
Lecture 8:Type Inference

The main point of type annotations is to document your code and catch programming errors. However, it can be
quite annoying to have to write down every single type in a program. If you’ve used Java Generics or something
similar, you’ve probably encountered the annoyance of type annotations in real code. The type-checker you wrote
earlier also has the same property.

The type inference problem is to take a program with no type annotations, such as this version of factorial:
fix f . fun x . if n = 0 then 1 else n ∗ f (n 1)

and produce a program with type annotations:
fix (f : int →int) . fun (x : int) . if n = 0 then 1 else n ∗ f (n 1)

We know how to type-check the latter.
It is easy to code up with heuristics for inferring types. Howeer, we’re going to cover an approach known as the

Hindley-Milner algorithm, which has two key properties:

• It is sound, so it always produces correct types. Therefore, you can trust the output of the algorithm and there
is no need to type-check after inference (assuming you implement it correctly!)

• It is complete, so it always produces a type, if there is a type to be found. Therefore, if the algorithm fails to
find a type, then the program is truly un-typable.

The algorithm has one other important property, which we’ll look at later.

An Informal Example Suppose we were given the untyped factorial function and were asked to infer its type in
our head. We’ll run through a detailed analysis below. For brevity, we’ll use the following notation:

• We write JeK to mean “the type of the expression e”.

• We use Greek letters to denote metavariables that stand for types that are unknown.

We might reason through the types as follows:

Claim Justification
1 Jfix f . fun n . · · ·K = Jfun n . · · ·K fix evalutes to the body.
2 Jf K = Jfix f . · · ·K f is bound to the whole expression during evaluation.
3 Jfun n . · · ·K = α →β The expression is a function, so it must have an argument and result (α and β).
4 JnK = α n is the argument of the function that takes argument of type α.
5 Jif n = 0 then 1 else n ∗ f (n 1)K = β The expression is the body of a function that produces a value of type β.
6 Jn = 0K = bool The expression is used as the condition in an if-expression.
7 JnK = int n is used in a comparison. (We can only compare integers.)
8 J1K = Jn ∗ f (n 1)K Both branches must have the same type.
9 J1K = Jif n = 0 then 1 else n ∗ f (n 1)K Type of a conditional is the type of either branch.
10 Jf K = γ →δ f appears in function position in an application.
11 JγK = J(n 1)K The argument to f , which has type γ.
12 Jn 1K = int Subtraction produces integers.
13 Jf (n 1)K = δ The return type of f is the type of the application.
14 Jδ = int K The expression of type δ is used as an argument of ∗.

At this point, we can solve the constraints to figure out the types of the metavariables α, β, γ, and δ:

• α = int by (4) and (7),

• β = int by (5), (9) (given that J1K = int),

51

Binary Operators
op2 ::=+ | > | · · ·
Constants
c ::= true True
| false False
| n Integers

Expressions
e ::= c Constants
| x Identifiers
| op2(e1, e2) Bin. Ops.
| if e1 then e2 else e3 Conditionals
| e1 e2 Applications
| fun x . e Functions
| fix f . e Fixpoints

(a) Implicitly-Typed Syntax.

Types
τ ::= int Integer type
| bool Boolean type
| τ1 →τ2 Function types
| α Type metavariables

Binary Operators
op2 ::=+ | > | · · ·
Constants
c ::= true True
| false False
| n Integers

Expressions
e ::= c Constants
| x Identifiers
| op2(e1, e2) Bin. Ops.
| if e1 then e2 else e3 Conditionals
| e1 e2 Applications
| fun (x:τ) . e Functions
| fix (f :τ) . e Fixpoints

(b) Explicitly-Typed Syntax.

Figure 12.1: Syntaxes for type inference.

• γ = int by (11) and (12),

• δ = int by (14).

Now, we have enough information to reconstruct the type annotations in the program.

1 Introduction

Type inference works with two syntaxes, shown in fig. 12.1. The implicitly-typed syntax, on the left-hand side, is the
syntax in which the user writes the program. The explicitly-typed syntax, on the right-hand side, is the result of type-
inference. The difference between these two syntaxes is that the explicitly-typed syntax has type annotations that
can be used to type-check the program. In contrast, the implicitly-typed syntax has no type annotations. However, it
is important to note that the implicitly-typed language is typed. The types aren’t written down, but we could
still write typing rules for this language.1 The explicitly-typed syntax just makes types manifest, so that a simple
type-checker can type-check the program.

Types in the explicitly-typed language include metavariables, α, β, etc. Metavariables are not types themselves,
but are placeholders that stand for types. We need metavariables to describe type inference. However, the result of
type inference will produce a program that has no metavariables.

Type inference has several steps:

1. We transform a program in the implicitly-typed syntax to a identical program in the explicitly-typed syntax,
using unique metavariables for each type annotation. For example, the program fun x . fun y . x + y would be
transformed to fun (x:α) . fun (y:β) . x + y. These metavariables will allow us to refer to identifier’s types without
getting scope mixed up.

2. We generate a set of constraints by recursively processing the program. Each constraint equates two types
to each other. To handle variables and scoping correctly, we use an environment that maps identifiers to
metavariables. For example, the expression we have should produce the constraints α = int and β = int .

3. We solve the constraints, using a classic algorithm called unification. Constraint-solving produces a substitution
from metavariables to types that have no metavariables within them. For example, solving the constraints
above produces the substitution [α 7→ int , β 7→ int]. Several things can go wrong during constraint-solving. For
example, we may derive an unsatisfiable constraint, such as int = bool, which indicates that the program has a
type error.

1We would have to “guess” the type of binding identifiers when building typing derivations.

52

Constraints
C ∈ τ = τ
Constraint Sets
C ∈ {C1, · · ·Cn}
Type Environments
Γ∈x ⇀ α

Γ ` e⇒ τ × C

T-Int Γ ` n⇒ (int , ∅)

T-Bool Γ ` b⇒ (bool, ∅)

T-Id Γ ` x→ (Γ(x), ∅)

T-Add
Γ ` e1 ⇒ (τ1, C1) Γ ` e2 ⇒ (τ2, C2)

Γ ` e1+e2 ⇒ (int , {τ1 = int , τ2 = int } ∪ C1 ∪ C2

T-If
Γ ` e1 ⇒ (τ1, C1) Γ ` e2 ⇒ (τ2, C2) Γ ` e3 ⇒ (T3, C3)

Γ ` if e1thene2elsee3 : (τ2, {τ1 = bool, τ2 = τ3} ∪ C1 ∪ C2 ∪ C3

T-Fun
Γ[x 7→ α] ` e⇒ (τ, C)

Γ ` fun (x:α) .e⇒ (α→ τ, C)

T-Fix
Γ[x 7→ α] ` e⇒ (τ, C)

Γ ` fix (x:α) .e⇒ (α, {α = τ}C)

T-App
Γ ` e1 ⇒ (τ, C1) Γ ` e2 ⇒ (τ ′, C2) α is a fresh metavariable

Γ ` e1e2 ⇒ (α, {τ ′ → α = τ} ∪ C1 ∪ C2)

(a) Type Checking.

Figure 12.2: Constraint Generation

4. We annotate the program by applying the substitution to the type variables we generated in the first step. In
this example, we get the program fun (x:int) . fun (y:int) . x + y.

5. Finally, we can type-check the resulting program to verify the result of type-inference. However, if the steps
above are perfectly correct, there is no need to verify the result.

2 Constraint Generation

Figure 12.2 gives the constraint generation rules for our language. We can read the rule Γ ` e ⇒ T × C as in
the environment Γ, e has type T and produces the set of constraints C. There are two key differences between the
type-inference rules and the type-checking rules:

• Unlike the type-checking rules, the type T may not be a complete type and may include metavariables (α, β,
etc.).

• Constraint-generation does not catch type-errors. For example, the expression true + 10 will fail to type-check.
However, the constraint generation rules will produce the type int and the set of constraints {bool = int , int = int }.

However, constraint-generation does catch unbound-identifier errors. If a program has a free variable, then it
won’t be bound to a metavariable in the environment.

Notice that the types produced by constraint-generation are used to further generate additional constraints. For
example, in the expression fun (x:α) . x + 3, the bound identifier x produces the type α, which is used to produce the
constraint α = int when generating constraints for x+3.

3 Solving Type Constraints

After constraint-generation completes, we can solve constraints by unification. The unify algorithm, shown in
fig. 12.3, takes a single constraint and produces as output a substitution, which is a finite map from metavariables to
types. A substitution can be applied to a type to replace metavariables with concrete types.

For example, unify(α → int = bool → β) produces the substitution [α 7→ int , β 7→ bool]. If we apply this
substitution to α → int or to bool → β, we get the type bool → int . Notice that we get the same type on either
side, which is a key property of the algorithm. However, unify(γ → int = bool → γ) should fail, since there is no
substitution that can be applied to either side to produce the same type.

unify is a simple recursive algorithm with three cases:

• unify(int = int) should produce the empty substitution, whereas unify(int = bool) should fail. In general,
unifying two base types should succeed with the empty substitution if the types are the same or fail if the types
are different.

53

Substitutions
π ∈ α→ T

(π1 · π2)(α) =π2(π1(α))

Unification
unify ∈ C → π

unify(T = T) = ·
unify(α = T) = [α 7→ T] if α does not occur in T
unify(T = α) = [α 7→ T] if α does not occur in T

unify(S1 → S2 = T1 → T2) = unify(π(S2), π(T2)) · π
where π = unify(S1, T1)

Figure 12.3: Unification

• unify(α = T) and unify(T = α) should produce the substitution [α 7→ T]. However, there is an important
caveat discussed below, called the occurs check.

• unify(S1 → S2 = T1 → T2) needs to recursively unify the argument and the result types. However, the two
substitutions have to be composed together.

The Occurs Check Consider the constraint α = int → α. If unification is done naively, we will produce the
substitution [α 7→ int → α]. If we apply this substitution to either side, we get the constraint int → α = int → (int →
α). We can unify this new constraint to get a larger type on either side. In fact, we can repeatedly apply unification
to get larger and larger types. The real problem is that the original constraint is circular and contradictory. There
is no substitution π such that π(α) = π(int → α). To avoid this infinite regress, unification needs an occurs check to
detect cyclic constraints. It is enough to run the occurs check when unifying metavariables with types, as shown in
fig. 12.3.

Unifying a set of constraints Given unify, it is straightforward to unify a set of constraints. After unifying
each constraint in the set, we need to apply the intermediate substitution to the remaining constraints.

54

