
Lecture: Non-Imperative Programming

You need a programming language to build a new programming language–isn’t that odd? In this course, we will
learn how common language features such as objects, exceptions, loops, etc. are built. But, we wouldn’t learn
much if we simply used these features to implement themselves. Therefore, we are going to restrict ourselves to
(mostly) functional programming to build these features from the ground up. There are several partisan reasons to
use functional programming, object-oriented programming, or some other programming fad. The technical reason
we start with functional programming in this course is that functional programming is mathematically simple. In
particular, it will be straightforward and to extend a simple functional language with other common language features.

Before we start building language features, we’ll see how to write code in a simple functional style, without
additional features such as objects, loops, and so on. We are not going to introduce any new OCaml features in this
lecture, but we will introduce several key functional programming ideas.

1 Functions are Values

Functions can be passed as arguments to functions. The last lecture introduced several higher-order func-
tions, which show that functions can be passed as arguments to other functions. For example, filter f alist
produces a list of all the items x ∈ alist , where f(x) is true.
let rec filter (f : ’a -> bool) (alist: ’a list) : ’a list =
match a list
| [] -> []
| hd :: tl -> if f x then hd :: (filter f tl) else filter f tl

This allowed us to write several functions very easily, for example:
let is_even (n: int): bool = n % 2 = 0

let only_evens (alist: int list) = filter is_even alist

let non_zero (n : int): bool = n != 0

let only_non_zero (alist: int list) = filter non_zero alist

Functions can be nested within other functions. If our goal was to write the list-processing functions, then
the functions is_even and non_zero are cluttering our code. Another programmer may think that they are signficant,
even though they are just trivial helper functions. We can eliminate this top-level clutter by nesting them:
let only_evens (alist: int list) =
let is_even (n: bool): bool = n % 2 = 0
in filter is_even alist

let only_non_zero (alist: int list) =
let non_zero (n : int): bool = n != 0
in filter non_zero alist

In particular, the names is_even and non_zero are not defined outside their respective functions.

Functions can produce functions. Functions can also produce other functions. For example:
let make_adder (x: int): int -> int =
let add_x (y: int): int = x + y in
add_x x

let add_three = make_adder 3

assert(add_three 10 = 13)

17

Functions do not need to be named. Unlike other values, functions seem to have the following special property:
every function has a name, but the other kinds of values do not. For example, we can simply write [1; 2; 3] and
don’t need to give this list a name. So far, all of the functions we’ve seen have been named with let.

It turns out that this is just a convention. As with other values, functions don’t need names. For example, here
is a function that adds two numbers:
fun (x: int) (y: int) => x + y

This function does not have a name, but it can be applied just like any other function:
(fun (x: int) (y: int) -> x + y) 10 20

The code above is not easy to read. It will be a lot clearer of we give the function a name, which we can do using
let:
let adder = fun (x: int) (y: int) -> x + y

We can write the same definition in this way:
let adder (x: int) (y: int) = x + y

You should think of the latter form of function definition as a convenient shorthand.
In general, it is a good idea to name your functions. But, there are certain situations where a short, anonymous

function can make your code easier to read and write.
For example, we earlier defined the only_evens function, using a helper function to check for evenness. Here is

simple, one-line definition using an anonymous function:
let only_evens (alist: int list) = filter (fun (n: int) -> n % 2 = 0) alist

Functions can be stored in data structures. The following type holds two functions:
type foo = { m1 : int -> int; m2 : int -> int }

We can create values of type Foo in the following way:
let my_foo = { m1 = fun (x: int) -> x + 1; m2 = fun (y: int) -> y * 20 }

my_foo.m1 10
my_foo.m2 10

Admittedly, this isn’t very useful, but notice that the function applications look a lot like method calls.

1.1 Some Definitions

Here are some terminology that is often used when discussing programming languages and programming techniques.

• Higher-order functions are functions that consume or return other functions as values. You can tell if a function
is higher-order by inspecting its type. Does it have any nested uses of -> in the type? If so, it is a higher-order
function.

• First-class functions are a feature of a programming language. For a programming language to have first-class
functions, it must treat functions as values, with all the rights and privileges that other values have. You must
be able to use functions as arguments, produce functions as results, store functions in data-structures, and so
on.

2 Scope and Substitution

Global vs. Local Variables Why does the following program raise an error?
let f (x: int) =
let y = x + 10 in
y

let r1 = f 11
let r2 = y

Although the program defines a variable called y, the scope of the variable is limited to the function f. Therefore,
we cannot refer to the variable outside the function, which is why we get an error.

18

Substitution What does the following program produce?
let x = 20
let f (x: int): int = x + 5
f 10 + x

Within the body of f, the the name x refers to the argument to the function, which shadows the global vari-
able let x = 20. Therefore, f 10 = 15. However, outside the function x refers to the global variable x, and
15 + 20 == 35.

We can make this argument more precise by substituting variables with their values:

• Given the orignal program above, we first substitute the global x with its value 20, to get the following program:
let f (x: int): int = x + 5
f 10 + 20

Notice that we substituted the x on the last line with 20, but left the x within f unchanged, since it referred to
the argument x.

• Next, we can apply the function f by substituting its argument x with the value 10:
(10 + 5) + 20

• Finally, we are left with a simple arithmetic expression that is trivial to evaluate.

Here is a more compact way of making the same argument:
Expression Reasoning
let x = 20 in let f (x: int): int = x + 5 in f 10 + x Original expression

= let f (x: int): int = x + 5 in f 10 + 20 Substitute x with 20
= (10 + 5) + 20 Inline f and substitute x with 10
= 15 + 20 Evaluate 10 + 5
= 35 Evaluate 15 + 20

Nested Functions Scope can appear trickier when working with nested functions. But, we can use the same
substitution principle to reason about them.

For example, we wrote the make_adder higher-order function before:
let make_adder (x: int): int -> int =
let add (y: int): int = x + y in
add

make_adder 10

The following calculation starts with the definition above (written in a single line for brevity) and shows that it
is equivalent to a more obvious definition of add10:

Expression Reasoning
let make_adder (x: int): int -> int = let add (y: int): int = x + y in add in let add10 = make_adder 10

= let add10 = let add (y: int): int = 10 + y in add Substitute make_adder and substitute x with 10
= let add10 = let add = fun (y: int) -> 10 + y in add_x Rewrite add using fun notation
= let add10 = fun (y: int) -> 10 + y Substitute add with its definition
= let add10 (y: int) = 10 + y Rewrite add using let notation

Notice that every line in this calculation is a valid OCaml program (which you should check!) and all the lines
are truly equivalent to each other.

It is always possible to perform these kinds of calculations to simplify expressions with higher-order functions.
For large programs, a detailed calculation may be infeasible. But, if you understand how these calculuations work in
detail on small programs, you’ll be able to reason carefully about larger programs without needing to actually do the
calculations in detail.

3 Proper Tail Calls

As you probably know, the factorial function is defined over non-negative integers by the following recurrence:

n! =

{
1 if n = 0
n× (n− 1)! if n > 0

19

def fac(n):
if n == 0:

return 1
else:

return n * fac(n - 1)

(a) Recursive Factorial in Python.

def fac(n):
r = 1
while (n > 0):

r = r * n
n = n - 1

return r

(b) Iterative Factorial in Python.

Figure 2.1: Two versions of Factorial in Python.

Figure 2.1 shows two implementations of factorial in Python. The first uses recursion and is a direct translation
of the mathematical definition. The second uses iteration and is usually considered better, because the recursive
version will consume O(n) stack space. (The iterative version takes O(1) space.)

Using OCaml’s loops, we can write factorial iteratively, but we’re going to stick with functional programming for
now.

Here are two definitions of factorial in OCaml. Both are recursive, but the first is a direct translation of the
recurrence, whereas the second builds the result in the accumulator.

let rec fac1 (n : int) : int =
if n = 0 then 1
else n * fac1 (n - 1)

let rec f (n: int) (r: int): int =
if n = 0 then r
else f (n - 1) (n * r)

let fac2 (n: int) = f n 1

Using these definitions, let’s do two simple calculations. Below, we’ve worked out the first recursive call in great
detail to show how the if-expression evaluates. Subsequently, we’ve omitted showing the if-expression steps:

fac1 5
= if 5 = 0 then 1 else 5 * fac1 (5 - 1)
= if false then 1 else 5 * fac1 (5 - 1)
= 5 * fac1 (5 - 1)
= 5 * fac1 4
= 5 * (4 * fac1 3)
= 5 * (4 * (3 * fac1 2))
= 5 * (4 * (3 * (2 * fac1 1)))
= 5 * (4 * (3 * (2 * (1 * fac1 0))))
= 5 * (4 * (3 * (2 * (1 * 1))))
= 5 * (4 * (3 * (2 * 2)))
= 5 * (4 * (3 * 4))
= 5 * (4 * 12)
= 5 * 48
= 120

fac2 5
= f 5 1
= if 5 = 0 then 1 else f (5 - 1) (5 * 1)
= if false then 1 else f (5 - 1) (5 * 1)
= f (5 - 1) (5 * 1)
= f 4 (5 * 1)
= f 4 5
= f 3 (4 * 5)
= f 3 20
= f 2 (3 * 20)
= f 2 60
= f 1 (2 * 60)
= f 1 120
= f 0 (1 * 120)
= f 0 120
= 120

Even though we’ve skipped several steps, you should be able to convince yourself that both calculations involve
roughly the same number of steps. i.e., both definitions take O(n) steps to calculate n! because both perform the
same number of comparisons, subtractions, and multiplications.

However, notice that the expressions on the left-hand side grow much larger. In the middle of the calculation, we
have an expression with five nested multiplication operations to calculate 5!. In general, fac1 builds an expression of
size O(n) to calculate n!, whereas expression-size in fac2 is bounded by a constant.

You can reason about the space utilization of functional programs in this way by simply looking at the size of
the expression. If you calculate on paper and find that expression-size is always bounded, then you can be assured
that the program consumes a bounded amount of memory when run on a machine. Similarly, if you find that the
expression size grows linearly with the size of the input, the program will consume O(n) memory.

However, there is a easier way to reason about space utilization. Notice that in the definition of f, the result of
the recursive call (f (n - 1) (n * r)) is immediately returned and isn’t used in any way. When a function applies
another function and immediately returns its result, we say the application is in tail position or is a tail call. In
contrast, in fac1, the result of fac (n - 1) is multiplied with n, therefore it is not in tail position. When a recursive
call is in tail position, the size of the expression will not grow with each recursive call. If you think about it at a
lower-level of abstraction, fac1 needs to build a stack of multiplication operations but fac2 does not, because the
multiplications are performed in the accumulator.

Here are another pair of functions that consume a bounded amount of memory:
let rec even (n: int): bool = if n = 0 then true else odd (n - 1)

20

and odd (n: int): bool = if n = 0 then false else even (n - 1)

When even calls odd, it doesn’t do anything with its result and simply returns it, i.e., the call to odd is in tail position
and so is the call to even in odd. Therefore, these two functions are mutually tail recursive. If you think about it
operationally, when the code is compiled and run on a machine, the processor jumps back and forth between the two
functions and doesn’t need to consume any stack space.

4 Programming without Exceptions

Many functions are not defined on all inputs. For example, if you’re reading input from a keyboard (i.e., a string)
and want to parse the string as a number, you can apply string_of_int:
int_of_string (read_line ())
42
- : int = 42

But, if the string is not a numeral, you get an exception:
int_of_string (read_line ())
42
Exception: Failure "int_of_string".

You’ve encountered other ways of signaling errors. For example, if you lookup an unbound key in a Java hashtable,
you get the null value:
import java.util.Hashtable;
Hashtable ht = new Hashtable<Int, String>();
ht.put(10, "hello");
String r = ht.get(20);
assert(r == null);

Finally, here is a more insidious example. The following function calculates the point (x, y) where two lines,
defined by y = m1 · x+ b1 and y = m2 · x+ b2, intersect.
type point = Point of float * float

let inter (m1: float) (b1: float) (m2: float) (b2: float): point =
let x = (b2 -. b1) /. (m1 -. m2) in
Point (x, m1 *. x +. b1)

However, the function is not defined when the two lines are parallel (i.e., when m1 = m2). In this case, the the
denominator, m1 - m2 is 0. So, you might expect a divide-by-zero exception. But, that’s not how floating point
numbers work:
utop # 1.0 /. 0.0;;
- : float = infinity

So you can’t even catch this error with an exception handler, since no exception is raised:
utop # inter 5.0 3.0 5.0 4.0;;
- : p = Point (infinity, infinity)

All these mechanisms for signalling errors share similar flaws:

1. Exceptions: you have to remember to catch them, or your program will crash. You can’t tell if a function will
throw an exception without carefully reading its code, which may not even be possible if it is in a library.

2. Producing null : even worse than exceptions, because your program will not (immediately) crash on an error.
When it does crash, you’ll spend a lot of time trying to figure out what produced the null-value.

3. Producing other null-like values: see above.

The real problem is that the types of these functions are not sufficiently precise.

• The type of int_of_string is string -> int, but it may throw an exception instead of producing an int.

• The type of ht.get in Java is String get(Int), but it may produce a null.

• The type of inter is float -> float -> float -> float -> point. However, this function can produce
Point (infinity, infinity), which is clearly not what we had in mind.

21

A Solution Let’s use inter as an example and modify the function so that its type makes it obvious that it may
not always return a point. We introduce the following type:
type optional_point =
| SomePoint of point
| NoPoint

And we modify inter to produce NoPoint instead of a malformed-Point:
let inter (m1: float) (b1: float) (m2: float) (b2: float): optional_point =
if m1 = m2 then
NoPoint

else
let x = (b2 -. b1) /. (m1 -. m2) in
SomePoint (Point (x, m1 *. x +. b1))

With this new type, any program that applies inter will be forced to check if if a point was produced:
match inter m1 b1 m2 m2 with
| NoPoint => printf "no intersection"
| SomePoint (Point (x,y)) => printf "intersection at (%f,%f)" x y

4.1 The Option Type

Ocaml has a builtin generic type called option that abstracts the pattern we discussed above. For example, here is
inter rewritten to use option:
let inter (m1: float) (b1: float) (m2: float) (b2: float): point option =
if m1 = m2 then
None

else
let x = (b2 -. b1) /. (m1 -. m2) in
Some (Point (x, m1 *. x +. b1))

22

