Homework: Type Inference

In this assignment, you will implement type inference for the language that you type-checked earlier. You system will
read a program in the language for the Fztended Interpreter assignment (i.e., a program with no type annotations)
and transform it into an abstract syntax tree for the language of the Type Checker assignment. Your will write all the
intermediate stages and put them together. To help you verify your code, you should be able run the type-checker
that you’ve already written with no changes.

1 Restrictions

None.

2 Requirements

Write a program that takes one argument:

./typeinf.d.byte program

The argument program should be the name of a file that contains a program written using the grammar of the
Extended Interpreter assignment (in fig. 8.1). If the program is type-correct, you should exit normally with exit code
0. If there is a type error, it should exit with a non-zero exit code.

You do not have to implement let-polymorphism, but feel free to do so. (Let me know if you do.)

3 Support Code

There isn’t any new support code for this assignment. Instead, you can use the Tc_wutil and Xinterp_ wutil modules
from the two earlier assignments. We will refer to these as the explicitly typed syntax and the implicitly typed syntax
respectively:

module Explicit
module Implicit

Tc_util
Xinterp_util

4 Directions

4.1 Placeholder Type Identifiers

Write a function to create an explicit-typed AST with fresh metavariables:

let rec add_metavars (exp : Implicit.exp) : Explicit.exp = ...

The OCaml type for types in this language, Explicit. typ has a constructor called TMetavar, which you can use to
store metavariables. (Remember that metavariables are not types, but placeholders that will get filled with types.)

Each metavariable that you generate should be unique. The easiest way to do this step is to have a global counter
that you increment each time you need a fresh metavariable and use the builtin function string of int to turn that
counter into a string.

After you complete this step, type-inference works only with explicitly-typed ASTs.
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4.2 Constraint Generation

Write a function to calculate types and generate constraints. A constraint equates two types, so you can easily
represent a constraint as a pair of types:
type constr = typ * typ

Here are some examples of the kinds of constraints that some simple expressions generate:

Expression | Constraints

n [n] = int

b [6] = bool

el + ea [[61]] = int, ﬂez]] = int, [61 -+ 62]] = int

In the lecture notes, fig. 12.2 has constraint generation rules for a significant subset of this assignment. You should

use these rules as a starting point.
The easiest way to implement constraint generation is to write a recursive function that consumes expressions

and produces their type and a list of sub-constraints. For example:

let rec cgen (exp : exp) : typ * constr = match exp with
| Const (Int _) -> (TInt, [])
| Const (Bool _) -> (TBool, [1)
| Op2 (Add, el, e2) ->
let (t1, 1stl) = cgen el in
let (t2, 1st2) = cgen e2 in
(TInt, [(t1, TInt); (t2, TInt)] @ 1lstl @ 1st2)

Therefore, cgen e = (t, 1st) implies the constraint [e] = ¢ and 1st are all the other constraints.
Explicitly threading the list of constraints in this way can get annoying. You may find it easier to just store them
all in a global variable, which makes the type of cgen simpler:

let constraints : (constr list) ref = ref []

let add_constraint (lhs : typ) (rhs : typ) : unit =
constraints := (lhs, rhs) :: !constraints

let rec cgen (exp : exp) : typ = match exp with
| Const (Int _) -> TInt
| Const (Bool _) -> TBool
| Op2 (Add, el, e2) ->
add_constraint (cgen el) TInt;
add_constraint (cgen e2) TInt;
TInt

Finally, it is important to constraint the type of variables correctly. All occurrences of a variable x must be
constrained to the same type. Moreover, if the program has several binders that name a variable x, the constraint
generator should not mix them up. To resolve this problem, you can either (1) rename identifiers in the program so
that all identifiers are unique or (2) add a type environment to the constraint generator, which is the approach taken

in fig. 12.2.
For example, we stated that functions produce a single constraint:

Expression | Constraints
Ax.e [Az.e] = [z]—[el

However, since the first step was to annotate binders with fresh metavariables, we can instead generate this

constraint:

Expression | Constraints
Azt ae Dz : a.e] = a—]€]

Furthermore, we can constrain occurrences of x in e to «, using a type environment.
The following fragment of code uses this technique to generate constraints for functions and identifiers:

type env = (id * typ) list (* Other representations are possible too *)

let rec cgen (env : env) (exp : exp) : constr = match exp with
| Fun (x, t1, e) ->
let t2 = cgen ((x, t1) :: env) e in
TFun (t1, t2)
| Id x -> List.assoc x env

You can use this code unchanged and tackle let and fix in a similar way.
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4.3 Substitution

The key to solving constraints by unification is the substitution data structure, which maps type identifiers to types.
You need to carefully define substitution composition, substitution application, and the substitution constructors.
To ensure you use substitutions correctly, we recommend creating an abstract data type for substitutions with the
following signature:

module type SUBST = sig
type t

val empty : t

val singleton : metavar -> typ -> t

val apply : t -> typ -> typ

val compose : t -> t -> t

val to_list : t -> (metavar * typ) list (* for debugging *)
end

Given this signature, you can implement a substitution module as follows:

(* The SUBST constraint ensures that t is opaque outside the module *)
module Subst : SUBST = struct

type t = ...

let empty = ...

let singleton x typ = .

let apply subst typ = ...

let compose substl subst2 = ...

let to_list subst = ...
end

You may represent a substitution in several ways. For example, you could use a list:

(* Substitutions as an association list *)
module Subst : SUBST = struct
type t = (metavar * typ) list

end

If you do so, you may find the standard library functions for manipulating association lists helpful.
You may find it convenient to use a finite map instead:

(* Substitutions as a finite map *)

module Subst : SUBST = struct
module IdMap = Map.Make (String)
type t = typ IdMap.t

end

In the code above, the IdMap module has the following signature Map.S.
To help you get started, here are some tests that demonstrate simple properties of substitutions:

(* Some examples of operations on substitutions *)
let x : metavar = "__x"
let y : metavar = "__y"

1et%TEST "Subst.apply should replace x with TInt" =
let s = Subst.singleton x TInt in
Subst.apply s (TMetavar x) = TInt

1let%TEST "Subst.apply should recur into type constructors" =
let s = Subst.singleton x TInt in
Subst.apply s (TFun (TMetavar x, TBool)) = (TFun (TInt, TBool))

1et%TEST "Subst.compose should distribute over Subst.apply (1)" =
let s1 = Subst.singleton x TInt in
let s2 = Subst.singleton y TBool in
Subst.apply (Subst.compose s1 s2) (TFun (TMetavar x, TMetavar y)) =
Subst.apply s1 (Subst.apply s2 (TFun (TMetavar x, TMetavar y)))

1let%TEST "Subst.compose should distribute over Subst.apply (2)" =
let s1 = Subst.singleton x TBool in
let s2 = Subst.singleton y (TMetavar x) in
Subst.apply (Subst.compose si s2) (TFun (TMetavar x, TMetavar y))
Subst.apply s1 (Subst.apply s2 (TFun (TMetavar x, TMetavar y)))
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http://caml.inria.fr/pub/docs/manual-ocaml/libref/List.html#6_Associationlists
http://caml.inria.fr/pub/docs/manual-ocaml/libref/Map.S.html

4.4 TUnification

Unification is a function that takes two types as arguments and produces a substitution that maps type identifiers
to types:

let unify (t1 : typ) (t2 : typ) : Subst.t = ...

Do not forget to implement the occurs check, or unification may run forever.

To help you get started, the support code includes a small number of tests for unification.
4.5 Constraint Solving

Using the unify function you wrote above, write a function to solve a list of constraints by repeatedly applying
unification to the pair of types in each constraint. Remember to apply the substitution you produce at each step to
the constraints that have yet to be unified.

4.6 Type Annotation

Write a function that substitutes the metavariables in the explicitly-typed AST with concrete types that you calculated
in the last step:

let annotate_exp (subst : Subst.t) (exp : exp) : exp = ...

4.7 Type Checking

This step isn’t strictly required, but we strongly recommend you type-check the programs produced by the previous
step. Checking the annotated code will help you catch bugs.

4.8 Finish

Finally, put the pieces above together to build the inference function. This function shouldn’t do anything more than
apply the functions above in the right order.
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