Homework: Type Checker

The goal of this assignment is to implement a type checker to complement the interpreter you’ve built so far.

1 Restrictions

None.

2 Requirements

Write a program that takes one argument:

./tc.d.byte program

The argument program should be the name of a file that contains a program written using the grammar defined
in fig. 11.1. If the program is type-correct, your type-checker should exit normally with exit code 0. If there is a type
error, it should exit with a non-zero exit code. (Therefore, you can output anything you want to standard out and
standard error.)

3 Support Code

In the support code for the class, the Tc_util module defines an abstract syntax for the language and a parser for the
concrete syntax shown in fig. 11.1. You are not strictly required to use the support code. In particular, you are free
to copy it and modify it if you wish to extend the language in any way. However, any extensions you make must be
compatible with the base language.

4 Template and Hand In

A template file for the assignment is provided on the course web page. Solve the assignment in this file and submit
only this file using Moodle.

49

Types
T = Dbool

| int

| T1->T2

| {z1: T, ,Tn:Tnt
| 7 list

| 7 list

| forallz . T

|

x

Expressions

e = =z

n

true
false

e; +eg

e] - ez

e] * ey

e1 / e

e1 h ez

e1 < ey

e > ez

e} == eg
empty[7]
e] :: eg
{r1: €1, -
e.x

head e
tail e
is_empty e
(e)

€1 €2

if e; then ez else e3
let £ = e] in ey

fun (z:7) ->e

fix (x:7) ->e
array(ej,ez)

»Tnien}

| erle2]
| eile2] =e3

| tfun z . e

| elr]

TBool

TInt

TFun (71, T2)

TRecord [(z1,71); ...
TList 7T

TArr T

TForall (z, T)

TId «

(T, Tn)]

Id x

Const (Int n)
Const (Bool true)
Const (Bool false)
Op2 (Add, e;, e2)
0p2 (Sub, ei, e2)
0p2 (Mul, e;, e2)
0p2 (Div, ej, e2)
Op2 (Mod, e1, e2)
0p2 (LT, ey, e2)
0p2 (GT, e1, e2)
0p2 (Eq, e1, e2)
Empty 7T

Cons (e1, e2)
Record [(z1,e1); ...
GetField(e,x)

(Tn, en)]

Head e

Tail e

IsEmpty e

e

App (e1, e1)

If (e1, ez, e3)
Let (x, e1, e2)

Fun (z, 7,e)
Fix (z, 7,e)
MkArray (ei, e2)

GetArray (e1, e2)
SetArray (ej, e2, e3)

TypFun (z, e)
TypApp (e, T)

Type of booleans
Type of integers
Type of a function
Type of a record
Type of a list
Type of an array
Quantified type
Type identifier

where x has letters, digits, and underscores
where n is a decimal integer

Boolean true

Boolean false

Integer addition, as defined in OCaml
Integer subtraction, as defined in OCaml
Integer multiplication, as defined in OCaml
Integer division, as defined in OCaml
Modulus, as defined in OCaml

Integer less-than, as defined in OCaml
Intege greater-than, as defined in OCaml
Equality of booleans and integers

An empty list

A list with e; as the head and es as the tail
A record with n named fields

The value of field z

Produces the head of the list e

Produces the tail of the list e

Produces true if e is the empty list
Parentheses

Function application

Conditional (e; must be a boolean)

Let binding

Function definition

Recursive unction definition

Allocates an array of length e; with ea

at every index

Produces the value at index ez in the array e
In the array e, set the value at index ez to the value of

of eg and returns that value
Type function
Type application

Figure 11.1: The concrete syntax and abstract syntax of the language.

50

