
Continuation Passing Style

We introduced the CK-Machine as a model of an interpreter that does not require a stack. Instead, it explicitly
represents the continuation as a data structure. We are now going to achieve a same result, but in a very different
way: (1) we will to identify a subset of expressions that do not use the the stack and (2) we will compile arbitrary
expressions to this subset in a systematic way. The advantage of this approach is that it lets us reuse our existing
interpreter and we do not need to implement an entirely new CK-Machine.

Figure 29.1a shows the syntax of language that we will work with. Note that programs in this language do require
the stack. This language has arithmetic, conditionals, let-expressions, the C expression, and n-argument functions.
We do not strictly need n-argument functions, but they will make our work a lot easier. Figure 29.1b is the subset
of of expressions that do not require the stack. The key idea is that we stratify syntax of the language into atomic
expressions (a) that obviously do not require the stack and complex expressions (e) that only use the stack in a trivial
way.

For example, notice that the arithmetic expression (30 + 4) + (1000 + 200) is a valid expression in the original syntax,
but is not a valid expression in the subset. In fact, we need a stack to evaluate it. Using the CK Machine, we can
see that the stack grows to a depth of 2:

(30 + 4) + (1000 + 200), []

→ 30 + 4, [addR(1000 + 200)]

→ 30, [addR(4), addR(1000 + 200)]

→ 4, [addL(30), addR(1000 + 200)]

→ 34, [addR(1000 + 200)]

→ 1000 + 200, [addL(34)]

→ 1000, [addR(200), addL(34)]

→ 200, [addL(1000), addL(34)]

→ 1200, [addL(34)]

→ 1234, []

In general, an arithmetic expression that is n-level deep will require a stack of depth n. We can rewrite this expression
to an equivalent expression that is in the subset, e.g., let x = 30 + 4 in let y = 1000 + 200 in x + y, which we evaluate as
follows:

let x = 30 + 4 in let y = 1000 + 200 in x + y, []

→ let y = 1000 + 200 in 34 + y, []

→ 34 + 1200, []

→ 1234, []

Note. If you carefully derive the above reduction sequence using the CK Machine, you’ll find that it uses
the stack. To address this problem, we can add these two rules to our CK Machine:

add and substitute let x = m + n in e, ~κ → e[x/r], ~κ where r = m+ n
add immediate m + n, ~κ → r, ~κ where r = m+ n

With these two rules, we can derive the reduction sequence correctly.

Similarly, notice the subset requires all applications to be of the form a(a1, ..., an). This means we cannot have
nested function applications, e.g., f(g(x)) is not in the subset. Applications cannot appear in arithmetic expressions
either, e.g., f(x) + 1 is not in the subset. In fact, we cannot name the result of an application, e.g., let x = f(y) in e
is not in the subset either. To summarize, this subset requires all applications to be in tail position, which we should
expect, because tail calls do not consume stack space.

113



e = n numbers
| b booleans
| x identifiers
| e1 + e2 addition
| fun x1, ..., xn . e n-argument function
| e(e1, ..., en) application
| let x = e1 in e2 let-expression
| if e1 then e2 else e3 conditional
| C(e) continuation capture

(a) Original syntax.

a = n numbers
| b booleans
| x identifiers
| fun x1, ..., xn . e n-argument function

e = a atomic expression
| let x = a in e named atomic expression
| let x = a1 + a2 in e named addition
| a(a1, ..., an) application
| if a1 then e2 else e3 conditional

(b) CPS syntax.

Num cps(n) = fun k . k(n)

Bool cps(b) = fun k . k(b)

Id cps(x) = fun k . k(x)

Add cps(e1 + e2) = fun k . cps(e1)(fun x . cps(e2)(fun y . let r = x + y in k(r)))

Fun cps(fun x1, ..., xn . e) = fun k . k (fun k’, x1, ..., xn . cps(e) k’)

App ef (e1, ..., en) = fun k . cps(ef )(fun vf . cps(e1)(fun v1 . ... cps(en)(fun vn .vf (k,v1, ...,vn))))

Let cps(let x = e1 in e2) = fun k . cps(e1)(fun v1 . let x = v1 in cps(e2) k

If cps(if e1 then e2 else e3) = fun k . cps(e1)(fun v1 . if v1 then cps(e2)(k) else cps(e2)(k))

C cps(C(e)) = fun k . cps(e)(fun f . f (fun x . x, fun (k’, v) . k(v)))

(c) Naive CPS conversion.

Figure 29.1: Syntax of source

Note. This is not quite true for n-argument functions, and there are two ways to resolve this. The simplest
approach is to add the following reduction rule:

(fun x1, ..., xn . e)(a1, ..., an), ~κ → e[x1/a1, ..., xn/an], ~κ

This rule exploits the observation that applications in the subset do not have complex subexpressions, thus we
can substitute immediately. Alternatively, we can leave our definitions unchanged, in which case a program
in the subset will consume at most N stack frames, where N is the maximum number of arguments that any
function receives.

The key restriction in this subset is that all applications are in tail position, thus we cannot have a one function
return its result to another using the stack. For example, the following program is not allowed:

let g = fun x . x + 1 in
f(g(20))

However, we can rewrite g to take f as an argument and make a (tail) call to the argument with its result:

let g = fun k x . let r = x + 1 in k(r) in
g(f, 20)

These two programs are equivalent and the latter is in the subset.
The key idea of our transformation is to rewrite all functions f to take an additional argument k, where k is

itself a function that represents the continuation of f . We can generalize this idea to all expressions: we will turn
all expressions e into functions fun k . e′ such that e′ (tail) calls k with the value of e. This is known as continuation
passing style (CPS).

1 Naive CPS Transformation

We now define a function cps : e → e that transforms programs in the original syntax to programs in continuation
passing style. The function that we present in this section is not efficient. We will address this problem in the next
section. The complete cps function is in fig. 29.1c. We will examine it small pieces.

114



Arithmetic The Add and Num cases all that are necessary to CPS simple arithmetic expressions. These two rules
can produce enormous expressions, e.g.:

cps(1 + 20)

= fun k . cps(1)(fun x . cps(20)(fun y . let r = x + y in k(r)))

= fun k . (fun k2 . k2(1))(fun x . cps(20)(fun y . let r = x + y in k(r)))

= fun k . (fun k2 . k2(1))(fun x . (fun k3 . k3(20)))(fun y . let r = x + y in k(r)))

However, we can safely apply the generated functions to simplify the expression further:

fun k . (fun k2 . k2(1))(fun x . (fun k3 . k3(20)))(fun y . let r = x + y in k(r)))

= fun k . (fun k3 . k3(20))(fun y . let r = 1 + y in k(r)) apply fun k2 . k2(1) to its argument
= fun k . let r = 1 + 20 in k(r)) apply fun k3 . k3(1) to its argument

The expression above is a function and not an arithmetic expression. However, we can apply this function to the
identity function to get the expected arithmetic expression:

(fun k . let r = 1 + 20 in k(r)) (fun x . x)

→ let r = 1 + 20 in (fun x . x)(r)

= let r = 1 + 20 in r

= 1 + 20

Correctness For any expression e, cps(e) produces a function, which we can apply to the identity function to get
the same result as e. We have about what we mean by “same” result. Notice that cps(n)(fun x . x) = n. In fact, if e
produces a number n then cps(e)(fun x . x) will also produce n. However, if e produces a function f then CPSing will
produce the CPSed version of f .

Theorem 1 (Correctness of CPS). For all expressions e, e,[] →∗ v,[] if and only if cps(e)(fun x . x), [] →∗ cps(v)(fun x . x), []

Functions and applications The Fun case gives every function an extra argument and CPSes its body. For
example:

cps(fun x . x + 1)

= fun k . k (fun k’,x . cps(x + 1) k’)

= · · ·
= fun k . k (fun k’,x . (fun k . let r = x + 1 in k2(r)) k’)

= fun k . k (fun k’,x . let r = x + 1 in k’(r))

If we apply this function to the identity function, we get fun k’,x . let r = x + 1 in k’(r). This function computes x + 1—like
the original function—but passes the result to k instead of returning the result.

The App case transforms every application to pass its continuation to the function:

cps(f(20))

= fun k . cps(f)(fun vf . cps(20) (fun v .vf (k,v)))

= · · ·
= fun k . f(k,20)

The C operator You may have noticed that the source language includes the C operator and that the target
language does not. This is not an error of omission. It turns out that we can translate C to an ordinary function call
when the program is in continuation-passing style. The case for C is very short:

cps(C(e)) = fun k . cps(e)(fun f . f (fun x . x, k))

To understand why this works, let’s consider the special case where the argument to C is a literal function (recall
that the argument must evaluate to a function):

cps(C(fun x . e))

= fun k . cps(fun x . e)(fun f . f (fun x . x, k))

= fun k . (fun k2 . k2 (fun k3, x . cps(e)(k3))) (fun f . f (fun x . x, k))

= fun k . (fun f . f (fun x . x, k)) (fun k3, x . cps(e)(k3))

= fun k . (fun k3, x . cps(e)(k3)) (fun x . x, k)

= fun k . cps(e[x/k])(fun x . x)

115



type id = string
type exp =
| Num of int
| Id of id
| Add of exp * exp
| Let of id * exp * exp
| Fun of id * exp
| App of exp * exp

(a) Syntax.

let rec cps (e : exp) : exp = match e with
| Num n -> Fun ("k", App (Id "k", Num n))
| Add (e1, e2) -> Fun ("k",

App (cps e1) Fun ("v1",
App (cps e2) Fun ("v2",

Let ("r", Add (Id "v1", Id "v2"),
App (Id "k", Id "r")))))

(b) Naive CPS.

let rec cps (e : exp) : exp = match e with
| Num n -> fun k -> k (Num n)
| Add (e1, e2) -> fun k ->

(cps e1) (fun (v1 : exp) ->
(cps e2) (fun (v2 : exp) ->
Let ("r", Add (Id "v1", Id "v2"),
k (Id "r"))))

(c) Efficient CPS.

Figure 29.2: Two ways to convert arithmetic expressions to CPS.

In the simplified expression above, we can see that the body e receives the identity function as its continuation and
that the actual continuation k is bound to x. Therefore, when e returns normally it calls the identify function and
when e applies x it restores the original continuation. This is exactly the same behavior we got from the CK-machine.

2 A Better CPS Transformation

The CPS function from the previous section produces a lot of extra functions and function applications at every
step that clutter the output. (These are known as administrative functions and administrative applications.). It
usually helps to apply administrative functions to make the output more compact and readable. In fact, we can avoid
producing many administrative functions altogether.

It will be easier to present this new algorithm in code. Figure 29.2b implements the Num and Add rules
from fig. 29.1c. Figure 29.2c shows the efficient algorithm that avoids generating administrative code. The efficient
algorithm differs from the naive algorithm in two ways: (1) we replace administrative functions (Fun ("k",) with OCaml
functions (fun k ->) and (2) we replace the administrative application (App (Id "k", Id "r")) with an OCaml application
(k (Id "r")). Therefore, the administrative functions do exist, but since we turn them into OCaml functions, they get
applied in the process of compilation.

Finally, recall that the naive algorithm produces a function in the object language. Therefore, we have to finish
by applying this function to the identity function in the object language:

App (cps e, Fun ("x", Id "x"))

However, the efficient algorithm produces a function in OCaml. Therefore, we finish by applying this function to the
identity function in OCaml:

cps e (fun x -> x)

Figure 29.3 is an implementation of the efficient CPS algorithm for the entire language, including n-argument
functions, conditionals, and the control operator.

116



type id = string

let fresh_id : unit -> id =
let n = ref 0 in
fun () ->
let x = "tmp" ^ string_of_int !n in
n := !n + 1;
x

type exp =
| Num of int
| Bool of bool
| Id of id
| Add of exp * exp
| Fun of id list * exp
| App of exp * exp list
| Let of id * exp * exp
| If of exp * exp * exp
| Control of exp

let rec cps (exp : exp) : (exp -> exp) -> exp = match exp with
| Num n -> fun k -> k (Num n)
| Bool b -> fun k -> k (Bool b)
| Id x -> fun k -> k (Id x)
| Add (e1, e2) -> fun k ->
cps e1 (fun x1 ->
cps e2 (fun x2 ->
let r = fresh_id () in
Let (r, Add (x1, x2), k (Id r))))

| Let (x, e1, e2) -> fun k ->
cps e1 (fun v1 ->
Let (x, v1, cps e2 k))

| Fun (xs, e) -> fun k ->
let k’ = fresh_id () in
k (Fun (k’ :: xs,

cps e (fun r -> App (Id k’, [r]))))
| App (f, args) -> fun k ->
cps f (fun f_v ->
cps_args args (fun args_v ->
App (f_v, k :: args_v)))

| If (e1, e2, e3) -> fun k ->
let k’ = fresh_id () in
let k’_f = fun r -> App (Id k’, [r]) in
Let (k’, (let r = fresh_id () in Fun ([r], k (Id r))),
cps e1 (fun v1 ->
If (v1, cps e2 k’_f, cps e3 k’_f)))

| Control (e) -> fun k ->
cps e (fun f -> App (f, [Fun (["x"], Id "x");
Fun (["k"; "x"], k (Id "x"))]))

and cps_args (args : exp list) (k : exp list -> exp) = match args with
| [] -> k []
| arg :: args’ -> cps arg (fun a_v ->

cps_args args’ (fun args’_v ->
k (a_v :: args’_v)))

Figure 29.3: An efficient CPS algorithm.

117



118


