :=r+m;n:=n —1),r = m- ny)
What is the loop invariant /7

Calculating Weakest Preconditions

Wp(skip7 Q) = Q
wp(x=2Q) = Qlx/a]
wp(eie, Q) = wp(er, wp(e, Q))
Wp(if (b) then cielse o, Q) = b= Wp(q, Q) A b= Wp(c2, Q)
wp(while binvariant | doc, Q) = [A(Vx--+ . =bAT=Q)A(Vx--- .bAI= wp(c,I))

Calculate wp(n := n0; r : = 0; while (n > 0) invariant | do (r :=r+m;n:=n —1),r = m- ny)
What is the loop invariant /7

Let Ibem-ng=r+n-m:
1. Before the loop, r =0 and ng = n.

2. If m-ng = r+ n-m before an iteration, then the loop body first updates
r:=r+m and then n:=n — 1, thus we have (r + m) + (n — 1) - m. Notice that
the invariant is broken between the two updates within the loop.

3. After the loop, r = m- ng and n = 0.

Verification using Weakest Preconditions

Is {y > 15}x :=y + 10{x > 20} verifiable?
1. Calculate wp(x :=y + 10, x > 20)) = y > 10
2. Verify that y > 15 =y > 10

Satisfiability vs. Validity

The formula ¢(x) is valid if it is true for all values of x. We write Vx.¢(x) to mean “Is
o(x) valid?".

The formula ¢(x) is satisfiable if it is true for some value of x. We write 3x.¢(x) to
mean “Is ¢(x) satisfiable?”

Satisfiability vs. Validity

The formula ¢(x) is valid if it is true for all values of x. We write Vx.¢(x) to mean “Is
o(x) valid?".

The formula ¢(x) is satisfiable if it is true for some value of x. We write 3x.¢(x) to
mean “Is ¢(x) satisfiable?”

Are the following formulas valid (or not)? Are they satisfiable (or not)?

1. x>0=x+y>0

Satisfiability vs. Validity

The formula ¢(x) is valid if it is true for all values of x. We write Vx.¢(x) to mean “Is
o(x) valid?".

The formula ¢(x) is satisfiable if it is true for some value of x. We write 3x.¢(x) to
mean “Is ¢(x) satisfiable?”

Are the following formulas valid (or not)? Are they satisfiable (or not)?

1. x>0=x+y>0
2. x>0ANy>0=x+y>0

Satisfiability vs. Validity

The formula ¢(x) is valid if it is true for all values of x. We write Vx.¢(x) to mean “Is
o(x) valid?".
The formula ¢(x) is satisfiable if it is true for some value of x. We write 3x.¢(x) to
mean “Is ¢(x) satisfiable?”
Are the following formulas valid (or not)? Are they satisfiable (or not)?

1. x>0=x+y>0

2. x>0ANy>0=x+y>0

3. x<0=x-x<0

Satisfiability vs. Validity

The formula ¢(x) is valid if it is true for all values of x. We write Vx.¢(x) to mean “Is
o(x) valid?".
The formula ¢(x) is satisfiable if it is true for some value of x. We write 3x.¢(x) to
mean “Is ¢(x) satisfiable?”
Are the following formulas valid (or not)? Are they satisfiable (or not)?

1. x>0=x+y>0

2. x>0ANy>0=x+y>0

3. x<0=x-x<0

When we say “verify that y > 15 = y > 10" we mean “is y > 15 = y > 10 valid?".

Satisfiability vs. Validity

The formula ¢(x) is valid if it is true for all values of x. We write Vx.¢(x) to mean “Is
o(x) valid?".
The formula ¢(x) is satisfiable if it is true for some value of x. We write 3x.¢(x) to
mean “Is ¢(x) satisfiable?”
Are the following formulas valid (or not)? Are they satisfiable (or not)?

1. x>0=x+y>0

2. x>0ANy>0=x+y>0

3. x<0=x-x<0

When we say “verify that y > 15 = y > 10" we mean “is y > 15 = y > 10 valid?".

Observation: Vx.¢(x) holds if and only if 3x.—¢(x) does not hold.
Alternatively, if 3x.=¢(x) holds, then the value of x that makes —¢(x) true is a
counterexample that contradicts a claim that Vx.¢(x) holds.

