
Combinatorial Sketching for Finite Programs

Armando Solar-Lezama, Liviu Tancau, Rastislav Bodik, Vijay Saraswat∗, Sanjit Seshia
UC Berkeley ∗IBM T.J. Watson Research Center

�����������	�
����
�������
�����	�������������
 ���������
��
���	��

Abstract
Sketching is a software synthesis approach where the programmer
develops a partial implementation — a sketch — and a separate
specification of the desired functionality. The synthesizer then com-
pletes the sketch to behave like the specification. The correctness
of the synthesized implementation is guaranteed by the compiler,
which allows, among other benefits, rapid development of highly
tuned implementations without the fear of introducing bugs.

We develop SKETCH, a language for finite programs with lin-
guistic support for sketching. Finite programs include many high-
performance kernels, including cryptocodes. In contrast to prior
synthesizers, which had to be equipped with domain-specific rules,
SKETCH completes sketches by means of a combinatorial search
based on generalized boolean satisfiability. Consequently, our com-
binatorial synthesizer is complete for the class of finite programs: it
is guaranteed to complete any sketch in theory, and in practice has
scaled to realistic programming problems.

Freed from domain rules, we can now write sketches as simple-
to-understand partial programs, which are regular programs in
which difficult code fragments are replaced with holes to be filled
by the synthesizer. Holes may stand for index expressions, lookup
tables, or bitmasks, but the programmer can easily define new kinds
of holes using a single versatile synthesis operator.

We have used SKETCH to synthesize an efficient implementa-
tion of the AES cipher standard. The synthesizer produces the most
complex part of the implementation and runs in about an hour.

Categories and Subject Descriptors D.2.2 [Software Engineer-
ing]: Software Architectures, Design Tools and Techniques; D.3.3
[Programming Languages]: Language Constructs and Features

General Terms Languages, Design, Performance

Keywords Sketching, SAT

1. Introduction
When programming by sketching, the programmer develops only a
skeleton of the desired implementation, called a sketch, and a syn-
thesizer completes the sketch such that it meets a separate specifi-
cation of the desired behavior. Sketching encourages clean specifi-
cations because it relies on specification only to define the function-
ality. Sketching also promises to enable complex implementations

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

ASPLOS’06 October 21–25, 2006, San Jose, California, USA.
Copyright © 2006 ACM 1-59593-451-0/06/0010. . . $5.00.

that may be too tedious to develop and maintain without automatic
synthesis of low-level detail.

The concept of sketching was introduced in StreamBit, a system
for bit-stream programming [13]. In StreamBit, sketching proved
to be very effective: in a single afternoon, a sketching programmer
implemented a DES cipher that nearly matched the performance
of the best public-domain DES implementation. In another exper-
iment, a sketched implementation of a cipher was produced twice
as a fast as a C implementation, and ran 50% faster.

Unfortunately, this productivity came at the expense of signifi-
cant training: Only one of the authors of [13] was able to write non-
trivial sketches. The programmability problem stems from Stream-
Bit’s reliance on transformational synthesis, wherein the specifica-
tion is transformed into the desired implementation with domain-
specific rewrite rules. The transformational setting in StreamBit
complicates programming because sketches cannot be expressed
directly as partial implementations but instead must be given as
partial rewrite rules; the sketching language can hide this fact only
partly. Furthermore, in StreamBit, a desired implementation often
has to be painfully decomposed into a hierarchy of sketches, one
for each rewrite rule. Section 7 elaborates, but to summarize, the
awareness of the rewrite rules made programming with StreamBit’s
sketching challenging.

To address these limitations, this paper develops a combinato-
rial synthesizer. Its key feature is how it synthesizes a correct im-
plementation, i.e., an implementation that is functionally equiva-
lent to the specification. While a transformational synthesizer gen-
erates correct implementations by transforming the specification
with semantics-preserving domain rules, combinatorial synthesizer
relies on a verifier. The verifier “filters out” incorrect implementa-
tions, which allows the synthesizer to enumerate all possible can-
didate implementations, not just those derivable with given domain
rules. Sketching thus allows us to use the verifier not just to prove
that the program is correct, but to help us write it, by searching the
space of sketch completions.

The first benefit of combinatorial synthesis is completeness: we
can both specify any finite program and sketch any implementa-
tion of it. A finite program is one whose input is bounded and
which terminates on all inputs after a bounded number of opera-
tions. Many high-performance kernels have this property. On the
contrary, systems based on domain-specific rewrite rules are often
incomplete [2, 6, 8, 9]. Furthermore, the rules may not easily reveal
which implementations they are able to generate.

The second benefit is that we can express sketches as genuine
partial programs, i.e., programs with “holes” that will be filled
by the synthesizer. Programmers use holes to ask the synthesizer
to insert various kinds of hard-to-write code fragments, such as
index expressions, more general polynomial functions, constants,
bit-masks, lookup-table content, or expressions dividing work in
divide-and-conquer algorithms. Further kinds of holes can be de-
fined by the programmer. Sketching with holes is supported by
the combinatorial synthesizer as it searches over all possible “hole

completions,” respecting given constraints on the kind of the hole,
until it finds a correct implementation.

We develop a programming language SKETCH for sketching
implementations of finite programs. Our language design is guided
by two goals. First, we seek a language that makes sketches easy
to write. In SKETCH, sketches look like hand-written implementa-
tions, except that the code fragments to be synthesized are replaced
with holes. The idea is that if a programmer would know how to
write the final program, he should also know how to sketch it since
the sketch is merely an incomplete implementation. We hope that
the programmer thus need not change his mindset and instead sim-
ply think of the synthesizer as a “hole-filling” assistant.

Our second goal is to provide an expressive but small set of
language constructs to specify various kinds of holes. We support
a single synthesis operator, denoted ??. The operator represents the
elementary hole: it is replaced by the synthesizer with a suitably
chosen constant. We show how richer kinds of holes can be easily
built from this versatile operator.

The SKETCH language is supported by a new synthesis al-
gorithm that is complete in that it can complete an arbitrary
sketch. The algorithm reduces the synthesis problem to a quanti-
fied boolean satisfiability (QBF) problem with one quantifier alter-
nation. Our solver for this problem uses a counterexample-driven
iteration over a synthesize-verify loop built from two communicat-
ing SAT solvers. We show that although the problem is harder than
NP-complete, the counterexample-driven search terminates on real
problems after solving only a few SAT instances.

We present an empirical evaluation of our system. We sketched
an implementation of the AES cipher, the current block cipher
standard. We show that the sketch describes a high-performance
implementation of the cipher very concisely, and that our solver
produces the complex implementation in a scalable way, in about
an hour. We also implemented a few kernels that are smaller in size
but stress test the solver’s synthesis abilities.

In summary, this paper makes the following contributions:

• We develop the first combinatorial code synthesizer. The syn-
thesizer works in the context of sketching. The synthesizer is
complete in that it can complete all sketches in theory; in prac-
tice, it scales well for realistic problems. It scales surprisingly
well also for some hard problems that we expected to be beyond
its limits, such as synthesis of polynomial expressions.

• We develop a language for sketching implementations of fi-
nite programs. Sketches are expressed as partial programs with
holes, which can be of various kinds. A single, versatile synthe-
sis operator can be used to synthesize various code fragments
to insert into the hole.

• We implemented the AES cipher and showed the scalability of
the solver for real problems.

Section 2 presents an example and Section 3 presents a tutorial
on programming with sketches. Section 4 defines the language
formally. Section 5 describes the synthesizer. Section 6 evaluates
the solver and describes our programming experience. Section 7
discusses related work.

2. Example
To illustrate sketching, we use an example from [13]. The problem
at hand is to efficiently implement the IP permutation from the DES
cipher. Such bit-level permutations form important building blocks
of block ciphers. The IP permutation is shown in Figure 1(a); the
corresponding specification in the SKETCH language is given here:

bit[64] IP (bit[64] x) {
int[64] P = { 63, 3, ... };

bit[64] ret = 0;
for (int i=0; i < 64; i++)

if (x[i]) ret[P[x]] = 1;
return ret;

}

When implementing a bit permutation, the programmer can exploit
a spectrum of solutions. These include implementing the permuta-
tion as a sequence of shifts and masks, or as a sequence of table
lookups whose results are ored together. However, the IP permuta-
tion is too irregular to permit a small number of shifts operations,
and requires too much space when implemented with tables, so the
programmer must resort to more clever optimizations.

Let us now show how sketching helps in developing the tuned
implementation. First, the programmer may notice that the permu-
tation has certain regularity. Specifically, it turns out it is possible
to first perform a simple permutation, implementable with a few
shift operations, after which one performs two identical permuta-
tions of half width; this would reduce the table storage four-fold.
The clever implementation is shown in Figure 1(b). The sketch for
this implementation is shown below.

bit[64] IPsketched (bit[64] x) implements IP {
bit[64] result;
bit[32] table[8][16] = ??;
x = permute(x, 2);
for (int i=0; i<8; ++i) {

result[0:31] |= table[i][x[i*4::4]];
result[32:63] |= table[i][x[32+i*4::4]];

}
return result;

}

The sketch contains two holes, in the arguably hardest parts of the
program. The first hole initializes the table table; the content of
the table will be synthesized, so the programmer need not write
(and debug) a script for filling the table, as is common today. The
second hole (permute(x,2)) will be replaced with a shift-and-or
operation sequence that will suitably permute the bits in x. We show
how this hole is defined in the next section; for now it suffices to
say that the argument 2 limits the number of shift operations that
will be synthesized.

Note that the sketch looks like an ordinary program with hard
parts omitted in favor of holes. All constraints needed to complete
the sketch are given in the code. For example, the loop encodes
the requirement that the second permutation is composed of two
identical, half-sized permutations.

3. Programming with Sketches
The SKETCH language is a procedural language with no pointers
but with support for sketching. The language is targeted towards
integer kernels over finite inputs. The features of SKETCH have
been selected so that the language can express any finite program.
A program is finite if (i) its input is bounded and (ii) the program
terminates on all inputs. For example, a matrix multiplication over
matrices of sizes known at compile time is a finite program, but a
search on an arbitrary binary tree is not. Important for our work is
that finite programs can be viewed as boolean functions that map a
vector of input bits to a vector of output bits. (Note that this func-
tional view does not preclude finite programs from implementing
an internal finite state machine, if that’s what the programmer de-
sires.)

This section gives a tutorial of the SKETCH language, going
from simple to more complex kernels. All sketches in this section

(a) (b)

Figure 1. (a) A truncated version of the DES IP permutation. (b) Same permutation decomposed into a simple permutation implementable
with shifts, followed by two identical permutations. The two permutations can be implemented using a single table, reducing table storage
four-times.

are beyond the power of [13], but can be completed by our new
compiler for reasonable word-sizes.

Isolate Rightmost Bit The following example is simple, but it
already benefits from the ability of the SKETCH language to verify
and sketch implementations.

The problem at hand is to isolate the rightmost 0-bit, if there
is any. For example, given a word 1010 0111, we return the bit
mask 0000 1000. The function isolate0 below is a straightforward
specification of the task. Like a good specification, the function is
readable at the cost of efficiency.

bit[W] isolate0 (bit[W] x) { // W: word size
bit[W] ret=0;
for (int i = 0; i < W; i++)

if (!x[i]) { ret[i] = 1; break; }
return ret;

}

Like isolate0, each SKETCH specification is executable and can
be invoked by clients until a better implementation of the specifi-
cation is developed.

The function isolate0Fast is such a better implementation;
it exploits bit-vector parallelism by relying on a little bit of alge-
bra [15]. (The SKETCH language support arrays and vector opera-
tions are provided for arrays of bits, to give access to bitwise integer
machine instructions.)

bit[W] isolate0Fast (bit[W] x) implements isolate0 {
return ~x & (x+1);

}

The implementation achieves performance at the expense of clar-
ity. While the correctness of this implementation is not imme-
diately obvious, the keyword implements insists that the func-
tion isolate0Fast implements specification isolate0. The equiv-
alence of the two functions is verified by the compiler, which guar-
antees that if i implements s, implementation i must produce the
same output as the specification s on all inputs, and thus be free of
all bugs.

The main contribution of SKETCH, however, is not the ability to
verify but the power to synthesize an implementation from a sketch.
The function isolate0Sketched illustrates a sketch. The “holes” in
the sketch are indicated by the ?? operators. These operators will
be replaced with a value, in this example, a bit vector.

bit[W] isolate0Sketched(bit[W] x) implements isolate0{
return ~(x + ??) & (x + ??);

}

In isolate0Sketched, the first ?? will be synthesized to the value
0, while the second one will be synthesized to the value 1.

In addition to sparing the user from having to derive some of
the low level details of the implementation, the ?? operator also
makes the sketches more reusable. For example, the user can excise
the sketch above into a separate function and use it to produce an
implementation not just for isolate0, but also for the dual problem
of isolating the rightmost 1-bit, specified by isolate1, whose code
we do not show.

bit[W] expression (bit[W] x) {
return ~(x + ??) & (x + ??);

}

bit[w] isolate0Sketched (bit[W] x) implements isolate0 {
return expression(x);

}

bit[w] isolate1Sketched (bit[W] x) implements isolate1 {
return expression(x);

}

We have two call sites of expression: In the first, the synthe-
sizer completes expression to ~x & (x + 1); in the second to
~(x - 1) & x. The semantics of calling a function in SKETCH is
thus that of cloning, which can be implemented by inlining the
function into the call site. expression alone is an unrestricted
sketch, one that is not asked to implement a particular specifica-
tion; such a sketch can be thought of having many different behav-
iors from which the synthesizer must select one when the sketch is
bound.

Population Count We now show how sketching can be used to
synthesize a tricky divide-and-conquer algorithm. The problem at
hand is to compute the population count of 1-bits in a word. The
obvious specification is here:

bit[W] pop (bit[W] x) pop
{

int count = 0;
for (int i = 0; i < W; i++) {

if (x[i]) count++;
}
return count;

}

An efficient implementation uses a divide and conquer strategy, in
which the original problem of summing k bits is divided into two
problems of summing k/2 bits, and so on recursively. After the
subproblems are solved, their results are added [12, 15].

The key to efficiency is solving the smaller problems (of the
same size) all in parallel, SIMD-style. Let us illustrate on the

smallest problem: we want to sum the number of 1-bits in the 0th
bit (the sum is either 0 or 1) with the number of bits in the 1st
bit, and store the result in these two bits; the same for all adjacent
pairs of bits. To perform these sums simultaneously with a single
addition instruction, the programmer must make the instruction
mimic SIMD semantics: even and odd bits must be aligned by
shifting and suitable bit masks must prevent the propagation of the
carry bit across the pairs of bits. The same must be accomplished
for the larger subproblems, only with different shift amounts and
bitmasks.

With sketching, writing the algorithm is easy. The SKETCH
compiler synthesizes the loop bound and the suitable masks and
shift amounts for each iteration of the loop.

bit[W] popSketched (bit[W] x) implements pop
{

loop (??) {
x = (x & ??) + ((x >> ??) & ??);

}
return x;

}

Notice that the sketch does not spell out details of the “divide” strat-
egy: in particular, the desire to divide the problem recursively in
two equal halves is not made explicit. Also note that the holes cor-
responding to the masks and shift amounts will get different values
on each iteration. This is because when the sketch is completed,
the loop construct will be unrolled before the holes in its body are
replaced with values (the details of this are explained in section 4).
For word size W = 16, the loop is unrolled 4 times. The synthesized
code is shown below.

x = (x & 0x5555) + ((x >> 1) & 0x5555);
x = (x & 0x3333) + ((x >> 2) & 0x3333);
x = (x & 0x0077) + ((x >> 8) & 0x0077);
x = (x & 0x000F) + ((x >> 4) & 0x000F);
return x;

Because the sketch offers a lot of freedom, the synthesized code is
not identical to the textbook version — which shifts in the expected
sequence (1, 2, 4, 8) rather than in (1, 2, 8, 4) — but the algorithm
behaves as desired and is equally efficient.

Another implementation, suitable when the word is populated
sparsely, is to keep resetting the rightmost 1-bit until the word
is zero [16]. The sketch below accomplishes this by invoking the
sketched function expression, which we previously used to syn-
thesize an implementation of isolate0 and also of isolate1.

int popSparseSketched (bit[W] in) implements pop {
int ret;
for (ret = 0; in; ret++) { in &= ~expression(in); }
return ret;

}

Notice that expression will be completed to isolate the rightmost
1-bit even though the synthesizer is not instructed to do so; the only
constraint given to the synthesizer is that popSparseSketched must
implement pop.

Richer holes It should now be easy to see how the programmer
can define “richer holes,” i.e., holes that will be replaced not with
a constant but with a synthesized expressions or sequence of state-
ments. We start with a bit permutation hole, which we used in Sec-
tion 2 to synthesize a bit permutation implemented with a sequence
of shift operations. The generator of this kind of hole is given here
(assume that x>>y with a negative y shifts x to the left):

bit[N] permute(bit[N] x, int count) {
bit[N] result;
loop (count) result ^= x>>?? & ??;
return result;

}

Another kind of hole is polynomial. Synthesizing a polynomial ex-
pression comes handy when the implementations involves a com-
plicated array index expression. This example also illustrates an
important pattern where recursive functions are used to define com-
plex expressions. We illustrate the polynomial generator poly us-
ing a contrived example that divides two polynomials; the hole is
replaced with the result of the division:

int spec (int x) {
return x*x*x*x + 6*x*x*x + 11*x*x + 6*x;

}
int p (int x) implements spec {

return (x+1)*(x+2)*poly(3,x);
}
int poly(int n, int x) {

if (n==0) return ??;
else return x * poly(n-1, x) + ??;

}

The recursive calls to the sketch poly will be inlined and the holes
are completed to produce a function shown below, which will in
turn be inlined into p.

int poly(int n, int x) {
int rv1;

int rv2;
int rv3;
rv3 = 0;

rv2 = x * rv3 + 1;
rv1 = x * rv2 + 3;

return x * rv1 + 0;
}

It is easy to see that with a little bit of constant folding, the function
above will turn into (x ∗ (x + 3)), which is the desired expression.

In Section 2 we have also shown a hole that initialized a lookup
table. This hole does not need a generator, but the programmers
will probably consider it a “richer hole.”

Using Rich Holes (Karatsuba Multiplication) The Karatsuba
multiplication algorithm is used to multiply large integers. Its com-
plexity is O(N1.585), as opposed to O(N2) for the standard long
multiplication algorithm, and it is the building block of many pub-
lic key ciphers. The algorithm is recursive, and is generally used on
integers of unbounded size. For this example, we will assume inte-
gers of a small fixed size, but it is worth pointing out that although
the synthesized code will have been proven correct only for this
small size, it will actually work for arbitrary input sizes. Proving
this mechanically in general will be the subject of future work, but
for now, the algorithm will serve as an example of the use of rich
holes to express complex code patterns.

The algorithm uses a divide-and-conquer approach. We are
given two N -digit numbers x and y which we split in half bit-
wise: x = x1b + x0, y = y1b + y0, where b = 2k is a base.
The standard multiplication can be defined in this fashion as shown
here.

x ∗ y = b2x1 ∗ y1 + b(x1 ∗ y0 + x0 ∗ y1) + x0 ∗ y0

bit[N*2] k<int N>(bit[N] x, bit[N] y) implements mult {
if (N<=1) return x*y;

sbit[N/2] x1 = x[0:N/2-1]; sbit[N/2] x2=x[N/2:N-1];
sbit[N/2] y1 = y[0:N/2-1]; sbit[N/2] y2=y[N/2:N-1];

sbit[2*N] t11 = x1 * y1;
sbit[2*N] t12 = poly(1,x1,x2,y1,y2)*poly(1,x1,x2,y1,y2);
sbit[2*N] t22 = x2 * y2;

return multPolySparse<2*N>(2, N/2, t11)
+ multPolySparse<2*N>(2, N/2, t12)
+ multPolySparse<2*N>(2, N/2, t22);

}
bit[2*N] poly<int N>(int n, sbit[N] x0, x1, x2, x3) {

if (n<=0) return ??;
else return (??*x0 + ??*x1 + ??*x2 + ??*x3)

* poly<N>(n-1, x0, x1, x2, x3);
}
bit[2*N] multPolySparse<int N>(int n, int x, sbit[N] y) {

if (n<=0) return 0;
else return y<<x*?? + multPolySparse<N>(n-1, x, y);

}

Figure 2. Sketch for Karatsuba’s multiplication. The type sbit[N]
stands for a signed bit-vector, and includes a sign bit in addition to
its N bits.

We denote the expensive (big-integer) multiplication with the ∗
operator. The multiplication with the base terms is implemented
with shifts, so it is not an expensive operation.

Let us illustrate how Karatsuba might have been able to invent
(and implement) his algorithm with the assistance from sketching.
He would first observe that it may be possible to replace the four
expensive multiplications with three expensive multiplications. He
would guess that one cannot avoid computing terms x0 ∗ y0 and
x1∗y1, so he would focus on replacing the term x1∗y0+x0∗y1 with
a one-multiplication term. This optimization would be performed at
the expense of adding big-integer additions or subtractions, a good
trade-off. To express his idea, he would write the following sketch,
expressed mathematically. Note that we ask to synthesize new base
terms, too.

x ∗ y = poly(??, b) ∗ (x1 ∗ y1)

+ poly(??, b) ∗ (poly(1, x1, x0, y1, y0) ∗ poly(1, x1, x0, y1, y0))

+ poly(??, b) ∗ (x0 ∗ y0)

It turns out that the idea for this optimization is correct and the
algorithm is synthesized as follows.

x ∗ y = (b2 + b) ∗ (x1 ∗ y1)

+ b ∗ ((x1 − x0) ∗ (y1 − y0))

+ (b + 1) ∗ (x0 ∗ y0)

The sketch given the in the SKETCH language, shown in Figure 2,
is only a little more complex than the clean mathematical sketch.
The key reason is that we make explicit the fact that multiplications
with the base terms are performed with shifts. Our system currently
completes and verifies the sketch for N = 12. The resulting
program is correct for all N , though, as was said before, it is up
to the programmer to verify this since our system can only make
claims about the finite version of the program it was asked to verify.

4. Language Definition
This section defines the meaning of a sketch, by which we mean
the set of functions that the sketch can be made to compute. We
give the meaning of a sketch through a partial evaluation procedure
that non-deterministically transforms a given sketch into any of its
possible completions. Functions computable by a sketch are thus
defined via programs that can be produced from it. We first describe
the meaning of sketches in a general, language-independent way,
and then make the definition specific to the SKETCH language.

A sketch is any program containing holes. The meaning of a
sketch p is the set of programs C(p) that can be obtained by com-
pleting p. The set of completions C(p) is computed by evaluat-
ing p with a semantics-preserving partial evaluator (PE) that evalu-
ates the hole ?? to a non-deterministically selected constant. The
PE thus non-deterministically produces all possible completions
of a sketch. An s-correct completion of a sketch p is a program
p′ ∈ C(p) that is behaviorally equivalent to a specification s. A
sketching compiler for a language L is a program that takes as in-
put a sketch p in L, a specification s in L and produces an s-correct
completion of p.

While the above definition permits any semantics-preserving
PE, the choice of PE determines the semantics of holes in terms
of how many different values a syntactic instance h of a hole is al-
lowed to generate. For example, if we desire an extreme semantics
in which h always evaluates to the same value, we would use a PE
that never duplicates a program fragment (and hence does not un-
roll loops or inline functions). Such a PE syntactically replaces, in
the original sketch, each instance of h with a literal. On the other
hand, if we desire the ability to define rich holes by means of recur-
sive functions, as was done in Section 3, we need a more powerful
semantics for holes: we want the PE to inline functions, so that mul-
tiple copies of a hole can be created, allowing each to be completed
to a different value.

The partial evaluator underlying the SKETCH language unrolls
all loop-loops, does not unroll while-loops, and inlines all function
calls, except for calls to functions with the implements clause
(we call these functions restricted sketches). We arrived at this
design after expressing our benchmarks under various semantics
and observing that this choice led to the most natural sketches.
(The rationale for not inlining restricted sketches can be seen in
the Karatsuba Multiplication example in Section 3, where we want
each recursive invocation of the sketch to completed the same way;
i.e., we want to synthesize only one copy of the sketch.)

We now elaborate on the PE in the SKETCH language. We do
so with a small imperative language extended with the sketching
constructs found in SKETCH. The sketch-free subset of SKETCH
is a standard imperative language over booleans and integers. It
includes a counting loop loop e do c which evaluates the integer
expression e once and executes c exactly e times. A function f
returns a value by assigning to the output variable f, named after
the function. The abstract syntax for the language is shown below;
it does not include all SKETCH constructs; in particular it omits
arrays, for loops, and functions with multiple arguments. They are
omitted because their semantics is standard even in the presence of
sketching operators, although it is important to point out that for
loops are handled like while loops.

expressions e ::= n | true | false | x | e op e | f(e)
statements c ::= let x = e in c | x := e | skip |

if e then c else c | c ; c |
while e do c | loop e do c

functions f ::= def f(x) c
programs p ::= p f | f

Sketching is enabled with two constructs:

expressions e ::= ??
functions f ::= def f(x) implements g c

We define the partial evaluator with rewrite rules. The following
notation applies to statements.

〈c, σ〉 → 〈c′, σ′〉
The rule states that, given a state σ, a statement c is partially
evaluated to a residual statement c′. The state σ maintains values
of variables in the spirit of constant propagation: variables found
to be constant are mapped to their constant values; non-constant
variables are mapped to a special value ⊥. Partial evaluation of c
under the initial state σ produces a modified state σ′. The special
state σ⊥ maps all variables to ⊥. Given two different values v1 and
v2, we define v1 ∩ v1 = v1, v1 ∩ v2 = ⊥, and v1 ∩ ⊥ = ⊥. We
define σ1 ∩ σ2 = [x �→ σ1(x) ∩ σ2(x) | x ∈ σ1 ∩ σ2].

The following notation applies to expressions.

〈e, σ〉 → 〈v, e′〉
Partial evaluation of e in state σ returns its residual expression e′

as well as a value v. When e evaluates to a constant n, then v = n;
otherwise, v =⊥. Expressions are free of side effects, so they do
not modify σ.

The partial evaluator rules are all shown in Figure 3, except for
some symmetric and the obvious rules. To understand the partial
evaluator, it is useful to start with rules E-Var, E-Op1, and E-Op2.
We see that a non-constant variable x is evaluated to ⊥; it produces
code fragment x. A constant variable is evaluated to a constant n;
it generates the literal n. The rules for op evaluate the operator if
both operands are constants. Otherwise, the residual expression is
generated.

The key non-deterministic rule is E-hole, where the code gener-
ated from a hole is a non-deterministically chosen literal. Together
with the non-deterministic rules for loop unrolling and function call
inlining, discussed below, this rule makes the evaluator produce all
sketch completions.

Unrolling of counting loops deserves special attention. When
the iteration-count expression e is a constant n, the loop body is
replicated n times (S-Loop1). Otherwise, the loop is unrolled with
a loop-exit test before each iteration (S-Loop2). The unroll factor
is determined speculatively: the synthesizer unrolls the loop by
some amount, terminating unrolling with rule S-Loop3 (formally,
there is a non-deterministic choice between S-Loop2 and S-Loop3).
In order to determine if the loop was unrolled sufficiently, an
assertion is inserted by S-Loop3. This assertion is statically verified
by the synthesizer described in the next section. If the assertion
may fail on some input to the completed sketch, the loop needs
to be unrolled more. In this case, the partial evaluation process is
repeated with a larger unrolling factor.

Inlining of function calls is handled with four rules. When the
called function evaluates to a constant, the function call disappears
(E-Call1a). Otherwise, we inline the residual code of the function
body (E-Call1b). In the latter rule, we model inlining as function
cloning: a new function called g is generated and called from the
original call site. Note that in c′, the body of function g obtained
by partially evaluating the body of f , we must rename the return
variable f to g. E-Call3 handles calls to restricted sketches. These
calls are not inlined, since in SKETCH, we wish to complete only
one copy of these sketches. Also note that we evaluate the call to
the specification of these sketches, whose behavior is known be-
fore synthesis is completed Analogously to E-Loop3, Rule E-Call3
non-deterministically terminates the inlining with an assertion that
checks whether the partial evaluator performed potentially recur-
sive inlining deep enough for all inputs.

σ(x) =⊥
〈x, σ〉 → 〈⊥, x〉

σ(x) �=⊥
〈x, σ〉 → 〈σ(x), σ(x)〉 (E-Var)

〈n, σ〉 → 〈n, n〉 (E-Lit)

choose() ⇒ n

〈??, σ〉 → 〈n, n〉 (E-Hole)

〈e1, σ〉 → 〈n1, e′1〉 〈e2, σ〉 → 〈n2, e′2〉 n1 op n2 ⇒ n

〈e1 op e2, σ〉 → 〈n, n〉 (E-Op1)

〈e1, σ〉 → 〈⊥, e′1〉 〈e2, σ〉 → 〈n2, e′2〉
〈e1 op e2, σ〉 → 〈⊥, e′1 op e′2〉

(E-Op2)

(def f(in) c) 〈e, σ〉 → 〈v′, e′〉
〈c, σ⊥[in �→ v′]〉 → 〈c′, σ′〉 σ′(f) �=⊥

〈f(e), σ〉 → 〈σ′(f), σ′(f)〉 (E-Call1a)

(def f(in) c) 〈e, σ〉 → 〈v′, e′〉
〈c, σ⊥[in �→ v′]〉 → 〈c′, σ′〉 σ′(f) =⊥ fresh g

〈f(e), σ〉 → 〈⊥, g(e′)〉 emit def g(in) c′[g/f]
(E-Call1b)

(def f(in) implements g c)
(def g(in) c2)

〈e, σ〉 → 〈v′, e′〉 〈c2, σ⊥[in �→ v′]〉 → 〈c′2, σ′〉
〈f(e), σ〉 → 〈σ′(g), f(e′)〉 (E-Call2)

〈f(e), σ〉 → 〈⊥, assert false〉 (E-Call3)

〈e, σ〉 → 〈v, e′〉
〈x := e, σ〉 → 〈x := e′, σ[x �→ v]〉 (S-Asgn)

〈e, σ〉 → 〈true, e′〉 〈c1, σ〉 → 〈c′1, σ′
1〉

〈if e then c1 else c2, σ〉 → 〈c′1, σ′
1〉

(S-If1)

〈e, σ〉 → 〈⊥, e′〉
〈c1, σ〉 → 〈c′1, σ′

1〉 〈c2, σ〉 → 〈c′2, σ′
2〉 σu = σ′

1 ∩ σ′
2

〈if e then c1 else c2, σ〉 → 〈if e′ then c′1 else c′2, σu〉 (S-If2)

〈c1, σ〉 → 〈c′1, σ′
1〉 〈c2, σ′

1〉 → 〈c′2, σ′
2〉

〈c1; c2, σ〉 → 〈c′1; c′2, σ′
2〉

(S-Seq)

〈e, σ〉 → 〈n, e′〉 〈
n

� �� �
c; . . . ; c, σ〉 → 〈c′, σ′〉

〈loop e do c, σ〉 → 〈c′, σ′〉
(S-Loop1)

〈e, σ〉 → 〈⊥, e′〉
S

def
= let t = e′ in if t > 0 then {c; loop t − 1 do c}

〈S, σ〉 → 〈c′, σ′〉
〈loop e do c, σ〉 → 〈c′, σ′〉 (S-Loop2)

〈e, σ〉 → 〈⊥, e′〉
〈loop e do c, σ〉 → 〈assert e′ ≤ 0, σ〉 (S-Loop-3)

〈e, σ⊥〉 → (v, e′) 〈c, σ⊥〉 → (c′, σ′)
〈while e do c, σ〉 → 〈while e′ do c′, σ ∩ σ′〉 (S-While)

〈c, σ⊥〉 → 〈c′, σ′〉 fresh h (def h(in) c′[h/f]) h ≡ g

〈def f(in) c implements g, σ⊥〉 → 〈def f(in) c′, σ′〉 (S-Impl)

Figure 3. The partial evaluation rules for producing sketch com-
pletions in SKETCH.

Finally, rule S-impl translates definitions of restricted sketches.
In contrast with other rules, this rule does not generate all possible
completions of a sketch f . Instead, it selects a completion from
C(f) that behaves like the specification g. Formally, this selection
assumes that the partial evaluator can guess hole values that will
make the completed sketch behave suitably. The next section shows
how the holes are computed in our system.

5. Synthesis of Holes
In this section, we describe how our synthesizer computes the val-
ues of holes. We first describe how this hole synthesizer collab-
orates with the partial evaluator defined in the previous section.
Next, we phrase synthesis of holes as a quantified boolean satisfia-
bility problem. We then show how SKETCH programs are translated
to boolean functions suitable for this problem. Finally, we present
a new counterexample-driven solver for the boolean satisfiability
problem, as well as our scalability optimizations.

5.1 The SKETCH Compiler

In Section 4 we defined the semantics of sketches in terms of a
partial evaluator which non-deterministically replaces holes with
constant values that are then propagated through the program. In
practice, the SKETCH compiler implements this transformation us-
ing a three-stage process. First, the partial evaluation algorithm in
Figure 3 is invoked, slightly modified: the holes are replaced with
free variables and evaluated to the unknown value ⊥.

fresh c
〈??, σ〉 → 〈⊥, c〉 .

These free variables are added to the function parameters of the
sketch and are referred to as control inputs.

Second, the synthesizer computes an assignment of values for
these control inputs. After these computed values are assigned to
the control inputs, a fully completed sketch is obtained. As an
aside, it is in this step where a sketch may be shown to be buggy
(i.e., it cannot be completed to behave like the specification) or an
assertion may be found to fail (e.g., some loop should have been
unrolled more). In the latter case, the first step must be repeated to
unroll loops further.

The last step optimizes the completed sketch by partially re-
evaluating it with Figure 3. At this point, all holes have been
replaced with constants, allowing code improvements. In fact, the
code produced will be the same as if the E-Hole rule in Figure 3 was
magically able to guess a suitable value in the first step. An example
of code improvement possible in the step: if a loop iteration count
becomes known once the hole are filled in, a loop initially unrolled
with E-Loop2 will be partially evaluated (with rule S-If1) into the
more efficient form normally produced by rule E-Loop1.

5.2 Synthesis as QBF

The synthesizer represents SKETCH programs as boolean func-
tions. Both specifications and sketches are translated to boolean
functions with the same procedure. A specification with m input
bits and n output bits is translated to a function P : {0, 1}m →
{0, 1}n. A matching sketch with k control inputs is translated to
a function S : {0, 1}(m+k) → {0, 1}n. As will be shown in Sec-
tion 5.3, these boolean functions model program semantics without
approximation.

Having obtained functional description of the specification and
the sketch, we phrase synthesis as an instance of the Quantified
Boolean Formula Satisfiability problem (QBF). QBF is a general-
ization of the boolean satisfiability problem (SAT) in which both
existential and universal quantifiers can be applied to a boolean
formula. Formally, the sketch S can be completed to the specifi-
cation P if there exists a control c such that the specification and

sketch are functionally identical, i.e., when the following formula
is satisfiable.

∃c ∈ {0, 1}k,∀x ∈ {0, 1}m; P (x) = S(x, c) (5.1)

This problem is decidable, because c and x range over finite do-
mains. Consequently, for any sketch expressed in our language, we
can either complete the sketch or show that the sketch is buggy.

5.3 Programs as Boolean Functions

Our translation to boolean functions largely follows the standard
approach used by other verifiers [3, 17]. Expressions computing k-
bit integers are modeled as a boolean function that computes a k-bit
output vector from the program inputs and controls.

To efficiently model array operations and switch statements,
we represent some integer expressions with a less standard sparse
encoding, detailed below. Each expression has a type; either bin if
it is to be represented with the (binary) encoding, or spar if it is
encoded sparsely. Currently, we assign these types syntactically,
based on operations performed, but one can imagine a smarter
selection of representations.

The translation of a program into its boolean representation
computes a symbolic value for each program variable. The sym-
bolic value is a boolean function over the inputs to the program.
The boolean representation of a function is the symbolic value
of its return variable. A symbolic state π maintains symbolic val-
ues of variables. We describe the translation of SKETCH programs
into boolean functions with rewrite rules in the following notation:
〈p, π〉 → 〈b, π′〉 means that a program fragment p in state π pro-
duces a boolean function b in state π′. Since expressions do not
affect the state, we abbreviate to 〈e, π〉 → b. Similarly, since state-
ments do not produce values, we abbreviate to 〈c, π〉 → π′.

We first discuss the translation of a function call. Assume func-
tion f has parameters in1, . . . , inm; recall that this function returns
the last value assigned to variable f in the body of f.

def f(in1, . . . , inm) c
〈c, [in1 �→ π(x1), . . . , inm �→ π(xm)]〉 → π′

〈f(x1, . . . , xm), π〉 → π′(f)

There is an analogous rule for the case where f is a restricted
sketch; in that case, instead of translating the body of f, as in rule
E-Call2 in Figure 3, we translate the body of its specification. The
specification has the same behavior and its body contains no holes,
which simplifies matters.

To translate a definition of a function, we invoke the rule for
translating a function call but we initialize π to functions that map
parameters to themselves. For example, given

def f(x,y) {x:=y; f:=x+y;}

we set π to [x �→ λx y.x, y �→ λx y.y]. After the call is translated,
the function π′(f) = λx y.y + y, expressed as a boolean circuit, is
the function representation of function f .

5.3.1 Arrays and sparse integer expressions

The sparse integer representation is primarily intended to efficiently
model array operations. The sparse encoding is very similar to
guarded location sets used by Saturn [17] to represent pointers
(Saturn does not model arrays). The sparse encoding represents an
integer as a set of guarded values of the form (v, b), where v is an
integer constant and the guard b is a boolean function over input
variables. If b is true, then the integer has value v. We maintain
an invariant that for all inputs at most one guard will be true.
Similarly, we maintain uniqueness of the guarded values by taking
a disjunction of terms guarding the same value.

Let us assume that x = in1, . . . , inm is a vector of program
inputs. An integer constant n represented sparsely uses a guard
function that returns true on any input:

〈n : spar, π〉 → [(n, λx.true)]

Arithmetic expressions are handled by applying the arithmetic
operation on pairs of values from the two operands and guarding
them with the conjunction of their respective conditions.

〈e1 : spar, π〉 → [(v1
1 , b1

1), . . . (v
1
k, b1

k)]
〈e2 : spar, π〉 → [(v2

1 , b2
1), . . . (v

2
l , b2

l)]

〈e1 op e2 : spar, π〉 → [(v1
i op v2

j , b1
i ∧ b2

j)]

It is useful to note here that the sparse representation makes it easy
to discover constants. If an expression e : spar does not depend on
any inputs or controls, then e = [(n, λx.true)] for some constant
n. (In practice, we only do trivial minimizations on the guards as we
construct them, so the sparse representation for a constant could be
e = [(n1, f1), (n2, f2), . . . (nk, fk)], where some fi is a tautology
while the remaining guards are unsatisfiable.)

The conversion from binary to sparse representation incurs a
potentially exponential size explosion since the sparse form is, in
the worst case, a unary representation.

〈e : bin, π〉 → [b1, . . . , bk]

〈e : bin, π〉 → [(i, λx.e(x) = i) | ∀i ∈ {0 . . . 2k − 1}] : spar

To alleviate the exponential explosion, one can examine how the
sparse value is to be used. For example, if the sparse integer is used
only to index an n-element array, then the sparse representation
needs to maintain at most n + 1 terms: n terms for the array
elements and a term to discover out-of-bounds accesses. (Here, we
generalize the sparse representation somewhat in that the latter term
represents not a single constant but all out-of-bounds index values.)

We are now ready to translate array accesses. An n-element
array is modeled as a (dense) tuple of n boolean functions, which
can be either all in the binary form

ar : bin = [[b1
1, . . . , b

1
k], . . . , [bn

1 , . . . , bn
k]]

or all in the sparse form

ar : spar = [[(v1
1 , b1

1), . . . , (v
1
l1 , b1

l1)], . . . , [(v
n
1 , bn

1), . . . , (vn
ln , bn

ln)]]

Index expressions are always in sparse form.
Given an index expression e : spar and an array ar : bin, the

translation produces ar[e] : bin. The translation proceeds bitwise:
the j-th bit in ar[e] : bin will be true if the j-th bit of ar[p] is true,
and e evaluates to p. The value of e will equal p if for some i, the
pair (xi, fi) in the sparse representation of e has xi = p and fi

evaluates to true.

〈e : spar, π〉 → [(x1, f1), . . . (xl, fl)]
π(ar) = [[b1

1, . . . , b
1
k], . . . , [bn

1 , . . . , bn
k]]

〈ar[e] : bin, π〉 → [(
�

i≤l(b
xi
1 ∧ fi)), . . . , (

�
i≤l(b

xi
k ∧ fi))]

Given an index expression e : spar and an array ar : spar, the
translation produces ar[e] : spar. To understand the translation,
shown below, consider the conditions under which a value vp

i stored
in the array becomes the value of ar[e]. (1) Since the value vp

i

belongs to the values of the sparse array element ar[p], the sparse
index expression e must be able to evaluate to p. In other words,
e : spar must contain a value xj = p. (2) The guard function fj

of xj must evaluate to true, meaning that we indeed want to read
the element ar[p]. (3) To ensure that vp

i , is actually the value of
ar[p], its guard function b

xj

i must evaluate to true. To obtain the
translation, these conditions are collected for all values that ar[p]
can evaluate to (iteration over all i’s), as well as for all possible
index values (iteration over all j’s).

〈e : spar, π〉 → [(x1, f1), . . . (xk, fk)]
π(ar) = [[(v1

1 , b1
1), . . . , (v

1
l1

, b1
l1

)], . . . , [(vn
1 , bn

1), . . . , (vn
ln , bn

ln)]]

〈ar[e] : spar, π〉 → [(v
xj

i , b
xj

i ∧ fj) | 1 ≤ j ≤ k, 1 ≤ i ≤ lxj]

We can now illustrate why the sparse representation models
common array operations more efficiently than the binary repre-
sentation. There are two reasons for this, and both have to do with
the way arrays are used in programs. The first reason is that array
index expressions often range over a small set of values, a prop-
erty not exploited by the binary representation. For example, the
following statements appear in one of the benchmarks we studied:

tmp = (i+??)%4;
idx = input[(tmp)*4+j];

In the benchmark, i and j are constant so the index can take only
four different values, but that information would be lost if the
expressions were represented in bit-vector form.

The second reason is that when arrays are used in loops, their in-
dex is often the sum of a loop invariant expression and an induction
variable (which after unrolling the loop becomes a constant).

ofst = ??;
for(int i=0; i<N; ++i){

out[i] = (ofst+i)<N ? in[i+ofst] : 0;
}

This pattern is handled very efficiently by the sparse values. For
example, in the code above out[i] evaluates to:

(f0 ∧ in[i]) ∨ (f1 ∧ in[i + 1]) ∨ . . . ∨ (fn−i−1 ∧ in[n − 1])

The fi are the guard variables of the sparse ofst. If ofst were
represented in binary, each access to array in would involve evalu-
ating an expensive boolean function. The function would compute
ofst+i with an adder circuit and then perform the selection of the
array element. With the sparse representation, the guard functions
are computed only once for each assignment to ofst. Also, the ad-
dition of constants such as i is free, since they are folded into the
guarded values.

5.3.2 Conditionals and Loops

The treatment of conditionals is fairly standard; we convert them
into predicated code, as in [3,17]. Loops are also handled in essen-
tially the same way as in [3, 17]. They are unrolled by a fixed fac-
tor and assertions are inserted to ensure that the loop was unrolled
sufficiently. The rules in figure 3 already unrolled the loop con-
struct, but when generating boolean functions, all remaining kinds
of loops need to be unrolled, too.

An interesting point is that even though our handling of loops is
fairly standard, the sparse representation of integers leads to more
efficient representations for loops, particularly for the loop con-
struct. This is because when such loops get unrolled, they produce
if statements with conditions of the form t − i > n. These con-
ditions have very small boolean representations when t is a sparse
integer and n and i are constants. In fact, when t is sparse, we
can often statically determine branch directions, even if we can-
not determine the precise value of t. For example, if we know
t = [(0, v1)(3, v1)], then if we also know that t > 0, it must
be that t = 3. This way, we can statically eliminate most of the
branches produced when generating functions for loop(t) c.

5.3.3 A Simple Example

As an example of the application of these rules, consider the sketch:

def f(int[4] in){
loop(??)

f = f ^ in[??];
}

Then, after applying the rules in Figure 3, the function becomes

def f(int[4] in, int c1, int c2, int c3, int c4){
let t0 = c1 in

if(t0>0)
f = f ^ in[c2];
let t1 = t0-1 in

if(t1>0)
f = f ^ in[c3];
let t2 = t1-1 in
if(t2>0)

f = f ^ in[c4];
assert t2-1 == 0;

}

Assume the unknowns are fixed at two bits (see Section 5.5). Then
we have that

c1 → [ĉ1, ĉ2]

When ?? is converted to sparse form, we get that ?? becomes

t0 = [(0,¬ĉ1 ∧ ¬ĉ2), (1, ĉ1 ∧ ¬ĉ2), (2,¬ĉ1 ∧ ĉ2), (3, ĉ1 ∧ ĉ2)]

and the expressions t1>0 and t2>0 become (ĉ1 ∧ ¬ĉ2) ∨ (¬ĉ1 ∧
ĉ2) ∨ (ĉ1 ∧ ĉ2) and (¬ĉ1 ∧ ĉ2) ∨ (ĉ1 ∧ ĉ2) respectively .

5.4 Counterexample-Driven Solver

Problem (5.1) is decidable but intractable. In general, QBF is
PSPACE-complete, and can be solved in time exponential in the
number of quantified variables. However, Problem (5.1) is a re-
stricted form of QBF with only one quantifier alternation (of the
form ∃ ∀), a problem known as 2QBF. The computational com-
plexity of this problem is Σ2-complete, falling in the polynomial
hierarchy between NP and PSPACE.

Our solver relies on two SAT solvers, co-operating in a synthesize-
verify loop. First, a random input x is generated and the synthesiz-
ing solver attempts to find control c that makes the sketch equal to
the specification on the input x. If such control cannot be found, the
sketch is buggy. Otherwise, the control c is given to the verifying
solver, which attempts to verify that the sketch is equivalent to the
specification on all inputs. If so, the sketch can be completed and
control c is the result of the synthesis. Otherwise, a counterexample
input provided by the verifier is added to the set of inputs consid-
ered by the synthesizer and the process repeats. The algorithm is
shown in Figure 4.

The algorithm will terminate because, in the worst case, each of
the 2m inputs will appear as a counterexample, at which point the
synthesizer’s answer no longer needs to be verified. This reduction
of 2QBF to two SAT solvers does not come free: the algorithm
requires more than polynomial space but the trade-off is that we
can employ the efficient techniques embedded in modern SAT
solvers. Others have used two cooperating SAT solvers to solve
2QBF problems before [11]; however, none of the solvers presented
in [11] uses counterexamples to guide the synthesis of controls in
the way we do.

5.5 Scalability Optimizations

In order to improve scalability, our solver performs the following
optimizations.

�������� ������������	��
� S� ���
�

����� P �
�� ��������	�
�����
 ����
���
���� S ��� � ������ ������
��
��
� �� ���
�����
 �
�� ����� ��� �

 ����� ������� �� ����
�� ���
�����������
� ����� �� ��� ��� �� ������ ��� �������
I = {}
x = ������()
��

I = I ∪ {x}
c = �����������������������(I)
�� c = ��� ��	� 	
��������� �	��
���
x = ������������������(c)

����	 x �= ���

	��
� c

�������� ��������������������������� �� ������ I�
�� ��������	�
�����
� c ���� ���� ��� ����
� ������
��� �� ���
�� ���
��
����� �� �

 ������ ���� I� ����� ∀x ∈ I.P (x) = S(x, c)
��
�

x∈I P (x) = S(x, c) �� �����
���� ��	�

	��
� c ���� �����
�� ��� �������
	��	 �� ����
� S
����� ��
���
����

	��
� ���
	�� ��

�������� �������������������
������ c�
�� ������ �� ����
� S
���
���� ����
�����
� c �� ���
�����

�
�� ������
��� �� ��� ���
��
����� P � �� ���� ������ ��� �������
��
�����������
�! x� ����� P (x) �= S(x, c)�
�� P (x) �= S(x, c) �� �����
���� ��	�

	��
� x ���������� ��� �������
	��	

	��
� ���
	�� ��

Figure 4. The counterexample-driven synthesis algorithm.

Increasing Ranges of Holes. The translation of some language
constructs leads to exponentially large boolean functions, for ex-
ample in loop(??), where the loop is controlled by a value un-
known at the time of translation. Our solution is to initially restrict
the range of holes and attempt synthesis. When synthesis fails, we
re-translate the sketch with a larger range.

Specialization of the Boolean Formula For each new counterex-
ample input xi that we add to the SAT problem that handles the
synthesis, we have to add a new set of clauses corresponding to
P (xi) = S(xi, c). However, when generating these clauses, the
input is a known constant, so we can specialize the formula, pro-
ducing many fewer clauses than what we would need to represent
P (x) = S(x, c) for an arbitrary input x.

ABC For most SAT problems, we use the MiniSAT [4] solver.
However, for the hardest problems our solver can switch to ABC [10],
a system which does logic optimization based on And-Inverter
Graphs originally designed for circuit verification and optimiza-
tion. For the hardest problems we’ve encountered, ABC provides
order of magnitude improvement over the standard SAT solver.

6. Evaluation
To evaluate our system, we coded a set of small benchmarks from
various domains, including networking, cryptography, and coding.
The benchmarks are described in Section 6.1. Section 6.2 describes
the performance of the solver and analyzes the factors that deter-
mine the solving time. Subsection 6.3 takes the pop benchmark and
shows how the user can improve the running time for the solver
by providing the compiler with additional information about the
contents of holes. Finally, subsection 6.4 shows a case study of the
SKETCH solver for a real benchmark, the AES encryption stan-
dard, and describes how the SKETCH compiler is able to incor-
porate multiple sketches to produce a single implementation. The

section also shows that the code produced by the SKETCH com-
piler is competitive with a real hand-tuned implementation of the
benchmark available in the public domain.

6.1 The Benchmarks

The following benchmarks were used to test our solver.
log2 computes the log of a number using only log(n) operations
for an n bit word, by performing what amounts to a binary search.
The sketch leaves unspecified a loop iteration count as well as two
masks and a shift amount in the body of the loop.
pop is the population count benchmark described in Section 3.
parity computes the parity of an n-bit word in a divide-and-
conquer fashion using log(n) operations. The sketch leaves un-
specified a loop iteration count, and a shift amount in the loop
body.
reverse reverses the order of the bits in an n-bit word in a divide-
and-conquer fashion using log(n) operations. The sketch contains
a loop with an unspecified iteration count, and in the body of the
loop is a statement t = ((t >> s)& m) | ((t << s)&~m), where
m is set with a hole on each iteration, and s is multiplied by an
unknown value on each iteration.
crc is a widely used error detection code based on division of poly-
nomials. The input message is interpreted as coefficients mod 2
of a polynomial M(x). The checksum for the message is defined
as the reminder of dividing this polynomial by a fixed polynomial
K(x) of degree n.

This benchmark is interesting because it is an example of a
streaming program. It is technically not finite, because it manip-
ulates a message of unbounded size, but it was easily refactored
into an outer loop which iterates over the entire message and a fi-
nite procedure which takes the current checksum and the next word
of input, and produces a new checksum. The sketch uses a well-
known trick to produce a table-based implementation. Our sketch
has a parameter S, which determines the number of tables.
poly This is the polynomial example from section 3.
karat is the karatsuba multiplication algorithm from section 3.

6.2 Synthesizer Performance

Table 1 summarizes the completion times for the benchmarks de-
scribed above on a 1.3 GHz Pentium 3 with 1GB of RAM. All
benchmarks were run using 5 bits for each integer hole and 8 as
the default unroll factor for loops. The table lists the number of
bits for both the input and the controls, and the number of nodes in
the boolean dag that represents the sketch and the spec after partial
evaluation. The table also lists data about the behavior of the solver,
including the number of iterations of synthesis and verification, and
the total time spent on these two.

The first observation that jumps out from the data is that the
solution time for most benchmarks is dominated by the synthe-
sis time, as opposed to verification. This is expected considering
most benchmarks have a lot more controls than inputs, so the search
space for synthesis is much larger. The predominance of the syn-
thesis time also explains the very weak correlation between the so-
lution time and the size of the spec. This is because the synthesis
phase searches for controls that work for a given set of inputs, so in
this phase the spec is completely evaluated away into a set of out-
put values. This makes the internal structure of the spec irrelevant
for the synthesis time. The fact is of practical importance because
users should not attempt to modify their specifications to please the
solver.

Two exceptions for which verification time dominates are crc
and poly-15. poly is a challenging benchmark involving addition
and multiplication, which are known to cause problems for SAT
solvers, so the what is surprising is not that verification is slow
but that synthesis is so fast. This is likely due to the fact that even

Bench In ctrl spec sketch Iter Synth Verify
crcS2 32 512 816 1208 25 2.28 77.90
crcS4 32 1024 816 1396 61 6.10 65.20
crcS8 32 8192 816 8402 511 223.52 589.04
crcS2 16 128 216 316 13 0.08 0.27
crcS4 16 256 216 362 31 0.18 0.53
crcS8 16 2048 216 2113 255 8.22 22.78
kar 4 59 22 427 7 0.52 0.02
kar 8 61 131 950 8 21.55 0.19
kar 12 63 324 1540 8 51.70 1.62
log2 4 109 24 501 7 0.07 0.02
log2 8 173 126 957 17 1.06 0.12
log2 16 301 570 1869 25 70.75 0.71
log2 24 429 1334 2781 52 1006.93 2.72
pop 4 77 35 478 8 0.08 0.02
pop 8 109 149 966 13 1.10 0.09
pop 16 173 617 1942 21 1016.93 2.27
parity 4 45 8 178 4 0.01 0.00
parity 8 45 16 266 7 0.02 0.01
parity 16 45 32 442 10 0.24 0.10
parity 32 45 64 794 24 52.00 3.12
poly 5 30 322 834 3 0.06 0.09
poly 10 60 1527 3739 5 0.35 1.56
poly 15 90 3632 8744 4 0.85 97.93
rev 16 138 32 1039 14 16.86 2.10
rev 32 266 64 2063 27 28.23 2.50
rev 64 522 128 4111 59 90.88 8.15

Table 1. Synthesis and verification time for selected benchmarks.

though we are synthesizing 15-bit integers, it is easy for the solver
to discover that the 12 most significant bits of each of these should
be zero. In CRC, controls also dominate inputs, but the unknowns,
which correspond to table entries, are to a large degree independent,
which implicitly decomposes the search.

Another interesting observation is the very strong correlation
between the number of iterations and the number of unknowns.
This roughly linear correlation seems of limited practical impor-
tance, though, since there is little correlation between the number
of iterations of the solver and its solution time. However, it is inter-
esting to realize that the number of counter-example inputs needed
to find controls is not proportional to the size of the input space but
to the number of bits of controls.

6.3 Impact of Holes on Scalability

In this section, we use the pop benchmark with input size 16 to
analyze how the user can improve the solution time by providing
additional information about the holes present in the benchmark.

The original benchmark contains four holes: one for the loop
bound, one for the shift amount and two for the masks. For our
experiments, we recorded the solution time for the original bench-
mark, and then we recorded how the solution time varied when we
added extra information in the following way:

• By specifying the loop bound fully (s) instead of leaving it
unspecified (u).

• By fully specifying the masks (0), or by stating that on each
iteration the two masks contain the same value (1), instead of
leaving them as two independent holes (2).

• By specifying the shift ammount fully (f), or partially (p), in-
stead of leaving it unspecified (u). The shift is specified par-
tially by stating that it is initially one, and on each iteration
shift=shift*??.

Table 2 summarizes the solution times for the experiments. For
these experiments, loops were unrolled by 4 by default, and the
size of holes was not determined a priori, but was set to grow as

loop mask shift iters synth verify total
u 2 u 31 1588 5.80 1593.80
u 2 p 29 16.50 5.32 21.80
s 2 u 32 311.80 7.14 318.96
u 1 u 16 173.06 4.93 177.99
u 2 f 28 14.86 5.31 20.18
u 1 f 12 0.30 8.97 9.31
s 1 f 10 0.28 2.36 2.64
s 1 p 12 0.37 3.80 4.24
s 2 p 25 8.21 5.20 13.41
s 0 u 3 0.52 10.63 11.16

Table 2. Running times for population count with varying levels
of unknowns. Synth corresponds to the time spent in synthesis and
verify is the time spent of verification.

int[4] roundSK(bit[32][4] in, bit[32][4] rkey)
implements round{

int[4][256] T = ??;
int[4] output = 0;
bit[32] mask = 0x000000FF;
int[4][4] ch = {{0,1,2,3},{1,2,3,0},

{2,3,0,1},{3,0,1,2}};
for(int i=0; i<4; ++i){
int i0 = (int) in[ch[i][0]] & mask;
int i1 = (int)(in[ch[i][1]] >> 8) & mask;
int i2 = (int)(in[ch[i][2]] >> 16) & mask;
int i3 = (int)(in[ch[i][3]] >> 24) & mask;
output[i] = T[0][i0] ^ T[1][i1]

^ T[2][i2] ^ T[3][i3];
output[i] = output[i] ^ rkey[i];

}
return output;

}

Figure 5. Sketch for one round of AES.

needed (see Section 5.5). The table does not contain all possible
combinations of the optimizations, because some of them were not
possible—in specifying the mask we also had to specify the number
of iterations—and others were not very interesting because their
solution times were already quite small—such as (s,0,p) or (s,0,f).

The most striking observation is how by adding even partial
information about the shift amounts, the solution time is reduced
dramatically. For this benchmark, adding information about the
shifts is more valuable than for either the masks or the number of
iterations. For example, (u,2,p) is an order of magnitude faster than
(s,2,u).

Partial information about the masks is also quite valuable, as one
can see from comparing (u,2,u) with (u,1,u), although not as much
as the shift amounts. The masks, however, have a direct impact on
the number of iterations of the solver, reinforcing the observation
made earlier on the relationship between control bits and number
of iterations.

6.4 Case Study: AES

As a case study, we used our system to create a full implementation
of the AES cipher [5]. The core of the cipher consists of 14 rounds
which take a 128-bit input block and a round key and processes it,
followed by a final round.

bit[W] round(bit[W] in, bit[W] rkey){
bit [W] t1 = ByteSub(in);
bit [W] t2 = ShiftRows(t1);

Total Synth: 791 sec = 13.183 min
Total Verify: 3942 sec = 65.7 min
Synth easy: 1.17 sec avg time per SAT problem
Synth hard: 3.4 sec avg time per SAT problem
Verify easy: 5.33 sec avg time per SAT problem
Verify hard: 50 sec avg time per SAT problem

Table 3. Solution time for roundSK in AES benchmark. The times
for Synth and Verify hard correspond to the times for the last 10
iterations.

bit [W] t3 = MixColumns(t2);
return t3 ^ rkey;

}

The ByteSub transformation performs a set of table lookups to
do a substitution on each byte; ShiftRows does a permutation of
the bytes in the block; and MixColumns treats each word as a 4
element vector in the Galois field GF (28), then transforms it by
multiplying it with a matrix whose elements are also in GF (28).
The final round is like the other rounds but without the MixColumns
transformation.

In the optimized version, all the operations in the round are
folded into a set of table lookups. A programmer implementing
AES by traditional means would have to figure out the formula for
generating the table entries. This may be difficult if one is not famil-
iar with the algebra involved, and one must then write a generator
for the table from the specification, incorporate it into the code, and
check the correctness of the cipher using known input/output pairs.
In our approach, the tables are completely synthesized and correct-
ness is guaranteed. Figure 5 shows the sketch for the regular round.
The sketch for the final round is similar, except it uses only one
table instead of four, and it combines outputs from the tables using
masks—which are left unspecified— instead of xors.

The roundSK sketch places a lot of stress on the solver since
there are 32768 bits in the table that have to be generated. Further-
more, each input considered by the solver helps complete only a
small number of table entries, so the synthesize/verify loop has to
iterate 655 times. Nonetheless, the solver is able to complete the
sketch in about an hour. Table 3 shows the exact times spent by the
two SAT solvers involved. All instances of synthesis were solved
using MiniSat. For verification, we used MiniSat for the first 645
iterations. For the last 10 iterations we switched our SAT solver to
ABC [10] because it provides much better performance for hard
SAT problems.

Performance of generated code. The resulting code was run
against a hand optimized AES implementation from open SSL.
The runtime for 50000 encryptions was as follows:

OpenSSL AES 19.652 ms
Sketch 21.307 ms

Spec 19936.100 ms

The difference between the hand coded AES and the sketched ver-
sion is less than 10%. We can also see that the original specifica-
tion, which is very close to the specification of AES [5], is over
1000 times slower.

7. Related Work
StreamBit. This submission attacks programmability challenges
observed in StreamBit [13]: (1) In StreamBit, programmers could
not express sketches directly in the implementation language. In-
stead, they had to sketch the desired implementation by means of
meta-level rewrite rules that translated the specification into the de-
sired implementation. (2) The implementation strategy had to be

often decomposed hierarchically into multiple sketches with oner-
ous dependences. For example, the sketch specifying word-level
parallelism had to plan the implementation carefully so that the
sketch for bit-level parallelism would apply. (3) Sketches had to
be inserted into the rewrite sequence of a baseline compiler. The
awareness of the baseline compiler made the meta-level nature of
rewrite rules even more confounding. (4) Sketching was embedded
into a dataflow programming language [14]. While the dataflow
programming model helped synthesis and subsequent paralleliza-
tion, novice programmers faced sketching simultaneously with an-
other new programming model.

We present a combinatorial synthesizer as well as linguistic sup-
port that sidesteps these four issues. First, sketches are expressed as
partial programs, or programs with “holes.” As a result, sketches
are not meta-rules but straightforward code templates. Second, the
desired implementation can now be sketched in a single sketch,
without decomposition. Third, there is no baseline compiler to co-
operate with. Finally, sketching is embedded into an imperative lan-
guage with a familiar programming model.

Besides programmability limitations, sketching in [13] was
also restricted in expressiveness. (1) Except for some high-level
refactorings, sketching worked primarily by decomposing (semi)-
permutations of bit-vectors. While this addressed the main per-
formance bottlenecks of most ciphers–rearranging bits so there is
better use of word-level parallelism–it precluded some optimiza-
tions that required use of boolean identities. (2) The sketched im-
plementations themselves could not implement permutations using
non-permutations instructions, such as additions.
Synthesis with Partial Programs. Synthesis based on partial
programs has been explored in the AI community. For exam-
ple, ALisp [1], developed by Andre and Russell to program Re-
inforcement Learning Agents is a form of Lisp extended with
non-deterministic constructs. In ALisp, the behavior of the non-
deterministic branches is defined through learning, a domain-
specific approach.

The sketch completion problem is a constraint satisfaction prob-
lem similar to those studied by the constraint programming com-
munity [7].

Schema-based program synthesizers automatically compile a
high-level declarative specification into code; an example is the
AUTOBAYES system which compiles a statistical model into
code [6]. However, these synthesizers are highly domain-specific
and are not based on a general formal notion of partial programs as
introduced in this paper.

The Denali superoptimizer [8] was one of the first systems to
leverage the progress in SAT solving for code optimization. Denali
is still a classical transformational synthesizer, as its use of SAT
solvers is restricted to optimizing and scheduling of the synthesized
code. Also, Denali focused on optimizing straight-line code. While
our system does not look for the optimal way to resolve a sketch, it
applies to a more general class of programs.

Many recent program verification projects are also SAT-based,
including CBMC [3] and Saturn [17]. Our work uses SAT solving
not just for program verification, but also for program synthesis.

8. Conclusion
We have designed a language that supports sketches in a natural
way, designed a general solver for synthesizing sketched imple-
mentations, and evaluated the generality of the linguistic support
as well as the scalability of the solver. We implemented the AES
cipher standard; the sketch is surprisingly concise, the solver scales
well on this real benchmark, and the generated code runs almost as
fast as a good hand-coded implementation.

Acknowledgment

We are grateful to Manu Sridharan, Gilad Arnold, Mooly Sagiv, and
the anonymous referees for their helpful comments. David Turner
contributed to benchmark development. This work is supported in
part by the National Science Foundation with grants CCF-0085949,
CCR-0105721, CCR-0243657, CNS-0225610, CCR-0326577, and
CNS-0524815, the University of California MICRO program, the
MARCO Gigascale Systems Research Center, an Okawa Research
Grant, and a Hellman Family Faculty Fund Award. This work has
also been supported in part by the Defense Advanced Research
Projects Agency (DARPA) under contract No. NBCHC020056.
The views expressed herein are not necessarily those of DARPA.

References
[1] D. Andre and S. Russell. Programmable reinforcement learning

agents. Advances in Neural Information Processing Systems, 13,
2001. MIT Press.

[2] R. M. Burstall and J. Darlington. A transformation system for
developing recursive programs. Journal of the ACM, 24(1):44–67,
1977.

[3] E. Clarke, D. Kroening, and K. Yorav. Behavioral consistency of C
and Verilog programs using bounded model checking. In DAC, pages
368–371, May 2003.

[4] N. Eén and N. Sörensson. An extensible SAT-solver. In
E. Giunchiglia and A. Tacchella, editors, SAT, volume 2919 of
Lecture Notes in Computer Science, pages 502–518. Springer, 2003.

[5] Advanced encryption standard (AES). U.S. DEPARTMENT OF
COMMERCE/National Institute of Standards and Technology,
November 2001. http://csrc.nist.gov/publications/fips/fips197/fips-
197.pdf.

[6] B. Fischer and J. Schumann. Autobayes: a system for generating
data analysis programs from statistical models. Journal of Functional
Programming, 13(3):483–508, May 2003.

[7] P. V. Hentenryck and V. Saraswat. Strategic directions in constraint
programming. ACM Comput. Surv., 28(4):701–726, 1996.

[8] R. Joshi, G. Nelson, and K. H. Randall. Denali: A goal-directed
superoptimizer. In PLDI, pages 304–314, 2002.

[9] Z. Manna and R. J. Waldinger. Toward automatic program synthesis.
Commun. ACM, 14(3):151–165, 1971.

[10] A. Mishchenko, S. Chatterjee, and R. Brayton. Dag-aware AIG
rewriting: A fresh look at combinational logic synthesis. In DAC ’06:
Proceedings of the 43rd annual conference on Design automation,
pages 532–535, New York, NY, USA, 2006. ACM Press.

[11] D. P. Ranjan, D. Tang, and S. Malik. A comparative study of 2qbf
algorithms. In The Seventh International Conference on Theory and
Applications of Satisfiability Testing (SAT 2004), May 2004.

[12] E. M. Reingold, J. Nievergelt, and N. Deo. Combinatorial Algorithms
– Theory and Practice. Prentice-Hall, 1977.

[13] A. Solar-Lezama, R. Rabbah, R. Bodik, and K. Ebcioglu. Pro-
gramming by sketching for bit-streaming programs. In PLDI ’05:
Proceedings of the 2005 ACM SIGPLAN conference on Programming
language design and implementation, pages 281–294, New York, NY,
USA, 2005. ACM Press.

[14] W. Thies, M. Karczmarek, and S. Amarasinghe. Streamit: A language
for streaming applications. In International Conference on Compiler
Construction, Grenoble, France, Apr. 2002.

[15] H. S. Warren. Hacker’s Delight. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 2002.

[16] P. Wegner. A technique for counting ones in a binary computer.
Commun. ACM, 3(5):322, 1960.

[17] Y. Xie and A. Aiken. Scalable error detection using boolean
satisfiability. In Proceedings of the 32nd ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (POPL), pages
351–363, 2005.

