
Lecture 5

Required Reading

Read Chapters 16 and 17 of Programming in Scala.1 In Chapter 17, focus on immutable collections. We will not use
mutable collections in this class, so you can skip reading about list buffers, array buffers, and arrays.

Partial Functions and Signalling Errors

Many functions are not defined on all inputs. For example, if you’re reading input from a keyboard (i.e., a string)
and want to parse the string as a number, you can apply Integer.parseInt:

scala > val n = Integer.parseInt ("10")
n: Int = 10

But, if the string is not a numeral, you get an exception:

scala > val n = Integer.parseInt ("ten")
java.lang.NumberFormatException: For input string: "ten"

You’ve encountered other ways of signalling errors. For example, if you lookup an unbound key in a hashtable,
Java (and Scala) produce nulls:

scala > val ht = new java.util.Hashtable[Int , String ]()
ht: java.util.Hashtable[Int ,String] = {}
scala > ht.put(10, "hello")
scala > val r = ht.get (20)
r: String = null

Finally, here is a more insidious example. The following function calculates the point where two lines, defined by
y = m1.x + b1 and y = m2.x + b2, intersect. The function is not defined when the two lines are parallel (i.e., when
their slopes are the same, or m1 = m2):

case class Point(x: Double , y: Double)

def inter(m1: Double , b1: Double , m2: Double , b2: Double ): Point = {
val x = (b2 - b1) / (m1 - m2)
Point(x, m1 * x + b1)

}

When the slopes are the same, the denominator, m1 - m2 is 0. So, you might expect a divide-by-zero ArithmeticException.
That’s not : what happens:

scala > 1.0 / 0.0
res0: Double = Infinity

So you can’t even catch this error with an exception handler, since no exception is raised:

scala > val r = inter(0, 0, 0, 0)
r: Point = Point(NaN ,NaN)

All these mechanisms for signalling errors share similar flaws:

1. Exceptions: you have to remember to catch them, or your program will crash. You can’t tell if a function will
throw an exception without carefully reading its code, which may not even be possible if it is in a library.

1The first edition is available online at http://www.artima.com/pins1ed/. The material in these chapters apply to the current version
of Scala.
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2. Producing null : even worse than exceptions, because your program will will not crash on an error. When it
does crash, you’ll spend a lot of time trying to figure out what produced the null.

3. Producing other null-like values: see above.

The real problem is that the types of all these functions are not useful:

• The type of Integer.parseInt is String =>Int, but it may throw an exception instead of producing an Int.

• The type of ht.get is Any =>String, but it may produce a null.

• The type of inter is (Double, Double, Double, Double) =>Point, but it can produce Point(NaN, NaN),
which is clearly not what we had in mind.

A Solution Let’s use inter as an example and modify the function so that its type makes it obvious that it may
not always return a Point. We introduce the following sealed trait:

sealed trait OptionalPoint
case class SomePoint(pt: Point) extends OptionalPoint
case class NoPoint () extends OptionalPoint

And we modify inter to produce NoPoint instead of a malformed-Point:

def inter(m1: Double , b1: Double , m2: Double , b2: Double ): OptionalPoint = {
if (m1 - m2 == 0) {

NoPoint ()
}
else {

val x = (m1 - m2) / (b2 - b1)
Point(x, m1 * x + b1)

}
}

With this new type, any program that applies inter will be forced to check if if a point was produced:

inter(10, 3, 10, 3) match {
case NoPoint => println("no intersection")
case SomePoint(Point(x,y)) => println(s"intersection at ($x , $y)")

}

Consider another example: a type that represents an alarm clock. An alarm clock needs to track the current time
and the alarm time if the alarm is set :

case class Time(h: Int , m: Int , s: Int)
case class AlarmClock(time: Time , alarm: Time , alarmOn: Boolean)

But, with this representation, it is easy to make simple errors. For example, you may accidentally trigger the
alarm when time == alarm, if you forget to check alarmOn first. A cleaner represention is to use the same pattern
we used above:

sealed trait OptionalAlarm
case class NoAlarm () extends OPtionalAlarm
case class AlarmSet(time: Time) extends OptionalAlarm

case class AlarmClock(time: Time , alarm: OptionalAlarm)

In both inter and AlarmClock, it is completely obvious from the type that a point is not always produced and that
an alarm is not always set. Partial functions are pervasive in computing and this pattern will make your programs
more robust.

But, it is annoying to define a new type such as OptionalPoint and OptionalAlarm for each type.

The Option Type

Scala has a builtin generic type called Option that abtracts the pattern we discussed above. For example, here is
inter rewritten to use Option:

def inter(m1: Double , b1: Double , m2: Double , b2: Double ): Option[Point] = {
if (m1 - m2 == 0) {

None
}
else {
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val x = (m1 - m2) / (b2 - b1)
Some(Point(x, m1 * x + b1))

}
}

Built-in List methods

Scala’s List type has dozens of useful methods. For example, these methods correspond to the higher-order functions
we’ve seen so far:

• We can map over a list:

assert(List(10, 20, 30). map(x => x + 1) == List(11, 21, 31))

• We can filter a list:

assert(List(1, 2, 3, 4). filter(x => x % 2 == 0) == List(2, 4))

• We can fold over a list:

assert(List(10, 20, 30). foldRight (0)((x, acc) => x + acc) == 60)

Notice that the syntax of foldRight is unusual. We’ll get into the details how it works later. For now, there is
no need to write sums and products using folds. Scala’s lists have methods that do these directly:

assert(List(10, 20, 30). sum == 60)
assert(List(10, 20, 30). product == 6000)

There are several other useful methods. For example:

• alist.take(n) produces a list with first n elements of alist. Similarly, alist.drop(n) produces a list without
the first n elements of alist.

val alist = List("X", "Y", "Z", "A", "B", "C")
assert(alist.take (3) == List("X", "Y", "Z"))
assert(alist.drop (3) == List("A", "B", "C"))
assert(alist.take (3) ::: alist.drop (3) == alist)

In the last line, the ::: operator (pronounced “append”) appends two lists.

Notation We emphasize that ::: is an ordinary method, even though it is written using funny symbols
and appears to be an infix operator. We could append lists using conventional method-application
syntax:

assert(alist .:::( alist) == alist ::: alist)

In fact, all operators on objects are actually ordinary methods. E.g., we could write 2.+(3.*(6)), to do
arithmetic using conventional method-application syntax. However, the usual notation of 2 + (3 * 6)

is typically easier to read.

• alist.exists(f) produces true if there exists any element in the list on which f produces true.

assert(List(1, 2, 3, 4). exists(n => n == 2) == true)
assert(List(1, 2, 3, 4). exists(n => n == 5) == false)

• alist.forall(f) checks that all elements in alist satisfy f:

assert(List(2, 4, 6, 8). forall(x => x % 2 == 0) == true)
assert(List(2, 3, 4). forall(x => x % 2 == 0) == false)

There are several other useful functions. You should explore the List API to learn more about them.
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Sets and Maps

paragraphSets
The Scala standard library also defines sets and maps, which are two other data structures that are very common.

Note that these represent mathematical sets, so they don’t have duplicate elements and are not ordered. i.e., the
three definitions below are the same:

Set(1, 2, 3)
Set(1, 2, 2, 3)
Set(3, 2, 1)

Sets have methods for calculating set union, set intersection, set difference, testing emptiness, and so on:

assert(Set(1, 2, 3). union(Set(2, 3, 4)) == Set(1, 2, 3, 4))
assert(Set(1, 2, 3). intersect(Set(2, 3, 4)) == Set(2, 3))
assert(Set(1, 2). intersect(Set(3, 4)). isEmpty == true)

We can also map and filter the elements of sets, similar to lists:

assert(Set(1, 2, 3, 4). filter(x => x % 2 == 0) == Set(2, 4))
assert(Set(1, 2, 3, 4, 5). map(x => x % 2) = Set(0, 1))

There are severy other useful methods in the Set API.

Maps The Map data-structure (which is not the same as the map function) is a finite map from keys to values.
For example:

val dueDates = Map(
1 -> "Jan 28",
2 -> "Feb 4",
3 -> "Feb 11")

Notation X -> Y is just another notation for the tuple (X, Y), but is commonly used with maps to suggest
that it “maps X to Y”. Therefore, we could have writen

val dueDates = Map(
(1, "Jan 28"),
(2, "Feb 4"),
(3, "Feb 11"))

We can lookup a key in two ways. First, we can simply apply the map to a key, just like a function:

assert(dueDates (1) == "Feb 4")

However, if the key is not found, this throws an exception. An alternative is to apply the get methods, which
produces Some(v) if the key is mapped to a value and None otherwise:

dueDates.get(x) match {
case Some(v) => v
case None => "Unknown assignment"

We can augment maps using the following syntax:

val moreDueDates = dueDates + (4 -> "Feb 18")

We emphasize that this produces a new map with all the contents of dueDates and the key mapping for 4. The
original map is not modified.

Notation The notation m + (k -> v) seems to be something new, but we know how to unpack it. We just
learned the arrow notation is another way of writing tuples, we can first rewrite it as m + (k, v). We also
learned that all operators on objects are actually methods, so can rewrite it again as m.+((k, v)).
Therefore, we can conclude that maps have a method called + that takes one argument. This argument is a
tuple where the first component is a key k and the second component is the value v. The result of applying
this method is a new map where k is mapped to v.

It is often get the set of keys in a map:

assert(dueDates.keys == Set(1, 2, 3))
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Similarly, we can get an iterator over the values. Typically, you’ll want to turn the iterator into a list immediately:

assert(dueDates.values.toList == List("Jan 28", "Feb 4", "Feb 11"))

As usual, there are dozens of handy methods over maps. You should explore the Map API.

Conversions

It is sometimes necssary and easy to convert lists, sets, and maps to each other. These objects have methods called
toList, toSet, and toMap that do exactly what their names suggest. For example:

assert(Map("X" -> 10, "Y" -> 20). toList == List(("X", 10), ("Y", 20)))
assert(List(("X", 10), ("Y", 20)). toMap == Map("X" -> 10, "Y" -> 20))
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