
Homework 1: Introduction to Scala

This assignment has several “finger exercises” that introduce you to functional programming in Scala.

Setup

Before you start programming, you need to complete a few preliminary steps.

1. Follow the directions on the course website to install Scala and SBT.

2. Using the command-line, create a directory for your assignment (e.g., the hw1 directory). Within this directory,
create the directories project, src/main/scala and src/test/scala. For example, you could use the following
commands:

mkdir hw1
cd hw1
mkdir project
mkdir src
mkdir src/main
mkdir src/main/scala
mkdir src/test
mkdir src/test/scala

3. Using a text editor, create the file project/plugins.sbt with the following contents:

addSbtPlugin("edu.umass.cs" % "compsci220" % "1.0.0")

4. Using a text editor, create the file src/main/scala/Lists.scala with the following contents:

object Lists {

val oddNumbers = 1 :: 3 :: 5 :: Nil

}

5. Using a text editor, create the file src/test/scala/TestSuite.scala with the following contents:

import Lists._

class TestSuite extends org.scalatest.FunSuite {

test("oddNumbers properly defined") {
assert(oddNumbers == List(1, 3, 5))

}

}

6. From the command-line, start sbt and run the test suite. You should see output that looks like this:

[info] Updating {file:/Users/arjun/Teaching/cmpsci220/hw/lists/template /} template ...
[info] Resolving jline#jline ;2.12.1 ...
[info] Done updating.
[info] Compiling 1 Scala source to /Users/arjun/Teaching/cmpsci220/hw/lists/template/target/scala

-2.11/ classes ...
[info] Compiling 1 Scala source to /Users/arjun/Teaching/cmpsci220/hw/lists/template/target/scala

-2.11/ test -classes ...
[info] TestSuite:
[info] - oddNumbers properly defined

17



[info] Run completed in 421 milliseconds.
[info] Total number of tests run: 1
[info] Suites: completed 1, aborted 0
[info] Tests: succeeded 1, failed 0, canceled 0, ignored 0, pending 0
[info] All tests passed.
[success] Total time: 7 s, completed Jan 17, 2016 11:52:54 AM

There should be no errors or warnings printed.

Exercises

For this assignment, you’ll be writing several list-processing functions. You must place these within the Lists object
that you created above. You must write tests cases, within the TestSuite class that you created above.

1. Write a function called sumDouble that consumes a List[Int] and produces an Int. The produced value should
be double the sum of the list of integers.

2. Write a function called removeZeroes that consumes a List[Int] and produces a List[Int]. The produced
list should be the same as the input list, but with all zeroes removed. The function must not change the order
of elements.

3. Write a function called countEvens that consumes a List[Int] and produces an Int that represents that
number of even numbers in the input list.

4. Write a function called removeAlternating that consumes a List[String] and produces a List[String] that
has every other element in the input list.

The first element of the input list must be in the output list. For example:

assert(removeAlternating(List("A", "B")) == List("A"))
assert(removeAlternating(List("A", "B")) != List("B"))

The function must not change the order of elments.

5. Write a function called isAscending that consumes a List[Int] and produces a Boolean that is true if the
numbers in the input list are in ascending order. Note that the input may have repeated numbers.

6. Write a function called addSub that consumes a List[Int] and produces an Int. The function should add all
the elements in even position and subtract all the elements in odd position.

Note that the first element of a list is considered “zeroth” element, thus it is in even position. For example,
addSub(List(10, 20, 30, 40)) should be 10 - 20 + 30 - 40.

7. Write a function called alternate that consumes two List[Int] arguments and produces a List[Int]. The
elements of the resulting list should alternate between the elements of the arguments. You may assume that
the two arguments have the same length.

For example:

assert(alternate(List(1, 3, 5), List(2, 4, 6)) == List(1, 2, 3, 4, 5, 6))

8. Write a function called fromTo that takes two Ints as arguments and produces a List[Int]. The value of
fromTo(x, y) should be the list of consecutive integers that start from and include x, going up to and excluding
y. You may assume that x < y.

For example:

assert(fromTo(9, 13) == List(9, 10, 11, 12))

9. Write the following function:

def insertOrdered(n: Int , lst: List[Int ]): List[Int]

18



Assuming that lst is in ascending order, insertOrdered should produce a list that is the same as the input, but
with n inserted such that the order is preserved. For example, insertOrdered(5, List(1, 3, 7, 9)) should
be List(1, 3, 5, 7, 9).

You should assume that lst is in ascending order. Your function may produce any result or even throw an
exception if it is not.

10. Write the following function:

def sort(lst: List[Int]): List[Int]

The result should be the sorted input list.

Hand In

From the sbt console, run the command submit. The command will create a file called submission.tar.gz in your
assignment directory. Submit this file using Moodle.

For example, if the command runs successfully, you will see output similar to this:

Created submission.tar.gz. Upload this file to Moodle.
[success] Total time: 0 s, completed Jan 17, 2016 12:55:55 PM

Note: The command will not allow you to submit code that does not compile. If your code doesn’t compile, you
will receive no credit for the assignment.

19



20


