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Recap: Implicit Continuations

The continuation of an expression is “what it should do next” after the expression is
evaluated.

Syntax

e = n numbers
| x identifiers
| e1+ e2 addition
| fun x . e functions
| e1e2 applications

| let x = e1 in e2 let bindings

Semantics

E-Num n ⇓ n

E-Add
e1 ⇓ m e2 ⇓ n

e1+ e2 ⇓ m + n

E-App
e1 ⇓ fun x . e e2 ⇓ v e[ x / v ] ⇓ v ’

e1e2 ⇓ v ’

E-Fun fun x . e ⇓ fun x . e

E-Let
e1= ⇓ v1 e2[x/v1] = ⇓ v2

let x = e1 in e2= ⇓ v2

A “stack” in a proof

1+4 ⇓ 5

(1+4) + 3 ⇓ 8

((1+4)+3) + 7 ⇓ 15



Recap: Explicit Continuations

κ ::= top

| addR (e2, κ)

| addL(m, κ)

| appR (e2, κ)

| appL(x, e, κ)

| let(x,e2,κ)

e1+ e2, κ→e1, addR (e2, κ)

m, addR (e2, κ) →e2, addL(m, κ)

m + n, κ→r, κ where r = m + n
e1e2,κ→e1,appR (e2,κ)

fun x . e,appR (e2,κ) →e2,appL(x, e, κ)

v ,appL(x, e, κ) →e[x/v ],κ

let x = e1 in e2,κ→e1,let(x,e2,κ)

v ,let(x,e2,κ) →e2[x/v ],κ

e1,κ→e2,κ’ is a single step. We need to apply the step repeatedly until we get v ,top.

Note: We still have a “stack” (i.e., κ). The stack is simply an explicit data structure.

A trivial optimization: (fun x . e) v , κ→e[x/v ],κ

Key Idea: We are going to transform e into an equivalent program e′, such that the
only continuations it uses are:

1. κ = top, i.e., nothing to do next

2. κ = let(x,e,top), i.e., name then current value x and then evaluate e

Note that both κs have fixed depth (0 or 1). So, we effectively do not use the stack.
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Continuation Passing Style

This expression uses the stack so we cannot write it:
(1 + 2) + 3

However, we can rewrite it to:
let x = 1 + 2 in x + 3

This expression uses the stack so we cannot write it:

let f = fun x . x + 1 in
let g = fun y . f y + 20 in
g 300

However, we can rewrite it to:

let f = fun x . fun k . let r = x + 1 in k r in
let g = fun y . fun k . f y (fun r0 . let r1 = r0 + 20 in k r1)
g 300 (fun r . r)

High-level idea: Instead of returning a value, every function takes an extra argument
k that receives the value the original function would have returned.
Verify that the stack is no longer used.
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Compiling to Continuation Passing Style

In OCaml


