
Lecture: Big-Step Semantics

1 Representing Abstract Syntax

These are examples of arithmetic expressions:

• 2 * 4

• 1 + 2 + 3

• 5 * 4 * 2

• 1 + 2 * 3

We all know how to evaluate these expressions in our heads. But, when we do, we resolve several ambiguities.
For example, should we evaluate 1 + 2 * 3 like this:

1 + 2 * 3
= (1 + 2) * 3
= 3 * 3
= 9

or like this:
1 + 2 * 3

= 1 + (2 * 3)
= 1 + 6
= 7

The latter is the convention in mathematics, but it is an arbitrary choice. A programming language could adopt
either convention or adopt a completely different notation. For example, the following three programs, written in
three different languages, all evaluate to the same value:

• 1 + 2 infix syntax, from the C language

• (+ 1 2) parenthesized prefix syntax, from the Scheme language

• 1 2 + postfix syntax, from the Forth language

These three concrete syntaxes are very different, but all mean “the sum of the number one and the number two”.
Concrete syntax is important, because it is the human-computer interface to a programming language. It is

easy to find acrimonious debates on the Web about the virtues of Python’s indentation-sensitive syntax, whether
semicolons should be optional in JavaScript, how C code should be indented, and so on. But, this course will
almost completely ignore concrete syntax because it is irrelevant to the semantics of programming languages.
We will instead work with abstract syntax, which is an abstract “tree-shaped” representation of syntax that suffers
none of the ambiguities of concrete syntax. In compilers, the parser consumes a concrete-syntax string and produces
an equivalent abstract syntax tree. This course will largely ignore parsing and instead work directly with the abstract
syntax tree.

OCaml makes it easy to define a type that represents the abstract syntax of arithmetic expressions:

type exp =
| Num of int
| Add of exp * exp
| Mul of exp * exp
| Div of exp * exp

27



e ::= true
| false
| n
| e1 + e2
| e1 ∗ e2
| e1 > e2
| if e1 then e2 else e3

v ::= true
| false
| n

(a) Syntax.

Num
n ⇓ n

True
true ⇓ true

False
false ⇓ false

Add

e1 ⇓ n1

e2 ⇓ n2

n3 = n1 + n2

e1 + e2 ⇓ n3
Mul

e1 ⇓ n1

e2 ⇓ n2

n3 = n1 · n2

e1 ∗ e2 ⇓ n3

GT-True

e1 ⇓ n1

e2 ⇓ n2

n1 > n2

e1 > e2 ⇓ true
GT-False

e1 ⇓ n1

e2 ⇓ n2

n1 ≤ n2

e1 > e2 ⇓ false

If-True

e1 ⇓ true
e2 ⇓ v

if e1 then e2 else e3 ⇓ v
If-False

e1 ⇓ false
e3 ⇓ v

if e1 then e2 else e3 ⇓ v

(b) Semantics.

Figure 4.1: Syntax and semantics of a language with arithmetic and boolean expressions.

Here are some examples of abstract arithmetic expressions and their concrete representations (written in normal,
mathematical notation):

Concrete Syntax Abstract Syntax
1 + 2 + 3 Add (Add (Num 1, Num 2), Num 3)

1 + 2 * 3 Add (Num 1, Mul (Num 2, Num 3))

(1 + 2) / 3 Div (Add (Num 1, Num 2), Num 3)

2 Syntax as Sets

We start with a very rigorous mathematical definition of the abstract syntax of a small language of arithmetic and
boolean expressions.

Definition 1 (Syntax of arithmetic expressions). Let E denote the set of arithmetic expressions. We define E to be
the smallest set that is generated by the following rules:

• true ∈ E.

• false ∈ E.

• If n ∈ Z then n ∈ E.

• If e1 ∈ E and e2 ∈ E then e1 + e2 ∈ E.

• If e1 ∈ E and e2 ∈ E then e1 ∗ e2 ∈ E.

• If e1 ∈ E and e2 ∈ E then e1 > e2 ∈ E.

• If e1 ∈ E, e2 ∈ E, and e3 ∈ E then if e1 then e2 else e3 ∈ E.

Hopefully, you’ll agree that defining syntax in this way is extremely tedious. We will never do this again and
instead define syntax using the notation in fig. 4.1a.

This notation is much terser and is what you’ll find when you read the programming languages literature. But,
you should be aware that it is just shorthand for the more verbose definition given above. Also note that we are
“abusing notation” and using the metavariable e to denote the set of expressions and elements of the set (and similarly
for n). This is standard practice.

28



e

e ::= · · ·
| x
| let x = e1 in e2

(a) Syntax.

e ⇓ v

Let

e1 ⇓ v1
e2[x 7→ v1] ⇓ v2

let x = e1 in e2 ⇓ v2
(b) Semantics.

e[x 7→ v] = e

true[x 7→ v] = true
false[x 7→ v] = false
n[x 7→ v] =n
e1 + e2[x 7→ v] = e1[x 7→ v] + e2[x 7→ v]
e1 ∗ e2[x 7→ v] = e1[x 7→ v] ∗ e2[x 7→ v]
e1 > e2[x 7→ v] = e1[x 7→ v] > e2[x 7→ v]
if e1 then e2 else e3[x 7→ v] = if e1[x 7→ v] then e2[x 7→ v] else e3[x 7→ v]
x[x 7→ v] = v
y[x 7→ v] = y when x 6= y
let x = e1 in e2[x 7→ v] = let x = e1[x 7→ v] in e2
let y = e1 in e2[x 7→ v] = let y = e1[x 7→ v] in e2[x 7→ v] when x 6= y

(c) Substitution.

Figure 4.2: Identifiers and let-expressions. Extends fig. 4.1.

3 Semantics as Relations

Inference rules In this section, we use inference rules to define the semantics of our language. These are some
examples of inference rules:

X
Y

A
B
C W

You should read these rules as:

• If X holds, then Y holds.

• If A and B hold, then C holds.

• W holds (i.e., W is an axiom).

Semantics Programs evaluate expressions until they become values. Intuitively, a value is an expression that
cannot be further simplified. For the language defined above, the values (v) are just integers and booleans. Note that
v ⊂ e.

Given our definition of expressions and values, we can define the semantics of the language as an evaluation
relation. The evaluation relation is a binary relation that relates expressions e to equivalent values v. We write the
evaluation relation using the following notation:

e ⇓ v

You should pronounce this as “e evaluates to v”.
The e ⇓ v relation is defined by a set of inductively defined rules, similar to the definition of expressions. However,

instead of first soldiering through a long definition in prose, we’ll use the inference rules in fig. 4.1b to define e ⇓ v.
Notice that e ⇓ v is a partial function. E.g., true + 5 is not defined. Moreover, in a richer language with non-
deterministic features, such as threads or random number generators, e ⇓ v may be a relation.

4 Let-Binding and Substitution

Even when we write simple arithmetic expressions, we often need to reuse the same expression in several places. If
we try to repeat the same expression, we are likely to propagate mistakes. More fundamentally, repeated expressions

29



consume more storage space and require more steps to evaluate. Therefore, all programming languages provide a
means to name expressions.

Figure 4.2a extends the syntax of our language with let-expressions and identifiers. A let-expression, such as
let x = 1 + 2 in x ∗ x has three parts:

• A binding identifier x,

• A named expression 1 + 2, and

• The body x ∗ x.

In this example, the body has two bound identifiers that refer to the binding identifier.
The semantics of this language extension are given in fig. 4.2b. Notice that there is no inference rule for evaluating

identifiers. Instead, the inference rule for let expressions substitutes identifiers with the value of the named expression.
The substitution function, e[x 7→ v], is typically read as “substitute x with v in e”.

Here is an example of a derivation that uses substitution:

Let
Add

Num
1 ⇓ 1

Num
2 ⇓ 2

1 + 2 ⇓ 3 (x ∗ x)[x 7→ 3] = 3 ∗ 3
Mul

Num
3 ⇓ 3

Num
3 ⇓ 3

3 ∗ 3 ⇓ 9

let x = 1 + 2 in x ∗ x ⇓ 9

This is a very straightforward example since it only has one let-expression. In general, a program may have several
let-expressions and even reuse the same identifier in several places. The semantics has been carefully designed to
handle these cases in a natural way.

This example defines two names by nesting let-expressions:

Let

...
Let

...
let y = 20 + 10 in y ∗ x ⇓ 300

let x = 10 in let y = 20 + x in y ∗ x ⇓ 300

This example has two let-expressions that use the same name:

Let

Num
10 ⇓ 10 (let x = 20 in 1 + x)[x 7→ 10] = let x = 20 in 1 + x

Let

...
let x = 20 in 1 + x ⇓ 21

let x = 10 in let x = 20 in 1 + x ⇓ 21

As the proof tree shows, the identifier in the expression 1 + x is bound to the inner definition of x. We say that
the inner x shadows the enclosing definition.

4.1 Substitution and Evaluation Order

The inference rule for let-expressions first evaluates the named expression to a value and then substitutes that value
into the body. Consider this alternate definition, which applies substitution first:

Let’
e′2 = e2[x 7→ e1] e′2 ⇓ v

let x = e1 in e2 ⇓ v

For example, the following proof that let x = 10 + 10 in x ∗ x ⇓ 400 uses this alternate rule for let. Notice that
we use the Add rule twice and the Mul rule once:

Let’

x ∗ x[x 7→ 10 + 10] = (10 + 10) ∗ (10 + 10)

Mul
Add

Num 10 ⇓ 10 Num 10 ⇓ 10

10 + 10 ⇓ 20
Add

Num 10 ⇓ 10 Num 10 ⇓ 10

10 + 10 ⇓ 20

(10 + 10) ∗ (10 + 10) ⇓ 400

let x = 10 + 10 in x ∗ x ⇓ 400

However, using the original Let rule, we use the the Add and Mul rules once each:

Let
Add

Num 10 ⇓ 10 Num 10 ⇓ 10

10 + 10 ⇓ 20 x ∗ x[x 7→ 20] = 20 ∗ 20
Mul

Num 20 ⇓ 20 Num 20 ⇓ 20

20 ∗ 20 ⇓ 400

let x = 10 + 10 in x ∗ x ⇓ 400

Loosely speaking, the larger proof tree corresponds to an evaluation that “takes more time”. In fact, proofs with
Let’ will be larger whenever there are multiple occurrences of the identifier in the body of the let expression.

However, a deeper problem arises when the named expression is faulty. For example, let e be the expression
let x = true + 10 in 200. Using the Let rule, there does not exist a v, such that e ⇓ v. However, using the Let’ rule,
e ⇓ 200, since x is unused in the body.

We’ll investigate this in more depth in a few weeks.

30



type id = string

type exp =
| Num of int
| Bool of bool
| Add of exp * exp
| Mul of exp * exp
| GT of exp * exp
| If of exp * exp * exp
| Let of id * exp * exp
| Id of id

let is_value (e : exp) =
match e with
| Bool _ -> true
| Num _ -> true
| _ -> false

(a) Syntax.

let to_int (e : exp) : int = match e with
| Num n -> n
| _ -> failwith "expected Num"

let to_bool (e : exp) : bool = match b with
| Bool b -> b
| _ -> failwith "expected Bool"

let rec subst (x : id) (v : exp) (e : exp) : exp =
match e with
| Num n -> Num n
| Bool b -> Bool b
| Add (e1, e2) -> Add (subst x v e1 , subst x v e2)
| Mul (e1, e2) -> Mul (subst x v e1 , subst x v e2)
| GT (e1, e2) -> GT (subst x v e1, subst x v e2)
| Let (y, e1, e2) ->

Let (y, subst x v e1, if x = y then e2 else subst x v e2)
| Id y -> if x = y then v else Id y

let rec eval (e : exp) : exp = match e with
| Num n -> Num n
| Bool b -> Bool b
| Add (e1, e2) -> Num (to_int (eval e1) + to_int (eval e2))
| Mul (e1, e2) -> Num (to_int (eval e1) * to_int (eval e2))
| GT (e1, e2) -> Bool (to_int (eval e1) > to_int (eval e2))
| If (e1, e2, e3) -> if to_bool (eval e1) then eval e2 else eval e3
| Let (x, e1, e2) -> eval (subst x (eval e1) e2)
| Id x -> failwith ("free identifier " ^ x)

(b) Semantics.

Figure 4.3: OCaml implementation of fig. 4.1

e

e ::= · · ·
| e1 e2
| λx.e

v ::= · · ·
| λx.e

(a) Syntax.

e ⇓ v

App

e1 ⇓ λx.e
e2 ⇓ v

e[x 7→ v] ⇓ v′

e1 e2 ⇓ v′

(b) Semantics.

e[x 7→ v] = e

· · ·
e1 e2[x 7→ v] = e1[x 7→ v] e2[x 7→ v]
λx.e[x 7→ v] =λx.e
λy.e[x 7→ v] =λy.e[x 7→ v] when x 6= y

(c) Substitution.

Figure 4.4: First-class functions. Extends fig. 4.2.

4.2 Implementation

Figure 4.3 is an OCaml implementation of our language. You should study this definition and the inference rules in
fig. 4.1 to ensure that they are in close correspondence.

5 Functions

In this section, we extend our language with functions, similar to functions in OCaml. The syntax and semantics
of this extension are given in fig. 4.4. In this extension, functions are values, which means that they are values just
like numbers and booleans. This allows functions to be passed to other functions, returned from functions, bound to
identifiers, and so on. Therefore, these are first-class functions, as discussed last week.

An apparent shortcoming of this extension that all functions take exactly one argument. However, we can encode
multi-argument functions by leveraging first-class functions. For example, suppose we want to write a function that
takes two arguments x and y and calculates 10 ∗ x ∗ y. Although we cannot write a two-argument function, we can
do this:

λx.λy.10 ∗ x ∗ y

This is known as currying. It turns out OCaml uses this mechanism too. The following three OCaml definitions are
equivalent:

31



let add1 x y = x + y

let add2 = fun x y -> x + y

let add3 = fun x -> fun y -> x + y

32


