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Abstract
A lens is a bidirectional program. When read from left to right,
it denotes an ordinary function that maps inputs to outputs.When
read from right to left, it denotes an “update translator” that takes an
input together with an updated output and produces a new input that
reflects the update. Many variants of this idea have been explored in
the literature, but none deal fully withordereddata. If, for example,
an update changes the order of a list in the output, the items in the
output list and the chunks of the input that generated them can be
misaligned, leading to lost or corrupted data.

We attack this problem in the context of bidirectional transfor-
mations over strings, the primordial ordered data type. We first pro-
pose a collection of bidirectionalstring lens combinators, based
on familiar operations on regular transducers (union, concatena-
tion, Kleene-star) and with a type system based on regular expres-
sions. We then design a new semantic space ofdictionary lenses,
enriching the lenses of Foster et al. (2007b) with support for two
additional combinators for marking “reorderable chunks” and their
keys. To demonstrate the effectiveness of these primitives, we de-
scribe the design and implementation of Boomerang, a full-blown
bidirectional programming languagewith dictionary lenses at its
core. We have used Boomerang to build transformers for complex
real-world data formats including the SwissProt genomic database.

We formalize the essential property ofresourcefulness—the
correct use of keys to associate chunks in the input and output—by
defining a refined semantic space ofquasi-oblivious lenses. Several
previously studied properties of lenses turn out to have compact
characterizations in this space.

Categories and Subject Descriptors D.3.2 [Programming Lan-
guages]: Language Classifications—Specialized application lan-
guages

General Terms Languages, Design, Theory

Keywords Bidirectional languages, lenses, view update problem,
regular string transducers, regular types

1. Introduction
“The art of progress is to preserve order amid change

and to preserve change amid order.”
—A N Whitehead

Most of the time, we use programs in just one direction, from input
to output. But sometimes, having computed an output, we needto
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be able toupdatethis output and then “calculate backwards” to find
a correspondingly updated input. The problem of writing such bidi-
rectional transformations arises in a multitude of domains, includ-
ing data converters and synchronizers, parsers and pretty printers,
picklers and unpicklers, structure editors, constraint maintainers for
user interfaces, and, of course, in databases, where it is known as
the view update problem. Our own study of bidirectional transfor-
mations is motivated by their application in a generic synchroniza-
tion framework, called Harmony, where they are used to synchro-
nize heterogeneous data formats against each other (Pierceet al.
2006; Foster et al. 2007a).

The naive way to write a bidirectional transformation is sim-
ply to write two separate functions in any language you like and
check (by hand) that they fit together in some appropriate sense—
e.g., that composing them yields the identity function. However,
this approach is unsatisfying for all but the simplest examples.
For one thing, verifying that the two functions fit together in this
way requires intricate reasoning about their behaviors. Moreover, it
creates a maintenance nightmare: both functions will embody the
structure that the input and output schemas have in common, so
changes to the schemas will require coordinated changes to both.
(See the appendix for a concrete example.)

A better alternative is to design a notation in which both trans-
formations can be described at the same time—i.e., abidirectional
programming language. In a bidirectional language, every expres-
sion, when read from left to right, denotes a function mapping in-
puts to outputs; when read from right to left, the same expression
denotes a function mapping an updated output together with an
original input to an appropriately updated version of the input. Not
only does this eliminate code duplication; it also eliminates paper-
and-pencil proofs that the two transformations fit togetherproperly:
we can design the language to guarantee it.

Many different bidirectional languages have been proposed, in-
cluding constraint maintainers (Meertens 1998), pickler combina-
tors (Kennedy 2004), embedding projection pairs (Benton 2005;
Ramsey 2003), X/Inv (Hu et al. 2004), XSugar (Brabrand et al.
2005), biXid (Kawanaka and Hosoya 2006), PADS (Fisher and
Gruber 2005), and bi-arrows (Alimarine et al. 2005). The design
challenge for all these languages lies in striking a balancebe-
tween expressiveness and reliability—making strong promises to
programmers about the joint behavior of pairs of transformations
and the conditions under which they can safely be used.

Lenses The language described in this paper is an extension of
our previous presentation on lenses (Foster et al. 2007b)—called
basic lenseshere.1 Among the bidirectional languages listed above,

1 Readers familiar with the original presentation will notice some minor dif-
ferences. First we handle situations where an element ofC must be created
from an element ofA using acreatefunction instead of enrichingC with a
special elementΩ and usingput. Second, as we are not considering lenses
defined by recursion, we take the components of lenses to be total func-
tions rather than defining lenses withpartial components and establishing
totality later. Finally, we take the behavioral laws as partof the fundamental



lenses are unique in their emphasis on strong guarantees on be-
havior and on compositional reasoning techniques for establishing
those guarantees.

Formally, a basic lensl mapping between a set of inputsC
(“concrete structures”) and a set of outputsA (“abstract structures”)
comprises three functions

l.get ∈ C −→ A
l.put ∈ A −→ C −→ C

l.create ∈ A −→ C

obeying the following laws for everyc ∈ C anda ∈ A:

l.put (l.getc) c = c (GETPUT)

l.get (l.put a c) = a (PUTGET)

l.get (l.createa) = a (CREATEGET)

The set of basic lenses fromC to A is writtenC ⇐⇒ A.
The get component of a lens may, in general, discard some of

the information from the concrete structure while computing the
abstract structure. Theputcomponent therefore takes as arguments
not only an updated abstract structure but also the originalconcrete
structure; it weaves the data from the abstract structure together
with information from the concrete structure that was discarded
by thegetcomponent, yielding an updated concrete structure. The
createcomponent is likeput except that it only takes anA argu-
ment; it supplies defaults for the information discarded byget in
situations where only the abstract structure is available.

Every lens obeys three laws. The first stipulates that theput
function must restore all of the information discarded by the get
if its arguments are an abstract structure and a concrete structure
that generates the very same abstract structure; the secondand
third demand that theput andcreatefunctions propagate all of the
information in the abstract structure back to the updated concrete
structure. These laws are closely related to classical conditions on
view update translators in the database literature (see Foster et al.
(2007b) for a detailed comparison).

Motivations and Contributions In previous work, we designed
lenses for trees (Foster et al. 2007b) and for relations (Bohannon
et al. 2006); in this paper we address the special challengesthat
arise whenordereddata is manipulated in bidirectional languages.
Our goals are both foundational and pragmatic. Foundationally, we
explore the correct treatment of ordered data, embodied abstractly
as a new semantic law stipulating that theput function must align
pieces of the concrete and abstract structures in a reasonable way,
even when the update involves a reordering. Pragmatically,we in-
vestigate lenses on ordered data by developing a new language
based around notions of chunks, keys, and dictionaries. To ground
our investigation, we work within the tractable arena of string trans-
formations. Strings already expose many fundamental issues con-
cerning ordering, allowing us to grapple with these issues without
the complications of a richer data model.

While primary focus is on exposing fundamental issues, we
have also tried to design our experimental language, Boomerang,
to be useful in practice. There is a lot of string data in the world—
textual database formats (iCalendar, vCard, BibTeX, CSV),struc-
tured documents (LaTeX, Wiki, Markdown, Textile), scientific data
(SwissProt, Genebank, FASTA), and simple XML formats (RSS,
AJAX data) and microformats (JSON, YAML) whose schemas are
non-recursive—and it is often convenient to manipulate this data
directly, without first mapping it to more structured representa-
tions. Since most programmers are already familiar with regular
languages, we hope that a bidirectional language for strings built

definition of basic lenses, rather than first defining bare structures of appro-
priate type and then adding the laws—i.e., in the terminology of Foster et al.
(2007b), basic lenses correspond towell-behaved, total lenses.

around regular operations (i.e., finite state transducers)will have
broad appeal.

Our contributions can be summarized as follows:

1. We develop a set ofstring lens combinatorswith intuitive se-
mantics and typing rules that ensure the lens laws, all basedon
familiar regular operators (union, concatenation, and Kleene-
star).

2. We address a serious issue in bidirectional manipulationof
ordered data—the need for lenses to be able to match up chunks
of data in the concrete and abstract structures by key rather
than by position, which we callresourcefulness—by adding
two more combinators and interpreting all the combinators in
an enriched semantic space ofdictionary lenses.

3. We formalize a condition calledquasi-obliviousnessand use it
to study properties of dictionary lenses. Some previously stud-
ied properties of basic lenses also have neat characterizations
using this condition.

4. We sketch the design and implementation ofBoomerang, a full-
blownbidirectional programming languagebased on dictionary
lenses, and describe some programs we have built for trans-
forming real-world data structures such as SwissProt.

String Lenses To give a first taste of these ideas, let us con-
sider a simple example where the concrete structures are newline-
separated records, each with three comma-separated fields repre-
senting the name, dates, and nationality of a classical composer

"Jean Sibelius, 1865-1957, Finnish
Aaron Copland, 1910-1990, American
Benjamin Britten, 1913-1976, English"

and the abstract structures include just names and nationalities:

"Jean Sibelius, Finnish
Aaron Copland, American
Benjamin Britten, English"

Here is a string lens that implements this transformation:

let ALPHA = [A-Za-z ]+
let YEARS = [0-9]{4} . "-" . [0-9]{4}
let comp = copy ALPHA . copy ", "

. del YEARS . del ", "

. copy ALPHA

let comps = copy "" | comp . (copy "\n" . comp)*

The first two lines define ordinary regular expressions for alpha-
betical data and year ranges. We use standard POSIX notationfor
character sets ([A-Za-z ] and[0-9]) and repetition (+ and{4}).

The lens that processes a single composer iscomp; lists of com-
posers are processed bycomps. In thegetdirection, these lenses can
be read as ordinary string transducers, written in regular expres-
sion style:copy ALPHA matchesALPHA in the concrete structure
and copies it to the abstract structure, andcopy ", " matches and
copies a literal comma-space, whiledel YEARS matchesYEARS
in the concrete structure but adds nothing to the abstract structure.
The union (|), concatenation (.), and iteration (*) operators work
as expected. Thus, thegetcomponent ofcomp matches an entry for
a single composer, consisting of a substring matching the regular
expressionALPHA, followed by a comma and a space (all of which
are copied to the output), followed by a string matchingYEARS
and another comma and space (which are not copied) and a final
ALPHA. Thegetof comps matches either a completely empty con-
crete structure (which it copies to the output) or a newline-separated
concatenation of entries, each of which is processed bycomp.

Theputcomponent ofcomps restores the dates positionally: the
name and nationality from thenth line in the abstract structure



are combined with the years from thenth line in the concrete
structure, using a default year range to handle cases where the
abstract structure has more lines than the concrete one. We will see
precisely how all this works in Section 2; for now, the important
point is that theputcomponent ofcomps operates by splitting both
of its arguments into lines and invoking theputcomponent ofcomp
on the first line from the abstract structure together with the first line
from the concrete structure, then the second line from the abstract
structure together with the second line from the concrete structure,
etc. For some updates—e.g., when entries have been edited and
perhaps added at the end of the abstract structure but the order of
lines has not changed—this policy does a good job. For example,
if the update to the abstract structure replaces Britten’s nationality
with “British” and adds an entry for Tansman, theput function
combines the new abstract structure

"Jean Sibelius, Finnish
Aaron Copland, American
Benjamin Britten, British
Alexandre Tansman, Polish"

with the original concrete structure and yields

"Jean Sibelius, 1865-1957, Finnish
Aaron Copland, 1910-1990, American
Benjamin Britten, 1913-1976, British
Alexandre Tansman, 0000-0000, Polish"

(the default year range0000-0000 is generated by thedel lens in
comp from the regular expressionYEARS).

Problems with Order On other examples, however, the behav-
ior of this put function is highly unsatisfactory. If the update to the
abstract string breaks the positional association betweenlines in
the concrete and abstract strings, the output will be mangled—e.g.,
when the update to the abstract string is a reordering, combining

"Jean Sibelius, Finnish
Benjamin Britten, English
Aaron Copland, American"

with the original concrete structure yields an output

"Jean Sibelius, 1865-1957, Finnish
Benjamin Britten, 1910-1990, English
Aaron Copland, 1913-1976, American"

where the year data has been taken from the entry for Copland and
inserted into into the entry for Britten, and vice versa.

This is a serious problem, and a pervasive one: it is triggered
whenever a lens whosegetfunction discards information is iterated
over an ordered list and the update to the abstract list breaks the
association between elements in the concrete and abstract lists. It is
a show-stopper for many of the applications we want to write.

What we want is for theput to align the entries in the concrete
and abstract strings by matching up lines with identical name com-
ponents. On the inputs above, thisput function would produce

"Jean Sibelius, 1865-1957, Finnish
Benjamin Britten, 1913-1976, English
Aaron Copland, 1910-1990, American"

but neither basic lenses nor any other existing bidirectional lan-
guage provides the means to achieve this effect.

Dictionary Lenses Our solution is to enrich lenses with a simple
mechanism for trackingprovenance(Cui and Widom 2003; Bune-
man et al. 2001, etc.). The idea is that the programmer shouldiden-
tify chunksof the concrete string and akeyfor each chunk. These
induce an association between chunks and pieces of the abstract
string, and this association can be used byput during the transla-
tion of updates to find the chunk corresponding to each piece of

the abstract, even if the abstract pieces have been reordered. Op-
erationally, we retool all ourput functions to use this association
by parsing the whole concrete string into a dictionary, where each
concrete chunk is stored under its key, and then making this dictio-
nary, rather than the string itself, available to theput function. We
call these enriched structuresdictionary lenses.

Here is a dictionary lens that gives us the desired behavior for
the composers example:

let comp = key ALPHA . copy ", "
. del (YEARS . ", ")
. copy ALPHA

let comps = "" | <comp> . ("\n" . <comp>)*

The first change from the earlier version of this program is that
the two occurrences ofcomp in comps are marked with angle
brackets, indicating that these subexpressions are the reorderable
chunks of information. The corresponding substring of the concrete
structure at each occurrence (which is passed to theputof comp) is
obtained not positionally but by matching keys. The second change
is that the firstcopy at the beginning ofcomp has been replaced
by the special primitivekey. The lenskey ALPHA has the same
copying behavior ascopy ALPHA, but it additionally specifies that
the matched substring is to be used as the key of the chunk in
which it appears—i.e., in this case, that the key of each composer’s
entry is their name. This choice means that we can both reorder
the entries in the abstract structure and edit their nationalities, since
the correspondence between chunks in the concrete and abstract
structures is based just on names. We do not actually demand that
the key of each chunk be unique—i.e., these “keys” are not required
to be keys in the strict database sense. If several pieces of the
abstract structure have the same key, they are matched by position.

Quasi-Obliviousness For the composers example, the behavior
of the new dictionary lens is clearly preferable to that of the original
basic lens: itsput function has the effect of translating a reordering
on the abstract string into a corresponding reordering on the con-
crete string, whereas theput function of the original lens works by
position and produces a mangled result. We would like a charac-
terization of this difference—i.e., a way of expressing theintuition
that the second lens does something good, while the first doesnot.

To this end, we define a semantic space of lenses calledquasi-
oblivious lenses. Let l be a lens inC ⇐⇒ A and let∼ be an
equivalence relation onC. We say thatl is a quasi-oblivious lens
with respect to∼ if its put function ignores differences between
equivalent concrete arguments.

We are primarily interested in lenses that are quasi-oblivious
with respect to an equivalence relating concrete strings upto re-
orderings of chunks. It should be clear that a dictionary lens that
operates on dictionaries in which the relative order of concrete lines
is forgotten will be quasi-oblivious with respect to such anequiva-
lence, while the analogous basic lens, which operates on lines po-
sitionally, is not. Using the above condition onput, we can derive
intuitive properties for many such quasi-oblivious lenses—e.g., for
the dictionary lens for composers above, we can show that updates
to the abstract list consisting of reorderings are translated by theput
as corresponding reorderings on the concrete list.

Lenses that are quasi-oblivious with respect to equivalences
other than reordering are also interesting. Indeed, we can charac-
terize some important special cases of basic lenses (obliviousand
very well behavedlenses) in terms of quasi-obliviousness.

Boomerang Our theoretical development focuses on a small set
of basic combinators. Of course, writing large programs entirely in
terms of such low-level primitives would be tedious; we don’t do
this. Instead, we have implemented a full-blown programming lan-
guage, called Boomerang, in which the combinators are embedded



in a functional language,̀a la Algol-60. That is, a Boomerang pro-
gram is a functional program over the base type “lens”; to apply it
to string data, we first evaluate the functional program to produce a
lens, and then apply this lens to the strings. This functional infras-
tructure can be used to abstract out common patterns as generic
bidirectional libraries (e.g., for processing XML structures) that
make higher-level programming quite convenient.

Boomerang also comes equipped with a type checker that in-
fers lens types and checks the conditions needed to ensure that a
dictionary lens satisfies the lens laws. The domain and codomain
types for dictionary lenses are regular languages, so the analysis
performed by this checker is very precise—a huge aid in writing
correct lens programs.

Using Boomerang, we have developed several large lenses for
processing a variety of data including vCard, CSV, and XML ad-
dress books, BibTeX and RIS bibliographic databases, LaTeXdoc-
uments, iTunes libraries, and databases of protein sequences repre-
sented in the ASCII SwissProt format and XML.

Outline Section 2 introduces notation and formally defines the
basic string lenses used in the first example above. Syntax, seman-
tics, and typing rules for dictionary lenses are given in Section 3.
Section 4 defines the refined semantic space of quasi-oblivious
lenses. Sections 5 and 6 describe Boomerang and our experiences
building lenses for real-world data formats. Section 7 discusses
related work. Section 8 describes extensions and ideas for future
work. To save space, proofs are deferred to the full version,avail-
able as a technical report (Bohannon et al. 2007).

2. Basic String Lenses
Before presenting dictionary lenses, let us warm up by formalizing
the language for basic lenses from the first example in the intro-
duction. LetΣ be a fixed alphabet (e.g., ASCII). A language is a
subset ofΣ∗. Metavariablesu, v, w range over strings inΣ∗, andǫ
denotes the empty string. The concatenation of two stringsu andv
is writtenu·v; concatenation is lifted to languagesL1 andL2 in the
obvious way:L1·L2 = {u·v | u ∈ L1 andv ∈ L2}. We writeL∗

to denote the iteration ofL: i.e.,L∗ =
S∞

n=0 Ln whereLn denotes
then-fold concatenation ofL with itself.

The typing rules for some lenses require that for every string
belonging to the concatenation of two languages, there be a unique
way of splitting that string into two substrings belonging to the con-
catenated languages. Two languagesL1 andL2 are unambiguously
concatenable, writtenL1·

!L2, if for everyu1, v1 in L1 andu2, v2

in L2 if u1·u2 = v1·v2 thenu1 = v1 andu2 = v2. Similarly,
a languageL is unambiguously iterable, writtenL!∗, if for every
u1, . . . , um, v1, . . . , vn,∈ L, if u1·····um = v1·····vn thenm = n
andui = vi for everyi from 1 to n.

2.1 Fact: It is decidable whether two regular languagesL1 andL2

are unambiguously concatenable and whether a single languageL
is unambiguously iterable.

Proof sketch: Let M1 and M2 be DFAs acceptingL1 and L2.
Construct an NFAN12 for L1·L2 using the standard Thompson
construction. An NFAN is ambiguous iff there exists a string for
which there are two distinct paths throughN ; ambiguity of NFAs
can be decided bysquaring(Berstel et al. 2005, Prop. 4.3):N is
ambiguous iff there is a path throughN × N that does not lie en-
tirely on the diagonal. It is easy to show thatL1 andL2 are un-
ambiguously concatenable iffN12 is unambiguous. Unambiguous
iteration is similar. �

Regular expressions are generated by the grammar

R ::= u | R·R | R|R | R∗

whereu ranges over arbitrary strings (includingǫ). The notation
[[E]] denotes the (non-empty) language described byE ∈ R. The
functionchoose(E) picks an arbitrary element from[[E]].

With that notation in hand, we now define five combinators for
building basic string lenses over regular languages. Recall that we
write l ∈ C ⇐⇒ A whenl is a basic lens mapping between strings
in C andA. Each basic lens expects to be applied to arguments
in its domain/codomain—it is nonsensical to do otherwise. In our
implementation, we perform a membership test on every string
before supplying it to a lens. (We do this check just once, at the
top level: internally, the typing rules guarantee that every sublens is
provided with well-typed inputs.)

The simplest primitive,copyE, copies every string belonging
to (the language denoted by)E from the concrete structure to the
abstract structure, and conversely in theput direction. The compo-
nents ofcopyare precisely defined in the box below. The second
primitive lens,constE u v maps every string belonging toE to a
constant stringu. Its put function restores its concrete argument. It
also takes as an argument a defaultv belonging toE, which is used
by createwhen no concrete argument is available. Note thatconst
satisfies PUTGET because its codomain is a singleton set.

The inference rules should be read as the statements of lemmas
that each combinator is a basic lens at the given type.

E ∈ R

copyE ∈ [[E]]⇐⇒ [[E]]

getc = c
puta c = a
createa = a

E ∈ R u ∈ Σ∗ v ∈ [[E]]

constE u v ∈ [[E]]⇐⇒ {u}

getc = u
puta c = c
createa = v

Several lenses can be expressed as syntactic sugar usingconst:

E ↔ u = constE u (choose(E))
delE = E ↔ ǫ

insu = ǫ↔ u

They behave as follows:E ↔ u is like const, but uses an arbitrary
element ofE for create; thegetfunction ofdelE deletes a concrete
string belonging toE and restores the deleted string in theput
direction; ins u inserts a fixed stringu in the get direction and
deletesu in the opposite direction.

The next three combinators build bigger lenses from smaller
ones using regular operators. Concatenation is simplest:

C1·
!C2 A1·

!A2

l1 ∈ C1 ⇐⇒ A1 l2 ∈ C2 ⇐⇒ A2

l1·l2 ∈ C1·C2 ⇐⇒ A1·A2

get(c1·c2) = (l1.getc1)·(l2.getc2)
put (a1·a2) (c1·c2) = (l1.puta1 c1)·(l2.puta2 c2)
create(a1·a2) = (l1.createa1)·(l2.createa2)

The notationc1·c2 used in the definition of concatenation assumes
thatc1 andc2 are members ofC1 andC2 respectively; we use this
convention silently in the rest of the paper.

The typing rule for concatenation requires that the concrete do-
mains and the abstract codomains each be unambiguously con-
catenable. This condition is essential for ensuring that the com-
ponents of the lens are well-defined functions and that the whole
lens is well behaved. As an example of what would go wrong with-
out these conditions, consider the (ill-typed) lenslambig , defined as
(a↔ a | aa↔ aa)·(a↔ b | aa↔ b) (“ |” is defined formally be-
low). Thegetcomponent is not well defined since, according to the
above specification,lambig .getaaa = ab if we split aaa into a·aa
andlambig .getaaa = aab if we split it into aa·a. This issue could
be side-stepped using a fixed policy for choosing among multiple



parses (e.g., with a shortest match policy,lambig .get aaa = ab).
However, doing so would not always give us a lens that satisfies the
lens laws; intuitively, just because one direction uses a given match
policy does not mean that the string it produces will split the same
way using the same policy in the other direction. Considerlbogus
defined ask·k wherek is (a↔ bb | aa↔ a | b↔ b | ba↔ ba).
Then using the shortest match policy we havelbogus .getaaa equals
(k.geta)·(k.getaa), which isbba, but lbogus .put bba aaa equals
(k.put b a)·(k.put ba aa), which isbba. That is, the GETPUT law
fails. For these reasons, we require that each pair ofC1 andC2 and
A1 andA2 be unambiguously concatenable.

The Kleene-star combinator is similar:

l ∈ C ⇐⇒ A C!∗ A!∗

l∗ ∈ C∗ ⇐⇒ A∗

get(c1 ···cn) = (l.getc1)···(l.getcn)
put (a1 ···an) (c1 ···cm) = c′1 ···c

′
n

wherec′i =



l.putai ci i ∈ {1, ..., min(m, n)}
l.createai i ∈ {m + 1, ..., n}

create(a1 ···an) = (l.createa1)···(l.createan)

Note that theput component ofl∗ calls theput of l on elements of
A andC having the same index in their respective lists. This is the
root of the undesirable behavior in the example in the introduction.2

Also note that it must handle cases where the number ofAs is not
equal to the number ofCs. Since the number ofAs produced by the
getof l∗ equals the number ofCs in its argument, the result of the
put function must have exactly as manyCs as there areAs in its
abstract string—otherwise, PUTGET would not hold. When there
are moreCs thanAs, the lens simply ignores the extraCs. When
there are moreAs, it must put them back into the concrete domain,
but it has no concrete argument to use. It usesl.createto process
these extra pieces.

The final combinator forms the union of two lenses:

C1 ∩ C2 = ∅
l1 ∈ C1 ⇐⇒ A1 l2 ∈ C2 ⇐⇒ A2

l1 | l2 ∈ C1 ∪ C2 ⇐⇒ A1 ∪A2

getc =

(

l1.getc if c ∈ C1

l2.getc if c ∈ C2

puta c =

8

>

>

>

<

>

>

>

:

l1.puta c if c ∈ C1 ∧ a ∈ A1

l2.puta c if c ∈ C2 ∧ a ∈ A2

l1.createa if c ∈ C2 ∧ a ∈ A1 \A2

l2.createa if c ∈ C1 ∧ a ∈ A2 \A1

createa =

(

l1.createa if a ∈ A1

l2.createa if a ∈ A2 \A1

The typing rule forcesC1 andC2 to be disjoint. Like the ambiguity
condition in the rule for concatenation, this condition is essential to
ensure that the lens is well defined. The abstract codomains,how-
ever, may overlap. In theputdirection, when the abstract argument
belongs toA1 ∩ A2, the union lens uses the concrete argument to
select a branch. In thecreatefunction, since no concrete argument
is available, it just usesl1. (This choice is arbitrary, but is not a lim-
itation: to usel2 by default, the programmer writesl2 | l1. It does
mean, though, that union is not commutative.)

2 We cannot, however, repair the problem just by fixing Kleene-star; the
same issues come up with concatenation.

3. Dictionary Lenses
Now that we’ve seen basic string lenses, let us define lenses that
deal more flexibly with ordering. We will accomplish this by adding
two new primitives,match(written with angle brackets in the con-
crete syntax of Boomerang) andkey, and interpreting these new
primitives and the primitives defined in the previous section in a
refined space calleddictionary lenses.

The main difference between basic and dictionary lenses is that
their put components operate on different types of structures—
strings and dictionaries respectively. Dictionary lensesalso include
two new components:parse, which is used to build a dictionary out
of a concrete string, andkey, which is used to compute the key of
data that goes into a dictionary.

In a dictionary lens, the work of the basic lensput function is
divided into two phases. In the first, the concrete string is given to
parse, which splits it into two parts: a collection of concrete chunks
organized as a dictionary and askeletonrepresenting the parts of
the string outside of the chunks. In the second, theput function
uses the abstract string, the skeleton, and the dictionary to build
an updated concrete string (and a new dictionary). These phases
occur in strict sequence: given a dictionary lensl, an abstract string
a, and a concrete stringc, we firstparsec, which yields a skeleton
s and dictionaryd; these are then passed, together witha, to l’s
put function, which walks recursively over the structure ofs anda,
threadingd throughl’s sublenses and pulling chunks out as needed.

To streamline the exposition, we start with the definition ofdic-
tionary lenses, which relies on several notions we have not seen
yet—skeleton setsS, the set of keysK, dictionary type specifi-
cationsL, dictionary typesD(L), and an infix operation++ that
appends dictionary values. These are defined below.

A dictionary lens fromC to A with skeleton typeS and dictio-
nary type specificationL has components

l.get ∈ C −→ A
l.parse ∈ C −→ S ×D(L)

l.key ∈ A −→ K
l.create ∈ A −→ D(L) −→ C ×D(L)

l.put ∈ A −→ S ×D(L) −→ C ×D(L)

obeying the following behavioral laws:3

s, d′ = l.parsec d ∈ D(L)

l.put (l.getc) (s, (d′
++ d)) = c, d

(GETPUT)

c, d′ = l.puta (s, d)

l.getc = a
(PUTGET)

c, d′ = l.createa d

l.getc = a
(CREATEGET)

We writeC
S,L
⇐⇒ A for the set of dictionary lenses with this type.

Both createandput consume dictionaries. We thread dictionar-
ies through calls to these functions in a functional style that sim-
ulates a global, mutable dictionary, and remove entries as they are
used, so that the next lookup of the same key finds the (position-
ally) next chunk from the concrete string. Theput function takes a
skeleton argument, whereas thecreatefunction does not. The skele-
ton, when available, represents the original concrete string with the
chunks removed and provides enough information to reconstruct
the original concrete string in cases where GETPUT requires it.

3 In law GETPUT, the extra dictionaryd shows that all and only the chunks
originating fromc are used by theput function.



To see how the components of a dictionary lens fit together, let
us see how to build a basic lensl from a dictionary lensl:

l.getc = l.getc
l.puta c = π1(l.puta (l.parsec))
l.createa = π1(l.createa {})

This definition embodies the strict phase separation between parse
andput discussed above. It is easy to show that the dictionary lens
laws guarantee the original laws for basic lenses built thisway.

3.1 Theorem: If l ∈ C
S,L
⇐⇒ A thenl ∈ C ⇐⇒ A.

We now give the definitions deferred previously. We writeh :: t
for the list with headh and tail t, List(X) for the set of lists of
X and, andl1 @ l2 for the concatenation of listsl1 and l2. We
write X × Y for the set of pairs{(x, y) | x ∈ X andy ∈ Y }.
We take the set of skeletonsS to be the smallest set closed under
these operations that includes plain strings and a distinguished atom
�, which is used to mark the locations of chunks in skeletons.
Formally,S =

S∞
n=0 Sn, whereS0 = Σ∗ ∪ {�} andSi+1 =

Si ∪ (Si × Si) ∪ List(Si). We defineK, the set of keys, to be just
Σ∗ (richer structures are also possible; see Section 8).

As chunks may be nested within chunks (by nesting thematch
combinator), the type of dictionaries is recursive. A dictionary is
a total function from keys to lists of pairs, each consistingof a
skeleton and another dictionary. Formally, the set of dictionaries
is defined recursively on the structure of a list of sets of skeletons
L ∈ List(P(S)) specifying the skeletons that may appear at each
level, as follows:

D([]) = K −→ {[]}

D(S :: L) = K −→ List(S ×D(L))

We write{} for the dictionary that maps everyk to the empty list.
Let d be a dictionary,k a key, andv a skeleton-dictionary pair list
of appropriate type. The update of a dictionary, writtend[k ← v],
is defined as

d[k ← v](k′) =



d(k′) if k′ 6= k
v if k′ = k

We write{k1 7→ v1, . . . , kn 7→ vn} for {}[k1 ← v1]···[kn ← vn].
The concatenation of two dictionariesd1 andd2, writtend1 ++ d2,
is defined using list concatenation as follows:(d1 ++ d2)(k) =
d1(k) @ d2(k). Dictionaries are accessed using a partial function
lookup that takes a keyk and a dictionaryd as arguments. When
it finds a matching value,lookup returns the value found and the
dictionary that remains after deleting that value.

lookup(k, d) =



e, d[k ← l] if d(k) = e :: l
undefined otherwise

We now reinterpret each combinator from the previous section
as a dictionary lens and give the definitions of the new combinators
keyandmatch. Thekeycombinator is nearly identical tocopy, ex-
cept that thekeycomponent ofcopyis a constant function (return-
ing ǫ), while thekeycomponent ofkeyreturns the abstract string.

E ∈ R L ∈ List(P(S))

copyE ∈ [[E]]
[[E]],L
⇐⇒ [[E]]

getc = c
parsec = c, {}
keya = ǫ
createa d = a, d
puta (s, d) = a, d

E ∈ R L ∈ List(P(S))

keyE ∈ [[E]]
[[E]],L
⇐⇒ [[E]]

getc = c
parsec = c, {}
keya = a
createa d = a, d
puta (s, d) = a, d

The refined definition ofconstis also straightforward.

E ∈ R u ∈ Σ∗ v ∈ [[E]] L ∈ List(P(S))

constE u v ∈ [[E]]
[[E]],L
⇐⇒ {u}

getc = u
parsec = c, {}
keya = ǫ
createu d = v, d
putu (s, d) = s, d

Concatenation is similar to string lenses, butcreate and put
thread the dictionary through the corresponding sublens functions.

l1 ∈ C1
S1,L
⇐⇒ A1 C1·

!C2

l2 ∈ C2
S2,L
⇐⇒ A2 A1·

!A2

l1·l2 ∈ C1·C2
S1×S2,L
⇐⇒ A1·A2

getc1·c2 = (l1.getc1)·(l2.getc2)
parsec1·c2 = (s1, s2), d1 ++ d2

wheresi, di = li.parseci

keya1·a2 = l1.keya1 · l2.keya2

createa1·a2 d1 = c1·c2, d3

whereci, di+1 = li.createai di

puta1·a2 ((s1, s2), d1) = c1·c2, d3

whereci, di+1 = li.putai (si, di)

Lens concatenation is associative, modulo coercion to basic lenses:
even though the skeleton structure of a lens differentiates(l1·l2)·l3
from l1·(l2·l3), we have(l1·l2)·l3 = l1·(l2·l3). We implicitly
associate lens concatenation (and the corresponding set-theoretic
operations) to the left.

To illustrate, consider the following dictionary lens:

l$ = keyx∗ · dely∗ · copy(z∗·$)

with l$ ∈ x∗·y∗·z∗·$
S,[]
⇐⇒ x∗·z∗·$

and S = x∗ × y∗ × z∗·$.

The parse function of l$ breaks apart a string according to the
structure of the concrete domain:

l$.parsexxyz$ = (xx, y, z$), {} ++ {} ++ {}

(The dictionary is empty because none of the sublenses use the
matchoperator.) Thekeyfunction returns thexx...x prefix of an
abstract string. The other components of this lens induce the same
functions as in the basic lens semantics.

The iteration combinator is analogous to the concatenationop-
erator. Itsparsefunction builds a concatenated dictionary and its
putandcreatefunctions thread their dictionary argument (from left
to right) through the corresponding sublens functions.

l ∈ C
S,L
⇐⇒ A C!∗ A!∗

l∗ ∈ C∗
List(S),L
⇐⇒ A∗

getc1 ···cn = (l1.getc1)···(l.getcn)
parsec1 ···cn = [s1, ..., sn], d1 ++···++ dn

wheresi, di = l.parseci

keya1 ···an = l.keya1 ···l.keyan

createa1 ···an d1 = (c1 ···cn), dn+1

whereci, di+1 = l.createai di

puta1 ···an ([s1, ..., sm], d1) = (c1 ···cn), dn+1

whereci, di+1 =

8

>

<

>

:

l.putai (si, di)
i ∈ {1, ..., min(m, n)}

l.createai di

i ∈ {m + 1, ..., n}



The most interesting new combinator ismatch. Its get compo-
nent passes off control to the sublensl. Theputcomponent matches
up its abstract argument with a corresponding item in the dictionary
and supplies both to theput function ofl.

l ∈ C
S,L
⇐⇒ A

〈l〉 ∈ C
{�},S::L
⇐⇒ A

getc = l.getc
parsec = �, {l.key(l.getc) 7→ [l.parsec]}
keya = l.keya

createa d =

8

>

<

>

:

π1(l.puta(sa, da)), d′

if (sa, da), d′ = lookup(l.keya, d)
π1(l.createa {}), d

if lookup(l.keya, d) undefined

puta (�, d) =

8

>

<

>

:

π1(l.puta (sa, da)), d′

if (sa, da), d′ = lookup(l.keya, d)
π1(l.createa {}), d

if lookup(l.keya, d) undefined

To illustrate the operation ofmatch, consider the lens〈l$〉∗. It
has the sameget behavior asl$∗, but itsput function restores the
ys to each chunk using the association induced by keys rather than
by position. Let us calculate the result produced by the following
application of the derivedput function:

〈l$〉∗.putxxzzz$x$ xyz$xxyyzz$

Here, the update to the abstract string has swapped the orderof the
chunks and changed the number ofzs in each chunk. Theparse
function produces a dictionary structure that associates (the parse
of) each chunk to its key:

〈l$〉∗.parsexyz$xxyyzz$

= [�, �],



x 7→ [((x, y, z$), {})],
xx 7→ [((xx, yy, zz$), {})]

ff

Each step invokes theput of the match lens, which locates a con-
crete chunk from the dictionary and invokes theputof l$. The final
result illustrates the “resourcefulness” of this lens:

〈l$〉∗.putxxzzz$x$ xyz$xxyyzz$ = xxyyzzz$xy$

By contrast, theput component of the basic lensl$∗ is not
resourceful—it restores theys to each chunk by position:

l$∗.putxxzzz$x$ xyz$xxyyzz$ = xxyzzz$xyy$

The final operator forms the union of two dictionary lenses:

l1 ∈ C1
S1,L
⇐⇒ A1

l2 ∈ C2
S2,L
⇐⇒ A2

C1 ∩ C2 = ∅ S1 ∩ S2 = ∅

l1 | l2 ∈ C1 ∪ C2
S1∪S2,L
⇐⇒ A1 ∪A2

getc =



l1.getc if c ∈ C1

l2.getc if c ∈ C2

parsec =



l1.parsec if c ∈ C1

l2.parsec if c ∈ C2

keya =



l1.keya if a ∈ A1

l2.keya if a ∈ A2\A1

createa d =



l1.createa d if a ∈ A1

l2.createa d if a ∈ A2\A2

puta (s, d) =

8

>

<

>

:

l1.puta (s, d) if a, s ∈ A1×S1

l2.puta (s, d) if a, s ∈ A2×S2

l1.createa d if a, s ∈ (A1\A2)×S2

l2.createa d if a, s ∈ (A2\A1)×S1

This definition is analogous to the union operator for basic string
lenses. Because theput function takes a skeleton and dictionary
rather than a concrete string (as the basic lensputdoes), the last two
cases select a branch using the skeleton value. The typing rule en-
sures that skeleton domains are disjoint so that this choiceis well-
defined. The union combinator is associative, but not commutative
(for the same reason that the basic lens is not).

One interesting difference from the basic lens is that thecreate
function takes a dictionary argument, which can be used to transfer
information from one branch to the other. The following example
illustrates why this is useful. Definel$$ = 〈l$〉 | 〈l$〉·〈l$〉. The
typing rules give us the following facts:

l$$ ∈ EC | EC ·EC

{�,(�,�)},[S]
⇐⇒ EA | EA·EA,

where EC = x∗·y∗·z∗·$ EA = x∗·z∗·$
S = x∗ × y∗ × z∗·$.

Now considerc1, c2 ∈ EC anda1, a2 ∈ EA, whereai = l$.getci.
We havel$$.getc1·c2 = a1·a2. A natural way for theput function
to reflect an update ofa1·a2 to a2 on the concrete string would
be to producec2 as the result. However, since the update involves
crossing from one branch of the union to the other, the basic lens
version cannot achieve this behavior—crossing branches always
triggers acreate with defaults. For example, withc1 = xyz$,
c2 = xxyyzz$, a1 = xz$, anda2 = xxzz$, we have

(l$ | l$·l$).putxxzz$ xyz$xxyyzz$ = xxzz$.

The dictionary lens version, however, is capable of carrying infor-
mation from the concrete string via its dictionary, even when the
update changes which branch is selected. On the same example,
we have

l$$.putxxzz$ xyz$xxyyzz$ = xxyyzz$,

as we might have hoped.

4. Quasi-Obliviousness
As the examples above demonstrate, dictionary lenses can bewrit-
ten to work well in situations where the updates to abstract strings
involve reordering. In particular, the dictionary lens version of the
composers lens in the introduction behaves well with respect to re-
ordering, while the original basic lens version does not. Inthis sec-
tion, we develop a refinement of the semantic space of basic lenses
that makes such comparisons precise. We first define a space of
quasi-obliviouslenses and show how it can be used to derive intu-
itive properties of lenses operating on ordered data. We then show
how it can be used more generally to succinctly characterizetwo
important special cases of basic lenses—oblivious and verywell
behaved lenses.

Quasi-obliviousness is an extensional property of lenses—i.e.,
a property of the way they transform entire abstract and concrete
structures. When discussing it, there is no need to mention internal
structures like skeletons and dictionaries. We therefore return in
this section to the simpler vocabulary of basic lenses, keeping in
mind that a dictionary lensl can be converted into a basic lensl as
described in Section 3.

Let l be a basic lens fromC to A and let∼ be an equivalence
relation onC. Thenl is quasi-obliviouswith respect to∼ if it obeys
the following law for everyc, c′ ∈ C anda ∈ A:

c ∼ c′

l.put a c = l.put a c′
(EQUIVPUT)

Note that the law has equality rather than∼ in the conclusion; this
is because theput must propagate all of the information contained
in a to satisfy PUTGET. In particular, the order of chunks in the
result of theput is forced by their order ina.



Like the basic lens laws, EQUIVPUT is a simple condition that
guides the design of lenses by specifying what effect they must
have in specific cases where the correct behavior is clear. One
way to understand its effect is to notice how it extends the range
of situations to which the GETPUT law applies—GETPUT only
constrains the behavior of theput on the unique abstract string
generated from a concrete string byget; with EQUIVPUT, it must
have the same behavior on the entire equivalence class.

Here is an example demonstrating how EQUIVPUT and GETPUT
can be used together to derive an useful property of theput com-
ponent of a lens, without any additional knowledge of howput
operates. LetC andA be regular languages and suppose that we
can identify thechunksof every string inC and thekey of each
chunk. For example, in the composers lens, the chunks are the
lines and the keys are the names of the composers. These chunks
and keys induce an equivalence relation onC where two stringsc
andc′ are equivalent if they can be obtained from each other by a
key-respecting reorderingof chunks—i.e., by repeatedly swapping
chunks such that the relative ordering of chunks with the same key
is preserved. Write∼ for this equivalence relation. Now letl be a
quasi-oblivious lens with respect to∼ and suppose that the notions
of chunks and keys onC are carried by theget function toA in
a natural way, and that every key-respecting reordering onA can
be generated by applying theget function to a correspondingly re-
ordered string inC. (This is the case with our dictionary lens in the
composer example: chunks in the abstract codomain are lines, the
composer names are preserved by theget function, and the order
of the abstract lines after aget is the same as the order of the lines
in the concrete structure.) Consider an arbitrary concretestring c,
an abstract stringa = getc, and an updated abstract stringa′ that
is obtained by reordering chunks ina. Let us calculate the result
of applyingput to a′ andc. By the above hypothesis, sincea′ was
obtained by reordering the chunks ina, it is equal to thegetof c′

for somec′ obtained fromc by the corresponding reordering of
chunks. By the GETPUT law, applying theput function toa′ and
c′ is c′; by EQUIVPUT, applying theput function toa′ andc also
yields c′. Thus, quasi-obliviousness lets us derive an intuitive re-
sult: theput function translates reorderings of chunks in the abstract
string as corresponding reorderings on the concrete string.

The EQUIVPUT law is useful both as a constraint on the de-
sign of lens primitives (in particular, dictionary lenses are de-
signed with this principle in mind, for an equivalence basedon
reordering chunks) and as a guide for developing intuitions. Quasi-
obliviousness does not, however, provide a complete specification
of the correct handling of ordering in bidirectional languages. For
example, it does not say what happens when the update to the ab-
stract string deletes chunks or edits the value of a key. To capture
such cases, one could formulate a condition stipulating that theput
function must align chunks by key. Specifying this condition, how-
ever, requires talking about the sublens that operates on the chunks,
which implies a syntactic representation of lenses analogous to dic-
tionary lenses. We thus prefer to only consider the extensional law,
even though it provides guarantees in fewer situations.

By design, each dictionary lens is quasi-oblivious with respect
to an equivalence relation that can be read off from its syntax. The
equivalence identifies strings up to key-respecting reorderings of
chunks, where chunks are denoted by the occurrences of angle
brackets, and keys by the sections each chunk marked using the
key combinator. To see that every dictionary lens is quasi-oblivious
with respect to this equivalence, observe thatparsemaps strings
that are equivalent in this sense to identical skeletons anddictio-
naries, and recall that theput function for a dictionary lens (when
viewed as a basic lens) wraps an invocation ofparse, and ofput,
which operates on this skeleton and dictionary directly. Itfollows
thatput behaves the same on equivalent concrete strings.

Returning to the composers example, we can see that why the
basic lens is bad and the dictionary lens is good: the equivalence
the programmer had in mind forbothversions was the one that can
be read off from the second one—every line is a chunk, and the
relative order of lines with different names should not affect how
dates are restored by theput function. The first version of the lens,
which operates positionally, is not quasi-oblivious with respect to
this equivalence.

So far, we have focused on equivalence relations which are key-
respecting reorderings of chunks. More generally, we can consider
arbitrary equivalences onC. In the rest of this section, we investi-
gate some properties of this more general view of quasi-oblivious
lenses.

For a given basic lensl, there are, in general, many equivalence
relations∼ such thatl is an quasi-oblivious lens with respect
to ∼. We write Cl(∼) for the set of equivalence classes (i.e.,
subsets of the concrete domain) of∼. Every lensl is trivially quasi-
oblivious with respect to equality, the finest equivalence relation on
C, and the relation∼max, defined as the coarsest equivalence for
which l satisfies EQUIVPUT (c∼maxc

′ iff ∀a. put a c = put a c′).
Between equality and the coarsest equivalence, there is a lattice of
equivalence relations.

Given an equivalence relation, every concrete elementc may be
characterized by the data preserved in the abstract codomain and
the rest of the data shared by every other view of the equivalence
class containingc. That is, givenCi ∈ Cl(∼) and an abstract view
a, there is at most one viewc such thatc ∈ Ci and l.get c = a.
Conversely, if two different concrete views map to the samea, then
they must belong to different equivalence classes.

In the original lens paper (Foster et al. 2007b), two special
classes of lenses are discussed. A lensl ∈ C ⇐⇒ A is calledobliv-
ious if its put function ignores its concrete argument completely. A
lensl is very well behavedif the effect of twoputs in sequence just
has the effect of the second—i.e., ifl.put a (l.put a′ c) = l.put a c
for everya, a′, andc. (Very well behavedness is a strong condition
and imposing it on all lenses would prevent writing many useful
transformations. For example, note that neither variant ofthe com-
posers lens is very well behaved: if we remove a composer and
add the same composer back immediately after, the birth and death
dates will be the default ones instead of the original ones. This may
be seen as unfortunate, but the alternative is disallowing deletions!)

Interestingly, both of these conditions can be formulated in
terms of∼max. A lens l is oblivious iff the coarsest relation∼max

satisfying EQUIVPUT is the total relation onC. Moreover,l is very
well behaved iff∀Ci ∈ Cl(∼max). l.get Ci = A. This condition
puts the abstract codomain in a bijection with each equivalence
class of∼ and forces the operation of theput function to use the
information in the abstract and concrete structures as follows: the
concrete structure identifies an equivalence classCi; the informa-
tion contained in the abstract structure determines an element of
Ci. This turns out also to be equivalent to the classical notionof
view update translation under “constant complement” (Bancilhon
and Spyratos 1981).

5. Boomerang
Programming with combinators alone is low-level and tedious. To
make lens programing more convenient, we have implemented a
high-level programming language calledBoomerangon top of our
core primitives.

Boomerang’s architecture is simple: dictionary lens combina-
tors are embedded in a simply typed functional language (we use
the syntactic conventions of OCaml) built over the base types
string, regexp, andlens. The language has all of the usual con-



structs: functions andlet-definitions,4 as well as constants for us-
ing dictionary lenses with the interface of a basic lens (as described
in Section 3):

get : lens -> string -> string
put : lens -> string -> string -> string
create : lens -> string -> string

Evaluation in Boomerang is logically divided into two levels,
in the style of Algol 60. At the first level, expressions are evalu-
ated using the standard strategy of a call-by-valueλ-calculus. This,
in turn, may trigger the assembly (and type checking!) of a new
dictionary lens value. The run-time representation of a dictionary
lens value is a record of functions (representing theget, parse, key,
create, andput components) and several finite-state automata (rep-
resenting the concrete, abstract, skeleton, and dictionary compo-
nents of the type); when a lens is built, the type checker checks the
conditions mentioned in the typing rules using operations on these
automata.

Using libraries and user-defined functions, it is possible to as-
semble large combinator programs quite rapidly. For example, the
following user-defined function encapsulates the low-level details
of escaping characters in XML. It takes a regular expressionexcl
of excluded characters, and yields a lens mapping between raw and
escaped PCDATA characters:

let xml_esc (excl:regexp) =
copy ([^&<>\n] - excl)
| ">" <-> "&gt;"
| "<" <-> "&lt;"
| "&" <-> "&amp;"

(When xml_esc is applied, the value passed forexcl typically
contains the “separators” of fields in the format; these are used by
the type checker, e.g., to verify unambiguous iteration.)

Similarly, the next two functions handle the details of process-
ing atomic values and entire fields in BibTeX and RIS-formatted
bibliographic databases. They are defined in a context wherews,
quot_str, brac_str, andbare_str are bound to the lenses used
to process whitespace, quoted strings, strings enclosed incurly
braces, and bare strings respectively.

let val (ld:string) (r:regexp) (rd:string) =
del (ws . "=" . ws . ld) .
copy r .
del (rd . ws . "," . ws . "\n")

let field (bibtex:string) (ris:string) =
let quot_val = val "\"" quot_str "\"" in
let brac_val = val "{" brac_str "}" in
let bare_val = val "" bare_str "" in
let any_val = quot_val | brac_val | bare_val in
ws . bibtex <-> ris . any_val . ins "\n"

Theval function is used to tidy BibTeX values; when it is applied
to a left delimiter stringld, a regular expression describing the
valuer, and a right delimiter stringrd, it produces a dictionary
lens that strips out the “=” character, whitespace, and delimiters.
The field function takes as arguments strings representing the
name of a BibTeX field (e.g.title) and the corresponding RIS
field (T1) and produces a dictionary lens that maps between entire
key-value pairs in each format.

The most significant challenges in implementing Boomerang
come from the heavy use of regular expressions in its type sys-
tem. Since the types of dictionary lenses involve regular languages,
Boomerang’s type checker needs to be able to decide equivalence,

4 Although it is semantically straightforward to define lenses by recursion
(see Foster et al. (2007b)), Boomerang does not support recursive defini-
tions as it would then be possible to define lenses with context-free types.

inclusion, and emptiness of regular languages, which are all stan-
dard. However, standard automata libraries do not provide oper-
ations for deciding unambiguous concatenation and iteration, so
we implemented a custom automata library for Boomerang. Ourli-
brary uses well-known techniques to optimize the representation of
transition relations, and to recognize several fast paths in automata
constructions. Even with these optimizations, as several operations
use product constructions, the memory requirements can be signif-
icant. In our experience, performance is good enough for examples
of realistic size, but we plan to investigate further optimizations in
the future.

Because the type analysis performed by the dictionary lens type
checker is so precise, many subtle errors—overlapping unions, am-
biguous concatenations, etc.—are detected early. Boomerang sup-
ports explicit programmer annotations of dictionary lens types,
written in the usual way aslet e : (C <-> A). It also has mech-
anisms for printing out inferred types and generating counterexam-
ples when type checking fails. We have found all these features in-
credibly helpful for writing, testing, and debugging largelens pro-
grams.5

6. Experience
We have built Boomerang lenses for a variety of real-world for-
mats, including an address book lens that maps between vCard,
CSV, and XML; a lens that maps BibTeX and RIS bibliographic
databases; and lenses for calculating simple ASCII views ofLa-
TeX documents and iTunes libraries represented in XML as Apple
Plists. Our largest Boomerang program converts between protein
sequence databases represented in ASCII using the SwissProt for-
mat and XML documents conforming to the UniProtKB schema.
For example, the following snippet of a SwissProt entry

OS Solanum melongena (Eggplant) (Aubergine).
OC Eukaryota; Viridiplantae.
OX NCBI_TaxID=4111;

is mapped to a corresponding UniProtKB XML value:

<name type="scientific">Solanum melongena</name>
<name type="common">Eggplant</name>
<name type="synonym">Aubergine</name>
<dbReference type="NCBI Taxonomy" key="1" id="4111"/>
<lineage>
<taxon>Eukaryota</taxon>
<taxon>Viridiplantae</taxon>

</lineage>

Like many textual database formats, SwissProt databases are
lists of entries consisting of tagged lines; our lens follows this
structure. Entries are processed by thematchcombinator as distinct
chunks, so that the information discarded by theget(e.g., metadata
about each entry’s creation date) can be restored correctlywhen
updates involve reorderings. The identifier line provides anatural
key. Other lines are processed using lenses specifically written for
their data (of course, we factor out common code when possible).
Most of these consist of simple filtering and reformatting (and
swapping—see Section 8), and are therefore straightforward to
write as dictionary lens combinators.

Interestingly, as we were developing this lens, the Boomerang
type checker uncovered a subtle ambiguity in one of the linesthat
stems from the use of both “,” and “;” as separators. Some implicit
conventions not mentioned in the specification avoid this ambiguity
in practice (and we were able to revise our code to reflect these
conventions). The precision of Boomerang’s type system makes it
a very effective tool for debugging specifications!

5 And small ones! All the lenses and examples typeset in a typewriter font
in this document were checked and run within the Boomerang system.



7. Related Work
Basic lenses were the starting point for this work. The original
paper (Foster et al. 2007b) includes an extensive survey of the
connections between basic lenses and the view update problem in
the database literature. Basic lenses for relational structures, us-
ing primitives based on relational algebra, have also been devel-
oped (Bohannon et al. 2006). The combinators for tree lensesde-
scribed in the first lens paper can be used to write lenses for lists en-
coded as trees, and all of the problems with ordered data described
in the present work arise in that setting too. (These problems do not
come up in the relational setting, since the structures handled there
are unordered.)

Meertens’s formal treatment ofconstraint maintainersfor user
interfaces (Meertens 1998, Section 5.3) recognizes the problem we
are dealing with in this paper when operating on lists, and proposes
a solution for the special case of “small updates” specified by edit
operations, using a network of constraints between list entries. The
idea of using constraints between concrete and abstract structures is
related to our use of keys in dictionary lenses, but handlingupdates
by translating edit operations represents a significant departure
from the approach used in lenses, where “updates” are not given
as operations, but by the updated value itself. The treatment of
ordering for lists and trees in the bidirectional languagesX and
Inv (Hu et al. 2004; Mu et al. 2004), comes closest to handling
the sorts of “resourceful updating” situations that motivate this
work. Their approach is based on Meertens’s ideas. As in his
proposal, updates to lists in X are performed using edit operations.
But rather than maintaining a correspondence between elements of
concrete and abstract lists, the semantics of the edit operation is a
function yielding a tagged value indicating which modification was
performed by the edit. The structure editor described in (Huet al.
2004) based on X does handle singleinsert anddeleteoperations
correctly by propagating these modification tags locally inlists.
However, themoveoperation is implemented as adeletefollowed
by an insert. This means that the association between the location
of the moved element in the concrete and abstract lists is not
maintained, and so moved data is populated with default values at
the point of insertion; e.g., our composers example is not handled
correctly.

There is a large body of work on bidirectional languages for
situations in which round-trips are intended to be bijective modulo
“ignorable information” (such as whitespace). XSugar (Brabrand
et al. 2005) is a bidirectional language that targets the special case
when one structure is an XML document and the other is a string.
Transformations are specified using pairs of intertwined grammars.
A similar bidirectional language, biXid (Kawanaka and Hosoya
2006), operates just on XML data. The PADS system (Fisher and
Gruber 2005) makes it possible to generate a data type, parser, and
pretty printer for an ad-hoc data formats from a single, declarative
description. PADS comes with a rich collection of primitives for
handling a wide variety of data including characters, strings, fixed-
with integers, floating point values, separated lists, etc.Kennedy’s
combinators (2004) describe pickler and unpicklers. Benton (2005)
and Ramsey (2003) both describe systems for mapping between
run-time values in a host language and values manipulated byan
embedded interpreter. In all of these systems, as round-trips are
intended to be essentially bijective, the problems with reordering
that our dictionary lenses are designed to solve do not come up.

JT (Ennals and Gay 2007) synchronizes programs written in
different high level languages, such as C and Jekyll, an extension of
C with features from ML. JT relies on a notion of distance to decide
how to propagate modifications, allowing the detection of non local
edits such as the swap of two functions. The synchronizationseems
to work well in many cases but there is no claim that the semantics
of the synchronized programs are the same.

Recently, Stevens (2007) has applied the ideas of basic lenses
in the context ofmodel transformations(leaving aside issues of
ordering, for the moment, though this is a goal for future work).

Our lens combinators are based on finite-state transducers,
which were first formulated as multitape automata by Scott and
Rabin (1959). Languages based on finite-state automata havebeen
developed, largely in the area of natural language processing; the
collection edited by Roche and Schabes gives a survey (1996).
Mechanized checking for string processing languages that,like
Boomerang, have type systems based on regular automata have
also been studied (Tabuchi et al. 2002).

8. Extensions and Future Work
This final section presents some extensions to the basic design de-
scribed in previous sections—including both ideas we have already
implemented in Boomerang and ones we leave for future work. We
discuss a range of topics including additional combinators, imple-
mentation optimizations, and stronger semantic constraints.

We first consider extensions to the set of operators, starting with
sequential composition. Extending the grammar of skeletons with
a new form of pairs,〈S1, S2〉, and writingX ⊗Y for {〈x, y〉 | x ∈
X, y ∈ Y }, we can define the sequential composition ofl1 andl2
as follows.

l1 ∈ C
S1,L
⇐⇒ B l2 ∈ B

S2,L
⇐⇒ A

l1 ; l2 ∈ C
S1⊗S2,L
⇐⇒ A

getc = l2.get(l1.getc)
parsec = 〈s1, s2〉, (d2 ++ d1)

wheres1, d1 = l1.parsec
ands2, d2 = l2.parse(l1.getc)

keya = l2.keya
createa d = c, d2

whereb, d1 = l2.createa d
andc, d2 = l1.createb d2

puta (〈s1, s2〉, d) = c, d2

whereb, d1 = l2.puta (s2, d)
andc, d2 = l1.put b (s1, d2)

Sequential composition is very useful in practice when somepre-
processing of data is needed so that every chunk with the same
information actually belongs to the same regular language.For in-
stance, suppose that the concrete language is a concatenation of
substrings belonging tox∗ · y∗ · $ · z∗ followed by a separator “#”
and then a concatenation of substrings belonging tox∗ · y∗ · z∗ · $.
If we want to ignore the position of the symbol$ and process these
substrings uniformly as chunks, allowing reordering to occur freely
between any chunk, we can use the following lens:

l# =
(copy(x∗·y∗) · del$ · copyz∗ · ins$)∗ · copy#·

(copy(x∗·y∗·z∗·$))∗;
〈l$〉∗ · copy# · 〈l$〉∗

With c = xy$zxxyy$zz#zzz$xxxyyy$, we have

l#.getc = xz$xxzz$#zzz$xxx$

l#.putxxxzzz$#xxzz$ c = xxxyyy$zzz#xxyyzz$

as desired. However, the interactions of sequential composition
with parsing and dictionaries are somewhat tricky because,in gen-
eral, each lens in a composite can have its own notion of chunk.
Thus, we leave a full investigation of the composition operator as
future work.

The get components of the string lens combinators we have
described—copyandconstclosed under the regular operators and



composition—are all expressible as standard one-way finitestate
transducers. This class contains many useful transformations, pow-
erful enough to express a large collection of examples, but has a
fundamental limitation: the restriction to finite state means that it is
impossible for a lens to “remember” arbitrary amounts of data. For
example, with the basic combinators, we cannot write a variant of
the composers example where the order of the name and nationality
are inverted in the view:

"Finnish, Jean Sibelius
American, Aaron Copland"

Lifting this restriction poses no semantic problems, and the actual
set of dictionary lenses implemented in Boomerang includesprimi-
tives for swapping and sorting arbitrary data. For example,the com-
binatorswapl1 l2 swaps the views computed by thegetfunctions—
i.e.,c1·c2 maps to(l2.getc2)·(l1.getc1)—and unswaps the results
computed by theput functions.

l1 ∈ C1
S1,L
⇐⇒ A1 C1·

!C2

l2 ∈ C2
S2,L
⇐⇒ A2 A2·

!A1

swapl1 l2 ∈ C1·C2
S1×S2,L
⇐⇒ A2·A1

getc1·c2 = (l2.getc2)·(l1.getc1)
parsec1·c2 = (s1, s2), d2 ++ d1

wheresi, di = li.parseci

keya2·a1 = l2.keya2 · l1.keya1

createa2·a1 d1 = c1·c2, d3

wherec2, d2 = l2.createa2 d1

andc1, d3 = l1.createa1 d2

puta2·a1 ((s1, s2), d1) = c1·c2, d3

wherec2, d2 = l2.puta2 (s2, d1)
wherec1, d3 = l1.puta1 (s1, d2)

A lens that computes the above transformation for a single com-
poser is the following:

swap (key ALPHA)
(del (", " . YEARS . ", ") . ALPHA . ins ", ")

Swap and other related primitives are used critically in thelenses
for real-world data that we have built, including the BibTeXand
SwissProt lenses. Building on swap and union, we have also de-
fined lenses for handling simple forms of sorting: e.g., where the
concrete domain is the interleaving of a list of regular languages
and the abstract codomain has the languages in list order. A re-
lated generalization of the iteration combinator yields another kind
of sorting. It partitions a sequence by moving elements thatdo not
belong to a given regular expression to the end.

We have also implemented a generalized version of thematch
combinator. The lens described in Section 3 uses a single dictionary
structure to match concrete chunks with pieces of the abstract string
having the same key. This matching is performed globally across
the entire concrete string. Nested match combinators provide one
way to limit the scope of matching, but in other situations, it is
convenient to use matchable regions with several distinct sorts, and
to have the matching of chunks with different sorts kept separate. In
our implementation, we generalize the design described above by
fixing a setT of string “tags”, and associating each〈l〉 combinator
to a tag. The typeD of dictionaries is similarly generalized from
finite maps from keysK to lists, to finite maps from tagsT to K to
lists. This allows us to express transformations in which different
pieces of the input and view are matched globally, using different
dictionaries.

Thus far, we have assumed that keys are generated by concate-
nating the non-empty substrings generated by thekey combinator.
In some situations it is useful to ignore parts of the key (e.g., with

nested matches), or to add a fixed string to a key (e.g., to separate
keys that are concatenated). Boomerang includes primitives to do
these operations on keys. More generally, our basic design could
also be extended so that keys are represented by richer structures—
e.g., strings, sets, and lists—and add combinators for transforming
between different kinds of keys. For example, the iterationcom-
binator could return the list of keys of chunks instead of their flat
concatenation, and this list could be further transformed into a set,
if order is not important, or concatenated into a string.

Many languages where transformations are bijective modulo
“ignorable information”—e.g., whitespace and minor formatting
details—have been proposed. We are investigating the generaliza-
tion of this idea to lenses in the domain of strings. Thegetandput
functions may discard ignorable information, and the lens laws are
only required modulo the same information. As an example, we
have implemented a variant of theconst lens whoseget function
produces a constant string, but whoseput function accepts a regu-
lar language. This variant is used in the SwissProt lens to indicate
that whitespace occurring in XML documents can be ignored.

We now turn the discussion to ongoing work concerning the effi-
ciency of our implementation. Our Boomerang interpreter isbased
on an NFA representation of finite automata. These are used tode-
cide the side conditions in the typing rules of dictionary lenses, and
for operations such as splitting a string belonging to unambiguous
concatenations into unique substrings. The performance ofthis im-
plementation is good enough for examples of realistic size,but we
would like to engineer an optimized implementation in the future.
One possibility is to compile regular expressions to DFAs using
derivatives (Brzozowski 1964). Although DFAs can be exponen-
tially larger than NFAs, string matching is much faster, andthey
can be constructed lazily. The main challenge is developingeffi-
cient techniques for deciding non-ambiguity directly.

Another extension we would like to explore is streaming string
lenses. This is motivated by large examples such as SwissProt,
where the size of the concrete string is on the order of 1GB! We
would like to develop a variant of the iteration combinator whose
getfunction processes elements one at a time, rather than operating
on a string representing the whole sequence. Similarly, theput
function would operate on elements of the abstract string one at
a time. Of course, theput function also needs a dictionary that, in
the current design, represents the entire concrete string.To optimize
the memory requirements, we are also investigating an extension in
which only the minimum information needed to satisfy GETPUT is
kept in skeletons and dictionaries. For example,copycould produce
a trivial skeleton rather than copying the entire string (which is
ignored byput). Interestingly, these minimal “complements” to
the get function, would result inparse functions that calculate
the coarsest equivalence satisfying PUTEQUIV. Thus, they may
provide insights into semantic properties of lenses such asvery well
behavedness.

Semantics is another area of ongoing work. The EQUIVPUT law
is stated with respect to an equivalence relation on the concrete do-
main∼C . As observed, this equivalence arises naturally from a
dictionary lens. Moreover,∼C also induces an equivalence on the
abstract codomain by taking the image of∼C underget. However,
our lenses do not guarantee that the induced equivalence is express-
ible solely in terms of chunks and keys in the abstract codomain.
We are investigating an extension of dictionary lenses thatgives rise
to an explicit equivalence on the abstract codomain∼A. With such
an equivalence in hand, we would then like to ensure that our lenses
translate equivalence-preserving updates to equivalence-preserving
updates. The first step is to check that our lenses satisfy thelaw

l.getc ∼A a′

∃c′.c ∼C c′ ∧ l.getc′ = a′ (EQUIVEXISTS)



which asserts, in the case where the equivalences are based on key-
respecting reorderings of chunks, that every reordering ofchunks in
an abstract string can be realized as a corresponding reordering of
chunks in the concrete domain. Combining this with EQUIVPUT,
we can prove a derived rule

l.getc ∼A a′

l.puta′ c ∼C c
(GETPUTEQUIV)

which states that reorderings onA are, in fact, translated as reorder-
ings onC.

Finally, we plan on investigating resourceful and quasi-oblivious
lenses for trees, relations, and graphs.
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A. Manual Lenses
In this appendix we entertain a heretical proposition—thatbidi-
rectional languages might not be worth the trouble. Might itnot
be simpler just to write theget and put components as separate
functions in a general-purpose programming language?6 To evalu-
ate this proposition (and ultimately reject it), we consider OCaml
definitions of thegetandput functions for the composers example
from the introduction, and then step through the reasoning needed
to verify that they are total and obey the lens laws.

Theget function is written as follows:

let get c =
let comps_c = split ’\n’ c in
let comps_a = List.map
(fun ci ->

let [n;y;c] = split ’,’ ci in

6 Of course, there are many semantically valid lenses whoseget and put
functions canonly be expressed in a general-purpose language—or, equiv-
alently, by adding new primitives to Boomerang. Whether or not our choice
to focus on finite-state string transductions hits a “sweet spot” between ex-
pressiveness and tractable reasoning is a different question—one whose an-
swer will require more experience with additional real-world examples.



join ’,’ [n;c])
comps_c in

join ’\n’ comps_a

It splits the input into a list of lines, maps a function over this list
that retains the name and country from each line, and joins the
resulting list. The correspondingput function is:

let put a c =
let a_s,c_s = split ’\n’ a, split ’\n’ c in
let c_s_assoc = List.map
(fun ci -> let [n;y;c] = (split ’,’ ci) in (n,y))
c_s in

let cs’ = List.fold_left
(fun (acc, assoc) ai ->

let [n;c] = split ’,’ ai in
let yi = assoc_find n assoc " 0000-0000" in
let assoc’ = assoc_remove n assoc in
((join ’,’ [n;yi;c])::acc, assoc’))

([], c_s_assoc) a_s in
join ’\n’ (List.rev (fst cs’))

This splits the concrete and abstract arguments into lists of lines,
and then constructs an association list from the concrete list in
which every name is paired with the corresponding year range.
Next, it folds down the abstract list, locates a year range from the
association list (using a default when none is found), and concate-
nates the name, dates, and nationality together. Finally, it joins the
resulting list, yielding the new concrete view.

These two functions have the same behavior as the second
lens from the introduction. To finish the job we need to prove
that each function is total and that the pair satisfies the lens laws.
Demonstrating totality is not difficult, although we need tosay what
type they are total at. They are not total functions on the setof all
strings—e.g., whenget is applied to

"Jean\nSibelius, 1865-1957, Finnish"

neither line yields a list of length three when split by ‘,’ which
triggers aMatch_failure exception. To prevent such failures,
we can wrap the bare functions with code that checks that the
arguments match the regular expressions

[A-Za-z ]+, [0-9]{4}-[0-9]{4}, [A-Za-z ]+

and:

[A-Za-z ]+, [A-Za-z ]+

With this modification, checking totality is straightforward.
To verify the GETPUT law, we have to consider an arbitrary con-

crete string together with the unique abstract string produced from
it by theget function, and show that applyingput to these argu-
ments yields the original concrete string. We can do this in three
steps. First, we check that the string obtained by joiningcomps_a
produced at the end ofget splits into the same list at the start of
put. Second, we check that each step of theList.fold_left lo-
cates the correct year range for the composer. This requiresa few
additional steps of reasoning about the value in theassoc accu-
mulator as it is threaded through the fold (in particular, ifthe list
contains repeated names, then we must verify that the correspond-
ing year ranges are restored positionally). Finally, we check that
the order of elements in the updated concrete list is the sameas in
the original concrete list. Checking PUTGET is similar but simpler,
since the year ranges produced byput do not matter—they are dis-
carded byget. Checking EQUIVPUT is also straightforward since
the put function only uses the concrete string via the association
list it constructs, and every concrete list containing the same names
and dates maps to the same association list.

By contrast, the Boomerang version of the same lens (written
here with explicit regular expressions)

let comp = key [A-Za-z ]+ . copy ", "
. del ([0-9]{4} . "-" . [0-9]{4} . ", ")
. copy [A-Za-z ]+

let comps = "" | <comp> . ("\n" . <comp>)*

consists of a single phrase which is only a little more complicated
than the regular expressions that we had to add to the OCaml pro-
gram to ensure totality. Moreover, types are inferred automatically,
and well-typedness implies the lens laws.

All this is nice. But thereal benefits of using a bidirectional
language become apparent when the lens evolves. Suppose that,
for some reason, we decide that the character used to separate the
fields in each line should be “!”. Changing the Boomerang pro-
gram requires two local changes—one for each occurrence of a
",". Theget andput functions and inferred types all change au-
tomatically. By contrast, the OCaml functions and regular expres-
sions have eight occurrences of “,”, and these are scattered across
two functions and two regular expressions! Moreover, the totality
and lens law proofs must each be rechecked by hand. In particular,
we need to verify that changing the separator does not introduce
an ambiguity that breaks the property thatsplit andjoin are in-
verses.

Of course, this change could have been made simpler by defin-
ing the separator as a constant. But now suppose we need to change
the concrete format to:

Jean Sibelius: 1865-1957, Finnish

The lens program only requires one change. The OCaml functions,
however, require significant modifications because a singleinvoca-
tion of split for each line is no longer enough. Instead, we have to
split each line by “:”, and then again by “,”. Making this change
requires touching several lines of code—and correspondingly deep
revisions to the proofs of totality and the lens laws. At thispoint,
the urge to cut corners—make changes to the code but skip fixing
the proofs (if indeed they were written out in the first place)—will
be strong.

Thus, even for this nearly trivial example, a bi-directional lan-
guage is a much more attractive option. The low-level, two-function
approach is surprisingly difficult to get right in the first place and
even more difficult to imagine maintaining.


