Continuations

COMPSCI 631

University of Massachusetts Amherst

October 31, 2017

Some applications of continuations

A W N =

. Write an interpreter using loops instead of recursion.
. Compile a functional language to assembly.
. Write a "logic programming language”, such as Prolog.

. Transliterate an interpreter from OCaml to Haskell while preserving call-by-value

semantics.

5. Implement threads without using hardware threads.

. Run a computationally expensive program in the browser without locking up the

user-interface.

. Write a programming language that allows a single program to transparently run

on a web server and a web browser. i.e., the language handles all communication
transparently.

What is a continuation?

The continuation of an expression is “what it should do next” after the expression is
evaluated. In the interpreters you have written, when an expression e is reduced to a
value v, the answer to the question “what to do next” is “return the value v and keep
running the interpreter”. i.e., the machine’s stack describes “what to do next”.

What is a continuation?

The continuation of an expression is “what it should do next” after the expression is
evaluated. In the interpreters you have written, when an expression e is reduced to a
value v, the answer to the question “what to do next” is “return the value v and keep
running the interpreter”. i.e., the machine’s stack describes “what to do next”.

Syntax Semantics
e = n numbers E-NuMn § n
X identifiers g m e §n
l e E-ApD az"r ="
| e+e addition et e U man
| funx.e functions - e I funx.e e § v efx/v] 4 v
icati -App
| ee applications P
E-FUNfunx.e | funx.e

What is a continuation?

The continuation of an expression is “what it should do next” after the expression is
evaluated. In the interpreters you have written, when an expression e is reduced to a
value v, the answer to the question “what to do next” is “return the value v and keep
running the interpreter”. i.e., the machine’s stack describes “what to do next”.

Syntax Semantics
e = n numbers E-NuMn § n
X identifiers g m e §n
l e E-ApD az"r ="
| e+e addition et e U man
| funx.e functions - e I funx.e e § v efx/v] 4 v
icati -App
| ee applications P
E-FUNfunx.e | funx.e

A “stack” in a proof

144 5 3 |3
(1+4) +3 I 8
(1+4)+3) +7 4 15

7 47

Semantics with an explicit continuation

Syntax Original Semantics
e n numbers E-NuMn | n
X identifiers e1 I m e Un

E-ApD
eg+e 4 m+n

eg § funx.e e J v e[x/v] § Vv

erer | v’
E-FUNfunx.e | funx.e

funx . e functions

|
| ea+e addition
|
| e applications E-App

K u= top Semantics with Explicit Continuations
‘ addg (e, k)
| add, (m, k) e+ e, k—rey, addg(e, k)
‘ appr(e2, k) m, addg (e, k) —ep, add;(m, k)
| app,(x. e k) m+n, k—r where r = m+n

eje,k—re1,appr(e, k)
fun x . e,appr(e2,x) —e2,app;(x, €, k)
v,app;(x, e, k) —e[x/v],k

e1,k—e,k' IS a single step. We need to apply the step repeatedly until we get v top.

Semantics with an explicit continuation

K = top e+ e, k—ey, addg(ep, K)
| addg(e,) m, addg(ez, k) —>e2, add, (m,)
| add, (m, k) m+n, k—r where r = m+n
| appg(e &) e1e2,k—e1,appR(e2,%)
| app,(x, e, k) fun x . e,appg(e2,x) —e2,app;(x, €, k)

v,app,(x, e, k) —e[x/v],k

e1,k—e,k’ IS A single step. We need to apply the step repeatedly until we get v top.

Some observations

1. Since « is a data structure, we can store it, send it on the network, etc.

2. Since e,x—ey,x' is a single step, we can pause computation and resume it later (or
never resume it).

