
Lecture 2: Big-Step Semantics

1 Representing Abstract Syntax

These are examples of arithmetic expressions :

• 2 * 4

• 1 + 2 + 3

• 5 * 4 * 2

• 1 + 2 * 3

We all know how to evaluate these expressions in our heads. But, when we do, we resolve
several ambiguities. For example, should we evaluate 1 + 2 * 3 like this:

1 + 2 * 3
= (1 + 2) * 3
= 3 * 3
= 9

or like this:
1 + 2 * 3

= 1 + (2 * 3)
= 1 * 6
= 6

The latter is the convention in mathematics, but it is an arbitrary choice. A program-
ming language could adopt either convention or adopt a completely different notation. For
example, the following three programs, written in three different languages, are trying to
express the same thing:

• 1 + 2 infix syntax, from the C language

• (+ 1 2) parenthesized prefix syntax, from the Scheme language

• 1 2 + postfix syntax, from the Forth language

These three concrete syntaxes are very different, but all mean “the sum of the number three
and the number four”.

Concrete syntax is important, because it is the human-computer interface to a program-
ming language. It is easy to find acrimonious debates on the Web about the virtuous of
Python’s indentation-sensitive syntax, whether semicolons should be optional in JavaScript,

17



e ::= true
| false
| n
| e1 + e2
| e1 ∗ e2
| e1 > e2
| if e1 then e2 else e3

v ::= true
| false
| n

(a) Syntax.

Num
n ⇓ n

True
true ⇓ true

False
false ⇓ false

Add

e1 ⇓ n1
e2 ⇓ n2

n3 = n1 + n2
e1 + e2 ⇓ n3

Mul

e1 ⇓ n1
e2 ⇓ n2

n3 = n1 · n2
e1 ∗ e2 ⇓ n3

GT-True

e1 ⇓ n1
e2 ⇓ n2
n1 > n2

e1 > e2 ⇓ true
GT-False

e1 ⇓ n1
e2 ⇓ n2
n1 ≤ n2

e1 > e2 ⇓ false

If-True

e1 ⇓ true
e2 ⇓ v

if e1 then e2 else e3 ⇓ v
If-False

e1 ⇓ false
e3 ⇓ v

if e1 then e2 else e3 ⇓ v

(b) Semantics.

Figure 3.1: Syntax and semantics of a language with arithmetic and boolean expressions.

how C code should be indented, and so on. But, this course will almost completely ig-
nore concrete syntax because it is irrelevant to the semantics of programming languages.
We will instead work with abstract syntax, which is an abstract “tree-shaped” representation
of syntax that suffers none of the ambiguities of concrete syntax. In compilers, the parser
consumes a concrete-syntax string and produces an equivalent abstract syntax tree. This
course will largely ignore parsing and instead work directly with the abstract syntax tree.

OCaml makes it easy to define a type that represents the abstract syntax of arithmetic
expressions:
type exp =

| Num of int
| Add of exp * exp
| Mul of exp * exp
| Div of exp * exp

Here are some examples of abstract arithmetic expressions and their concrete representa-
tions (written in normal, mathematical notation):

Concrete Syntax Abstract Syntax
1 + 2 + 3 Add (Add (Num 1, Num 2), Num 3)
1 + 2 * 3 Add (Num 1, Mul (Num 2, Num 3))
(1 + 2) / 3 Div (Add (Num 1, Num 2), Num 3)

2 Syntax as Sets

We start with a very rigorous mathematical definition of the abstract syntax of a small
language of arithmetic and boolean expressions.

Definition 1 (Syntax of arithmetic expressions). Let E denote the set of arithmetic expres-
sions. We define E to be the smallest set that is generated by the following rules:

18



• true ∈ E.

• false ∈ E.

• If n ∈ Z then n ∈ E.

• If e1 ∈ E and e2 ∈ E then e1 + e2 ∈ E.

• If e1 ∈ E and e2 ∈ E then e1 ∗ e2 ∈ E.

• If e1 ∈ E and e2 ∈ E then e1 > e2 ∈ E.

• If e1 ∈ E, e2 ∈ E, and e3 ∈ E then if e1 then e2 else e3 ∈ E.

Hopefully, you’ll agree that defining syntax in this way is extremely tedious. We will
never do this again and instead define syntax using the notation in fig. 3.1a.

This notation is much terser and is what you’ll find when you read the programming
languages literature. But, you should be aware that it is just shorthand for the more verbose
definition given above. Also note that we are “abusing notation” and using the metavariable
e to denote the set of expressions and elements of the set (and similarly for n). Again, this
is standard practice.

3 Semantics as Relations

Inference rules In this section, we use inference rules to define the semantics of our language.
These are some examples of inference rules:

X
Y

A
B
C W

You should read these rules as:

• If X holds, then Y holds.

• If A and B hold, then C holds.

• W holds (i.e., W is an axiom).

Semantics Programs evaluate expressions until they become values. Intuitively, a value is
an expression that cannot be further simplified. For the language defined above, the values
(v) are just integers and booleans. Note that v ⊂ e.

Given our definition of expressions and values, we can define the semantics of the language
as an evaluation relation. The evaluation relation is a binary relation that relates expressions
e to equivalent values v. We write the evaluation relation using the following notation:

e ⇓ v

You should pronounce this as “e evaluates to v”.
The e ⇓ v relation is defined by a set of inductively defined rules, similar to the definition

of expressions. However, instead of first soldiering through a long, definition in prose, we’ll

19



e

e ::= · · ·
| x
| let x = e1 in e2

(a) Syntax.

e ⇓ v

Let

e1 ⇓ v1
e2[x 7→ v1] ⇓ v2

let x = e1 in e2 ⇓ v2
(b) Semantics.

e[x 7→ v] = e

true[x 7→ v] = true
false[x 7→ v] = false
n[x 7→ v] =n
e1 + e2[x 7→ v] = e1[x 7→ v] + e2[x 7→ v]
e1 ∗ e2[x 7→ v] = e1[x 7→ v] ∗ e2[x 7→ v]
e1 > e2[x 7→ v] = e1[x 7→ v] > e2[x 7→ v]
if e1 then e2 else e3[x 7→ v] = if e1[x 7→ v] then e2[x 7→ v] else e3[x 7→ v]
x[x 7→ v] = v
y[x 7→ v] = y when x 6= y
let x = e1 in e2[x 7→ v] = let x = e1[x 7→ v] in e2
let y = e1 in e2[x 7→ v] = let y = e1[x 7→ v] in e2[x 7→ v] when x 6= y

(c) Substitution.

Figure 3.2: Identifiers and let-expressions. Extends fig. 3.1.

use the inference rules in fig. 3.1b to define e ⇓ v. Notice that e ⇓ v is not a function. In
this case, e ⇓ v is not defined for all e and v. E.g., true + 5 is not defined. In this simple
case, e ⇓ v is a partial function. But, in a richer language with non-deterministic features,
such as threads or random number generators, e ⇓ v will not even be a partial function.

4 Let-Binding and Substitution

Even when we write simple arithmetic expressions, we often need to reuse the same expression
in several places. If we try to repeat the same expression, we are likely to propagate mistakes.
More fundamentally, repeated expressions consume more storage space and require more
steps to evaluate. Therefore, almost all programming languages provide a means to name
expressions.

Figure 3.2a extends the syntax of our language with let-expressions and identifiers. A
let-expression, such as let x = 1 + 2 in x ∗ x has three parts:

• A binding identifier x,

• A named expression 1 + 2, and

• The body x ∗ x.

In this example, the body has two bound identifiers that refer to the binding identifier.
The semantics of this language extension are given in fig. 3.2b. Notice that there is

no inference rule for evaluating identifiers. Instead, the inference rule for let expressions

20



substitutes identifiers with the value of the named expression. The substitution function,
e[x 7→ v], is typically read as “substitute x with v in e”.

Here is an example of a derivation that uses substitution:

Let

Add

Num
1 ⇓ 1

Num
2 ⇓ 2

1 + 2 ⇓ 3 (x ∗ x)[x 7→ 3] = 3 ∗ 3
Mul

Num
3 ⇓ 3

Num
3 ⇓ 3

3 ∗ 3 ⇓ 9

let x = 1 + 2 in x ∗ x ⇓ 9

This is a very straightforward example since it only has one let-expression. In general,
a program may have several let-expressions and even reuse the same identifier in several
places. The semantics has been carefully designed to handle these cases in a natural way.

This example defines two names by nesting let-expressions:

Let

...
Let

...
let y = 20 + 10 in y ∗ x ⇓ 300

let x = 10 in let y = 20 + x in y ∗ x ⇓ 300

This example has two let-expressions that use the same name:

Let

Num
10 ⇓ 10 (let x = 20 in 1 + x)[x 7→ 10] = let x = 20 in 1 + x

Let

...
let x = 20 in 1 + x ⇓ 21

let x = 10 in let x = 20 in 1 + x ⇓ 21

As the proof tree shows, the identifier in the expression 1 + x is bound to the inner
definition of x. We say that the inner x shadows the enclosing definition.

4.1 Substitution and Evaluation Order

The inference rule for let-expressions first evaluates the named expression to a value and
then substitutes that value into the body. Consider this alternate definition, which applies
substitution first:

Let’
e′2 = e2[x 7→ e1] e′2 ⇓ v

let x = e1 in e2 ⇓ v

For example, the following proof that let x = 10 + 10 in x ∗ x ⇓ 400 uses this alternate
rule for let. Notice that we use the Add rule twice and the Mul rule once:

Let’

x ∗ x[x 7→ 10 + 10] = (10 + 10) ∗ (10 + 10)

Mul

Add
Num 10 ⇓ 10 Num 10 ⇓ 10

10 + 10 ⇓ 20
Add

Num 10 ⇓ 10 Num 10 ⇓ 10

10 + 10 ⇓ 20

(10 + 10) ∗ (10 + 10) ⇓ 400

let x = 10 + 10 in x ∗ x ⇓ 400

However, using the original Let rule, we use the the Add and Mul rules once each:

Let

Add
Num 10 ⇓ 10 Num 10 ⇓ 10

10 + 10 ⇓ 20 x ∗ x[x 7→ 20] = 20 ∗ 20
Mul

Num 20 ⇓ 20 Num 20 ⇓ 20

20 ∗ 20 ⇓ 400

let x = 10 + 10 in x ∗ x ⇓ 400

Loosely speaking, the larger proof tree corresponds to an evaluation that “takes more
time”. In fact, proofs with Let’ will be larger whenever there are multiple occurrences of the
identifier in the body of the let expression.

However, a deeper problem arises when we have the named expression is faulty. For
example, let e be the expression let x = true + 10 in 200. Using the Let rule, there does not
exist a v, such that e ⇓ v. However, using the Let’ rule, e ⇓ 200, since x is unused in the
body.

21



type id = string

type exp =
| Num of int
| Bool of bool
| Add of exp * exp
| Mul of exp * exp
| GT of exp * exp
| If of exp * exp * exp
| Let of id * exp * exp
| Id of id

let is_value (e : exp) =
match e with
| Bool _ -> true
| Num _ -> true
| _ -> false

(a) Syntax.

let to_int (e : exp) : int = match e with
| Num n -> n
| _ -> failwith "expected Num"

let to_bool (e : bool) : bool = match b with
| Bool b -> b
| _ -> failwith "expected Bool"

let rec subst (x : id) (v : e) (e : exp) : exp =
match e with
| Num n -> Num n
| Bool b -> Bool b
| Add (e1, e2) -> Add (subst x v e1, subst x v e2)
| Mul (e1, e2) -> Mul (subst x v e1, subst x v e2)
| GT (e1, e2) -> GT (subst x v e1, subst x v e2)
| Let (y, e1, e2) ->

Let (y, subst x v e1, if x = y then e2 else subst x v e2)
| Id y -> if x = y then v else Id y

let rec eval (e : exp) : exp = match e with
| Num n -> Num n
| Bool b -> Bool b
| Add (e1, e2) -> Num (to_int (eval e1) + to_int (eval e2))
| Mul (e1, e2) -> Mul (to_int (eval e1) * to_int (eval e2))
| GT (e1, e2) -> Bool (to_int (eval e1) > to_int (eval e2))
| If (e1, e2, e3) -> if to_bool (eval e1) then eval e2 else eval e3
| Let (x, e1, e2) -> eval (subst x (eval e1) e2)
| Id x -> failwith ("free identifier " ^ x)

(b) Semantics.

Figure 3.3: OCaml implementation of fig. 3.1

We’ll investigate this in more depth in a few weeks.

4.2 Implementation

Figure 3.3 is an OCaml implementation of our language. You should study this definition
and the inference rules in fig. 3.1 to ensure that they are in close correspondence.

5 Functions

In this section, we extend our language with functions, similar to functions in OCaml. The
syntax and semantics of this extension are given in fig. 3.4. In this extension, functions

e

e ::= · · ·
| e1 e2
| λx.e

v ::= · · ·
| λx.e

(a) Syntax.

e ⇓ v

App

e1 ⇓ λx.e
e2 ⇓ v

e[x 7→ v] ⇓ v′

e1 e2 ⇓ v′

(b) Semantics.

e[x 7→ v] = e

· · ·
e1 e2[x 7→ v] = e1[x 7→ v] e2[x 7→ v]
λx.e[x 7→ v] =λx.e
λy.e[x 7→ v] =λy.e[x 7→ v] when x 6= y

(c) Substitution.

Figure 3.4: First-class functions. Extends fig. 3.2.

22



are values, which means that they are values just like numbers and booleans. This allows
functions to be passed to other functions, returned from functions, bound to identifiers, and
so on. When a language gives functions all the rights and privileges of simpler values, they
are known as first-class functions.

An apparent shortcoming of this extension that all functions take exactly one argument.
However, we can encode multi-argument functions by leveraging first-class functions. For ex-
ample, suppose we want to write a function that takes two arguments x and y and calculates
10 ∗ x ∗ y. Although we cannot write a two-argument function, we can do this:

λx.λy.10 ∗ x ∗ y

This is known as currying.

23



24


