Weakest Preconditions

COMPSCI 631

University of Massachusetts Amherst

October 24, 2017

Recap: The WHILE Language (Syntax)

Arithmetic Expressions

$\operatorname{aexp}::=\quad n$

Boolean Expressions
bexp $::=$ true
b1 \&\&b2
$a_{1}>a_{2}$

Commands
cmd ::=
skip
abort
$x:=a$
$c_{1} ; c_{2}$
if (b) then c_{1} else c_{2}
while (b) c

Recap: The WHILE Language (Axiomatic Semantics)

$$
\begin{gathered}
\text { SKIP }\{P\} \text { skip }\{P\} \quad \text { AbORT }\{P\} \text { abort }\{\text { false }\} \\
\text { AsSIGN }\{P[x / a]\} x:=a\{P\} \\
\operatorname{SEQ} \frac{\{P\} c_{1}\{Q\} \quad\{Q\} c_{2}\{R\}}{\{P\} c_{1} ; c_{2}\{R\}} \\
\text { IF } \frac{\{P \wedge b\} c_{1}\{Q\} \quad\{P \wedge \neg b\} c_{2}\{Q\}}{\{P\} \text { if }(b) \text { then } c_{1} \text { else } c_{2}\{Q\}} \\
\text { LOOP } \frac{\{P \wedge b\} c\{P\}}{\{P\} \text { while }(b) c\{P \wedge \neg b\}} \\
\text { CONSEQUENCE } \frac{P^{\prime} \Rightarrow P \quad\{P\} c\{Q\}}{} \quad Q \Rightarrow Q^{\prime}
\end{gathered}
$$

Weakest Preconditions

Definition

Given command c and postcondition Q, P is the weakest precondition for c and Q if:

1. $\{P\} \subset\{Q\}$ and
2. $\forall P^{\prime}$, if $\left\{P^{\prime}\right\} c\{Q\}$ then $P^{\prime} \Rightarrow P$.

Weakest Preconditions

Definition

Given command c and postcondition Q, P is the weakest precondition for c and Q if:

1. $\{P\} \subset\{Q\}$ and
2. $\forall P^{\prime}$, if $\left\{P^{\prime}\right\} c\{Q\}$ then $P^{\prime} \Rightarrow P$.

Suppose we want to prove that $\left\{P^{\prime}\right\} c\{Q\}$ If we know the weakest precondition P, then by the rule of consequence, we can prove:

$$
\frac{P^{\prime} \Rightarrow P \quad\{P\} \subset\{Q\}}{\left\{P^{\prime}\right\} \subset\{Q\}}
$$

Here is our plan:

1. We will define a function that calculates the weakest precondition: $w p(c, Q)=P$.
2. Thus, we only need to prove that $P^{\prime} \Rightarrow P$.

Weakest Preconditions

Definition

Given command c and postcondition Q, P is the weakest precondition for c and Q if:

1. $\{P\} \subset\{Q\}$ and
2. $\forall P^{\prime}$, if $\left\{P^{\prime}\right\} c\{Q\}$ then $P^{\prime} \Rightarrow P$.

Suppose we want to prove that $\left\{P^{\prime}\right\} c\{Q\}$ If we know the weakest precondition P, then by the rule of consequence, we can prove:

$$
\frac{P^{\prime} \Rightarrow P \quad\{P\} c\{Q\}}{\left\{P^{\prime}\right\} c\{Q\}}
$$

Here is our plan:

1. We will define a function that calculates the weakest precondition: $w p(c, Q)=P$.
2. Thus, we only need to prove that $P^{\prime} \Rightarrow P$.

Catch: Preconditions (and postconditions) are evaluated with respect to a particular store, e.g., $\sigma \vDash P$ means that P is true given the initial store σ and $\sigma^{\prime} \vDash Q$ means that Q is true given the final store σ^{\prime}. We need to prove that $\forall \sigma \cdot \sigma \vDash P \Rightarrow P^{\prime}$.

Calculating Weakest Preconditions

$$
\begin{aligned}
w p(\text { skip }, Q) & =Q \\
w p(x:=a, Q) & =Q[x / a]
\end{aligned}
$$

Calculating Weakest Preconditions

$$
\begin{aligned}
w p(\text { skip }, Q) & =Q \\
w p(x:=a, Q) & =Q[x / a] \\
w p\left(c_{1} ; c_{2}, Q\right) & =w p\left(c_{1}, w p\left(c_{2}, Q\right)\right)
\end{aligned}
$$

Calculating Weakest Preconditions

$$
\begin{aligned}
w p(\text { skip }, Q) & =Q \\
w p(x:=a, Q) & =Q[x / a] \\
w p\left(c_{1} ; c_{2}, Q\right) & =w p\left(c_{1}, w p\left(c_{2}, Q\right)\right)
\end{aligned}
$$

Calculate $\operatorname{wp}\left(\mathrm{x}:=\mathrm{x} 0, \mathrm{y}:=\mathrm{y} 0, \mathrm{t}:=\mathrm{x}, \mathrm{x}:=\mathrm{y}, \mathrm{y}:=\mathrm{t}, \mathrm{y}=\mathrm{x}_{0} \wedge \mathrm{x}=\mathrm{y}_{0}\right)$

Calculating Weakest Preconditions

$$
\begin{aligned}
w p(\text { skip }, Q) & =Q \\
w p(x:=a, Q) & =Q[x / a] \\
w p\left(c_{1} ; c_{2}, Q\right) & =w p\left(c_{1}, w p\left(c_{2}, Q\right)\right) \\
w p\left(\text { if }(b) \text { then } c_{1} \text { else } c_{2}, Q\right) & =b \Rightarrow w p\left(c_{1}, Q\right) \wedge \neg b \Rightarrow w p\left(c_{2}, Q\right)
\end{aligned}
$$

Calculating Weakest Preconditions

$$
\begin{aligned}
w p(\text { skip }, Q) & =Q \\
w p(x:=a, Q) & =Q[x / a] \\
w p\left(c_{1} ; c_{2}, Q\right) & =w p\left(c_{1}, w p\left(c_{2}, Q\right)\right) \\
w p\left(\text { if }(b) \text { then } c_{1} \text { else } c_{2}, Q\right) & =b \Rightarrow w p\left(c_{1}, Q\right) \wedge \neg b \Rightarrow w p\left(c_{2}, Q\right)
\end{aligned}
$$

Calculate wp(if $\times>0$ then $r:=x$ else $r:=-x, r=|\times|)$

Calculating Weakest Preconditions

$$
\begin{aligned}
& w p(\text { skip }, Q)=Q \\
& w p(x:=a, Q)=Q[x / a] \\
& w p\left(c_{1} ; c_{2}, Q\right)=w p\left(c_{1}, w p\left(c_{2}, Q\right)\right) \\
& w p\left(\text { if }(b) \text { then } c_{1} \text { else } c_{2}, Q\right)=b \Rightarrow w p\left(c_{1}, Q\right) \wedge \neg b \Rightarrow w p\left(c_{2}, Q\right) \\
& w p(w h i l e ~ b \text { invariant } \mid \text { do } c, Q)=I \text { notice that loop is annotated with I } \\
& I \text { is a precondition }
\end{aligned}
$$

Calculating Weakest Preconditions

$$
\begin{aligned}
w p(\text { skip }, Q) & =Q \\
w p(x:=a, Q) & =Q[x / a] \\
w p\left(c_{1} ; c_{2}, Q\right) & =w p\left(c_{1}, w p\left(c_{2}, Q\right)\right) \\
w p\left(\text { if }(b) \text { then } c_{1} \text { else } c_{2}, Q\right) & =b \Rightarrow w p\left(c_{1}, Q\right) \wedge \neg b \Rightarrow w p\left(c_{2}, Q\right)
\end{aligned}
$$

$w p($ while b invariant \mid do $c, Q)=\mid$ notice that loop is annotated with I I is a precondition
$w p($ while b invariant I do $c, Q)=I \wedge(\forall x \cdots . \neg b \wedge I \Rightarrow Q)$
\ldots and I is a postcondition

Calculating Weakest Preconditions

$$
\begin{aligned}
w p(\text { skip }, Q) & =Q \\
w p(x:=a, Q) & =Q[x / a] \\
w p\left(c_{1} ; c_{2}, Q\right) & =w p\left(c_{1}, w p\left(c_{2}, Q\right)\right) \\
w p\left(\text { if }(b) \text { then } c_{1} \text { else } c_{2}, Q\right) & =b \Rightarrow w p\left(c_{1}, Q\right) \wedge \neg b \Rightarrow w p\left(c_{2}, Q\right)
\end{aligned}
$$

$w p($ while b invariant \mid do $c, Q)=\mid$ notice that loop is annotated with I I is a precondition
$w p($ while b invariant \mid do $c, Q)=I \wedge(\forall x \cdots \neg b \wedge I \Rightarrow Q)$
\ldots and I is a postcondition
$w p($ while b invariant I do $c, Q)=I \wedge(\forall x \cdots . \neg b \wedge I \Rightarrow Q) \wedge(\forall x \cdots . b \wedge I \Rightarrow w p(c, I))$
... and I holds before and after c

Calculate $\operatorname{wp}\left(\mathrm{n}:=\mathrm{n} 0 ; \mathrm{r}:=0\right.$; while $(\mathrm{n}>0)$ invariant I do $\left.(\mathrm{r}:=\mathrm{r}+\mathrm{m} ; \mathrm{n}:=\mathrm{n}-1), r=m \cdot n_{0}\right)$

Calculating Weakest Preconditions

$$
\begin{aligned}
w p(\text { skip }, Q) & =Q \\
w p(x:=a, Q) & =Q[x / a] \\
w p\left(c_{1} ; c_{2}, Q\right) & =w p\left(c_{1}, w p\left(c_{2}, Q\right)\right) \\
w p\left(\text { if }(b) \text { then } c_{1} \text { else } c_{2}, Q\right) & =b \Rightarrow w p\left(c_{1}, Q\right) \wedge \neg b \Rightarrow w p\left(c_{2}, Q\right) \\
w p(\text { while } b \text { invariant } I \text { do } c, Q) & =I \wedge(\forall x \cdots \neg b \wedge I \Rightarrow Q) \wedge(\forall x \cdots . b \wedge I \Rightarrow w p(c, I))
\end{aligned}
$$

Calculate wp $\left(\mathrm{n}:=\mathrm{n} 0 ; \mathrm{r}:=0\right.$; while $(\mathrm{n}>0)$ invariant I do $\left.(\mathrm{r}:=\mathrm{r}+\mathrm{m} ; \mathrm{n}:=\mathrm{n}-1), r=m \cdot n_{0}\right)$ What is the loop invariant I?

Calculating Weakest Preconditions

$$
\begin{aligned}
w p(\text { skip }, Q) & =Q \\
w p(x:=a, Q) & =Q[x / a] \\
w p\left(c_{1} ; c_{2}, Q\right) & =w p\left(c_{1}, w p\left(c_{2}, Q\right)\right) \\
w p\left(\text { if }(b) \text { then } c_{1} \text { else } c_{2}, Q\right) & =b \Rightarrow w p\left(c_{1}, Q\right) \wedge \neg b \Rightarrow w p\left(c_{2}, Q\right) \\
w p(\text { while } b \text { invariant } I \text { do } c, Q) & =I \wedge(\forall x \cdots \neg b \wedge I \Rightarrow Q) \wedge(\forall x \cdots . b \wedge I \Rightarrow w p(c, I))
\end{aligned}
$$

Calculate wp($\mathrm{n}:=\mathrm{n} 0 ; \mathrm{r}:=0$; while $(\mathrm{n}>0)$ invariant I do $(\mathrm{r}:=r+\mathrm{m} ; \mathrm{n}:=\mathrm{n}-1), r=m \cdot n_{0}$) What is the loop invariant I?

Let I be $m \cdot n_{0}=r+n \cdot m$:

1. Before the loop, $r=0$ and $n_{0}=n$.
2. If $m \cdot n_{0}=r+n \cdot m$ before an iteration, then the loop body first updates $r:=r+m$ and then $n:=n-1$, thus we have $(r+m)+(n-1) \cdot m$. Notice that the invariant is broken between the two updates within the loop.
3. After the loop, $r=m \cdot n_{0}$ and $n=0$.

Verification using Weakest Preconditions

Is $\{y>15\}_{x}:=y+10\{x>20\}$ verifiable?

1. Calculate $\operatorname{wp}(x:=y+10, x>20))=y>10$
2. Verify that $y>15 \Rightarrow y>10$

Satisfiability vs. Validity

The formula $\phi(x)$ is valid if it is true for all values of x. We write $\forall x . \phi(x)$ to mean "Is $\phi(x)$ valid?".
The formula $\phi(x)$ is satisfiable if it is true for some value of x. We write $\exists x \cdot \phi(x)$ to mean "Is $\phi(x)$ satisfiable?"

Satisfiability vs. Validity

The formula $\phi(x)$ is valid if it is true for all values of x. We write $\forall x . \phi(x)$ to mean "Is $\phi(x)$ valid?".
The formula $\phi(x)$ is satisfiable if it is true for some value of x. We write $\exists x \cdot \phi(x)$ to mean "Is $\phi(x)$ satisfiable?"
Are the following formulas valid (or not)? Are they satisfiable (or not)?

1. $x>0 \Rightarrow x+y>0$

Satisfiability vs. Validity

The formula $\phi(x)$ is valid if it is true for all values of x. We write $\forall x . \phi(x)$ to mean "Is $\phi(x)$ valid?".
The formula $\phi(x)$ is satisfiable if it is true for some value of x. We write $\exists x \cdot \phi(x)$ to mean "Is $\phi(x)$ satisfiable?"
Are the following formulas valid (or not)? Are they satisfiable (or not)?

1. $x>0 \Rightarrow x+y>0$
2. $x>0 \wedge y>0 \Rightarrow x+y>0$

Satisfiability vs. Validity

The formula $\phi(x)$ is valid if it is true for all values of x. We write $\forall x . \phi(x)$ to mean "Is $\phi(x)$ valid?".
The formula $\phi(x)$ is satisfiable if it is true for some value of x. We write $\exists x \cdot \phi(x)$ to mean "Is $\phi(x)$ satisfiable?"
Are the following formulas valid (or not)? Are they satisfiable (or not)?

1. $x>0 \Rightarrow x+y>0$
2. $x>0 \wedge y>0 \Rightarrow x+y>0$
3. $x<0 \Rightarrow x \cdot x<0$

Satisfiability vs. Validity

The formula $\phi(x)$ is valid if it is true for all values of x. We write $\forall x . \phi(x)$ to mean "Is $\phi(x)$ valid?".
The formula $\phi(x)$ is satisfiable if it is true for some value of x. We write $\exists x \cdot \phi(x)$ to mean "Is $\phi(x)$ satisfiable?"
Are the following formulas valid (or not)? Are they satisfiable (or not)?

1. $x>0 \Rightarrow x+y>0$
2. $x>0 \wedge y>0 \Rightarrow x+y>0$
3. $x<0 \Rightarrow x \cdot x<0$

When we say "verify that $y>15 \Rightarrow y>10$ " we mean "is $y>15 \Rightarrow y>10$ valid?".

Satisfiability vs. Validity

The formula $\phi(x)$ is valid if it is true for all values of x. We write $\forall x . \phi(x)$ to mean "Is $\phi(x)$ valid?".
The formula $\phi(x)$ is satisfiable if it is true for some value of x. We write $\exists x \cdot \phi(x)$ to mean "Is $\phi(x)$ satisfiable?"
Are the following formulas valid (or not)? Are they satisfiable (or not)?

1. $x>0 \Rightarrow x+y>0$
2. $x>0 \wedge y>0 \Rightarrow x+y>0$
3. $x<0 \Rightarrow x \cdot x<0$

When we say "verify that $y>15 \Rightarrow y>10$ " we mean "is $y>15 \Rightarrow y>10$ valid?".

Observation: $\forall x . \phi(x)$ holds if and only if $\exists x . \neg \phi(x)$ does not hold.
Alternatively, if $\exists x . \neg \phi(x)$ holds, then the value of x that makes $\neg \phi(x)$ true is a counterexample that contradicts a claim that $\forall x . \phi(x)$ holds.

