
Continuations

COMPSCI 631

University of Massachusetts Amherst

October 31, 2017

Some applications of continuations

1. Write an interpreter using loops instead of recursion.

2. Compile a functional language to assembly.

3. Write a “logic programming language”, such as Prolog.

4. Transliterate an interpreter from OCaml to Haskell while preserving call-by-value
semantics.

5. Implement threads without using hardware threads.

6. Run a computationally expensive program in the browser without locking up the
user-interface.

7. Write a programming language that allows a single program to transparently run
on a web server and a web browser. i.e., the language handles all communication
transparently.

What is a continuation?

The continuation of an expression is “what it should do next” after the expression is
evaluated. In the interpreters you have written, when an expression e is reduced to a
value v , the answer to the question “what to do next” is “return the value v and keep
running the interpreter”. i.e., the machine’s stack describes “what to do next”.

Syntax

e = n numbers
| x identifiers
| e1+ e2 addition
| fun x . e functions
| e1e2 applications

Semantics

E-Num n ⇓ n

E-Add
e1 ⇓ m e2 ⇓ n

e1+ e2 ⇓ m + n

E-App
e1 ⇓ fun x . e e2 ⇓ v e[x / v] ⇓ v ’

e1e2 ⇓ v ’

E-Fun fun x . e ⇓ fun x . e

A “stack” in a proof

1+4 ⇓ 5 3 ⇓ 3

(1+4) + 3 ⇓ 8
7 ⇓ 7

((1+4)+3) + 7 ⇓ 15

What is a continuation?

The continuation of an expression is “what it should do next” after the expression is
evaluated. In the interpreters you have written, when an expression e is reduced to a
value v , the answer to the question “what to do next” is “return the value v and keep
running the interpreter”. i.e., the machine’s stack describes “what to do next”.

Syntax

e = n numbers
| x identifiers
| e1+ e2 addition
| fun x . e functions
| e1e2 applications

Semantics

E-Num n ⇓ n

E-Add
e1 ⇓ m e2 ⇓ n

e1+ e2 ⇓ m + n

E-App
e1 ⇓ fun x . e e2 ⇓ v e[x / v] ⇓ v ’

e1e2 ⇓ v ’

E-Fun fun x . e ⇓ fun x . e

A “stack” in a proof

1+4 ⇓ 5 3 ⇓ 3

(1+4) + 3 ⇓ 8
7 ⇓ 7

((1+4)+3) + 7 ⇓ 15

What is a continuation?

The continuation of an expression is “what it should do next” after the expression is
evaluated. In the interpreters you have written, when an expression e is reduced to a
value v , the answer to the question “what to do next” is “return the value v and keep
running the interpreter”. i.e., the machine’s stack describes “what to do next”.

Syntax

e = n numbers
| x identifiers
| e1+ e2 addition
| fun x . e functions
| e1e2 applications

Semantics

E-Num n ⇓ n

E-Add
e1 ⇓ m e2 ⇓ n

e1+ e2 ⇓ m + n

E-App
e1 ⇓ fun x . e e2 ⇓ v e[x / v] ⇓ v ’

e1e2 ⇓ v ’

E-Fun fun x . e ⇓ fun x . e

A “stack” in a proof

1+4 ⇓ 5 3 ⇓ 3

(1+4) + 3 ⇓ 8
7 ⇓ 7

((1+4)+3) + 7 ⇓ 15

Semantics with an explicit continuation

Syntax

e = n numbers
| x identifiers
| e1+ e2 addition
| fun x . e functions
| e1e2 applications

Original Semantics

E-Num n ⇓ n

E-Add
e1 ⇓ m e2 ⇓ n

e1+ e2 ⇓ m + n

E-App
e1 ⇓ fun x . e e2 ⇓ v e[x / v] ⇓ v ’

e1e2 ⇓ v ’

E-Fun fun x . e ⇓ fun x . e

κ ::= top

| addR (e2, κ)

| addL(m, κ)

| appR (e2, κ)

| appL(x, e, κ)

Semantics with Explicit Continuations

e1+ e2, κ→e1, addR (e2, κ)

m, addR (e2, κ) →e2, addL(m, κ)

m + n, κ→r where r = m + n
e1e2,κ→e1,appR (e2,κ)

fun x . e,appR (e2,κ) →e2,appL(x, e, κ)

v ,appL(x, e, κ) →e[x/v],κ

e1,κ→e2,κ’ is a single step. We need to apply the step repeatedly until we get v ,top.

Semantics with an explicit continuation

κ ::= top

| addR (e2, κ)

| addL(m, κ)

| appR (e2, κ)

| appL(x, e, κ)

e1+ e2, κ→e1, addR (e2, κ)

m, addR (e2, κ) →e2, addL(m, κ)

m + n, κ→r where r = m + n
e1e2,κ→e1,appR (e2,κ)

fun x . e,appR (e2,κ) →e2,appL(x, e, κ)

v ,appL(x, e, κ) →e[x/v],κ

e1,κ→e2,κ’ is a single step. We need to apply the step repeatedly until we get v ,top.

Some observations

1. Since κ is a data structure, we can store it, send it on the network, etc.

2. Since e1,κ→e2,κ’ is a single step, we can pause computation and resume it later (or
never resume it).

