Assignment 5: Sketching

Due: Apr 28 2016 1AM
Support code:https://www.cs.umass.edu/ arjun/courses/cmpsci631-spring2016//hw/
sketching.zip

The goal of this assignment is to build the essence of a program synthesizer, in the style

of Sketch. Before you proceed with the assignment, you need to be intimately familiar with
the following paper:
Armando Solar-Lezama, Liviu Tancau, Rastislav Bodik, Vijay Saraswat, and Sanjit A. Se-
shia. Combinatorial Sketching for Finite Programs. In proceedings of International Confer-
ence on Architectural Support for Programming Languages and Operating Systems (ASPLOS)
2006.

The language of this assignment will not support arrays, so you can ignore Section 5.3.1
of the paper.

1 Setup

1. Use the following commands to fetch the latest version of the support code:

opam update
opam upgrade compsci631l

2. Download a local copy of the Z3 Theorem prover:
https://github.com/Z3Prover/z3/releases

The packages on the website include Z3 bindings for several languages. However, you
will only need the z3 executable.

2 Requirements

Write a program synthesizer that takes three arguments:

./Synth.d.byte w sketch spec

The arguments sketch and spec should refer to files that contain programs in the grammar
defined in fig. 13.1 (the spec should not contain any holes (?7). You should assume that all
values and variables in the program are bit-vectors of size w.

o7

https://www.cs.umass.edu/~arjun/courses/cmpsci631-spring2016//hw/sketching.zip
https://www.cs.umass.edu/~arjun/courses/cmpsci631-spring2016//hw/sketching.zip
https://people.csail.mit.edu/asolar/papers/asplos06-final.pdf
https://github.com/Z3Prover/z3/releases

Expressions

exp = n EInt n where n is a decimal integer

(7 EId x where x has letters, digits, and underscores
| exp,texp,y EOp2(Add, expl, exp2)
| exp-exp, EOp(Sub, expl, exp2)
| expyxexp,y EOp2(Mul, expl, exp2)
| exp,/exp,y EOp2(Div, expl, exp2)
| expihexp, EOp2(Mod, expl, exp2)
| exp,«exp,y EOp2(LShift, expl, exp2)
| exp,»erp, EOp2(RShift, expl, exp2)
| exp &exp, EOp2(BAnd, expl, exp2)
| exp, | | exp, EOp2(BOr, expl, exp2)
| ezp,andezp, EOp2(LAnd, expl, exp2) 1 if both arguments are non-zero and 0 otherwise
| eTp,0rexp, EOp2(LOr, expl, exp2) 1 if either argument is non-zero and 0 otherwise
| ezp,==exp, EOp2(Eq, expl, exp2)
| notexp EOp1(LNot, exp)
| “exp EOpl(BNot, exp)
| W EWidth represents the width of bit-vectors
| 77 EHole n where n uniquely identifiers this hole
| (exp) exp

Programs

cmd = skip; CSkip
| abort; CAbort
| z=exp; CAssign (x, exp)
| if (ezp) cmdy else cmdy CIf (bexp, cmdl, cmd2)
| repeat z : exp cmd CRepeat (x, exp, cmd) Evaluates cmd ezp times, with x set to 0,1,---,exp — 1.
| {cemd} cmd
| assert berp; CIf (bexp, CSkip, CAbort)
| cemdqemdos CSeq (cmdl, cmd2)

Figure 13.1: The concrete syntax and abstract syntax of the language.

58

If the synthesizer succeeds, it should print a copy of sketch where holes are replaced
with concrete values to standard out. (Feel free to print any debugging output to standard
error.) If the synthesizer fails, it should exit with code 1.

3 Support Code

The module Sketching defines the abstract syntax of the language shown in fig. 13.1 and
includes functions to parse and pretty-print programs in the language. The module Smtlib
provides an API for communicating with Z3. (It has been updated to include functions for
working with bit-vectors.)

4 Directions
We suggest proceeding in the following way:

1. Start by ignoring loops and first get the synthesizer to work on straight-line code.

2. You'll need two instances of Z3: one for the synthesizer and one for the verifier. Most of
the functions you write will invoked for either solver, so pass the solver as an argument
to all functions.

3. Use a global variable to store the width of bit-vectors.
4. Implement the main CEGIS loop, which will require several helper functions.

5. Once your verifier works for loop-free programs, you should tackle loops as follows.

(a) Assume that loops in the bounded by a constant and fully unfold all loops in the
specification.

(b) In the sketch, loops that are not bounded by a constant need to be unfolded one
iteration at a time. You may find OCaml’s Streams to be useful for implementing
this feature.

5 Debugging

Debugging this assignment can be challenging, since a significant portion of the work is being
done by Z3. You will almost certainly have to inspect commands and output of Z3 to debug
your synthesizer. The support code doesn’t allow you to directly examine its interaction
with Z3. However, instead of supplying the actual path to Z3 to make_solver, you can use
the following shell script to log Z3 commands and responses:

tee -a z3-commands.txt | z3 -in -smt2 | tee -a z3-responses.txt

The file z3-commands.txt is a valid Z3 script. Alternatively, to see commands and
responses interleaved:

tee -a interaction.txt | z3 -in -smt2 | tee -a interaction.txt

59

Since you need to create two solvers, it may help to have two different scripts
to log the interaction with Z3.

Finally, the Z3 interactive console is quite impoverished and doesn’t support history,
arrow keys, etc. I recommend using “rlwrap” to wrap Z3 before you try to use the console
directly:

https://github.com/hanslub42/rlwrap

Rlwrap is available on standard Linux package repositories and via Homebrew for Mac
OS X.

60

https://github.com/hanslub42/rlwrap

