
Lecture 9

1 Reading

Programming in Scala, Chapters 12 and 19.

2 The Singleton Pattern

At times, it is often desirable to only have a single instance of a particular class. For example,
if you have a class that lets you read input from the user, it doesn’t make sense to have two
instances, since the user just has one keyboard. You can create a singleton object in Java
by following the design pattern in fig. 18.1. The only instance of Singleton that can exist is
the one stored in the private field. (Notice that the constructor is private.) The only way to
get the singleton is by calling the Singleton.getInstance method.

Here is the equivalent in Scala:

object Singleton {

def myMethod () = println("It works")

}

So, all the top-level functions we’ve created so far (in class and in assignment) can be
thought of as methods of singleton objects.

3 Case Objects

We’ve seen several examples of case classes that take no arguments. For example, to represent
binary trees with values at nodes (and not at the leaves), we could write the following type:

sealed trait BinTree

case class BinTree(lhs: BinTree , value: Int , rhs: BinTree) extends BinTree

case class Leaf() extends BinTree

However, we can also represent leaves using a case object, which is essentially a singleton
that can be used in pattern-matching:

sealed trait BinTree

case class BinTree(lhs: BinTree , value: Int , rhs: BinTree) extends BinTree

case object Leaf extends BinTree

Since Leaf is an object and not a class, it cannot take any arguments, which why we can
simply write Leaf instead of Leaf(). Scala uses case objects extensively. For example, Nil
and None are case objects. If they were case classes, we’ve have to write Nil() and None()

instead.
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public class Singleton {

private static Singleton instance = null;

private Singleton () { }

public static Singleton getInstance () {

if(instance == null) {

instance = new ClassicSingleton ();

}

return instance;

}

void myMethod () {

System.out.println("It works")

}

}

Figure 18.1: The Singleton Pattern in Java

4 Subtyping

Subtyping in Scala is very similar to subtyping in Java.

Notation We write A <: B to mean A is a subtype of B.

The intuition behind subtyping is that a subtype always “adds more features” to its
super-type, and doesn’t “subtract features”. Therefore, if A <: B, then A can be used in
any context where B is expected. The context simply won’t try to use the extra features of
A. However, B cannot be used in contexts where A is expected, because the context may
rely on the “added features” of A that B does not provide.

For example, consider the following hierarchy of types, all of which implement the Animal
trait1

trait Animal {

def sound (): String

}

class Dog extends Animal {

def sound() = "woof"

def bite() = "ouch"

}

class Poodle extends Dog {

override def sound () = "yelp"

}

class Cat extends Animal {

def sound() = "purr"

def scratch () = "yow"

}

A function that expects an Animal can be applied to an object of any class defined above.
Similarly, a function that expects a Dog can be applied to a Dog or a Poodle, but not to a

1Think of a trait as an interface in Java. Traits are actually more flexible, but we are only going to use them like interfaces
for now.
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def useDog(c: Single[Dog]) = {

c.get (). bite()

}

useDog(new Single(new Cat ()))

(a) Cats can’t bite.

def useAnimal(c: Single[Animal ]) = {

c.get (). sound()

}

val c = new Single[Dog](new Dog())

useAnimal(c)

(b) Scala is being conservative.

def useAnimal2(c: Single[Animal ]) = {

c.set(new Cat ())

c.get (). sound()

}

val c = new Single[Dog](new Dog())

useAnimal2(c)

c.get (). bite()

(c) Sneaky function confuses our
code.

Figure 18.2: None of these programs type-check.

Cat. For example, the following function takes dogs and makes them bite:

def dontBite(x: Dog) = {

x.bite()

}

The expression dontBite(new Cat()) will not type-check, which is good, because cats
don’t have a bite method.

Given the traits and types defined above, we can say that:

• Dog <: Animal because Dog extends Animal

• Poodle <:Dog because Poodle extends Dog

• Cat <: Animal because Cat extends Animal

• Poodle <:Animal because Poodle <:Dog and Dog <:Animal (subtyping is transitive),

• X <: X for all X (subtyping is reflexive).

In addition, scala has two special types:

• X <: Any for all types X.

• Nothing <:X for all types X.

A peculiar property of Nothing is that there are no values with type Nothing! It may
seem pointless to have a type with no values. For example, the following function cannot be
applied to anything (not even to null):

def useless(x: Nothing ): Unit = {

println("Cannot call me")

}

But, we’ll see why Nothing is useful in a moment.

5 Generics and Subtyping

Subtyping becomes more complicated when we working with generics types, such as lists,
sets, or any other kind of container. To illustrate, we’ll work with the following generic type,
which is the simplest possible container:
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class Container[T]( private var x: T) {

def get (): T = x

def set(newX: T): Unit = x = newX

}

val c1: Container[Dog] = new Container(new Dog)

c1.set(new Poodle)

Unsurprisingly, we can’t store cats in c1. If we did, a function that consumes a container
with a dog, might try to .get the dog and call the bite method, which cats don’t have.
Therefore, the code in fig. 18.2a does not type-check. However, since Dog <: Animal, can we
send a dog-container to a function that expects an animal container. For example, section 5
appears to be safe. Unfortunately, this code does not type-check either. Although this
particular example is safe, consider the variation in section 5.

The problem above is that useAnimal2 sneakily stores a cat in the container. After the
function returns, c.get would produce a cat even though the type indicates that it should
produce a dog. Therefore, the Scala type-checker does not allow this program to type-check.

Unfortunately, section 5 (which was safe) does not type-check either, just so that this kind
of unsafe example can be ruled out. Individual methods and functions are type-checked only
once. Similarly, when a function or method call is type-checked, the body of the function is
not re-examined.

6 Variance

However, lists and other immutable data structures in Scala are not constrained this way.
For example, the following code does type-check:

def useAnimals(alist: List[Animal ]) = {

alist.map(animal => animal.sound ()). mkString(", ")

}

val lst: List[Cat] = List(new Cat(), new Cat ())

useAnimals(lst)

The reason this works is because there are no methods on lists to update their contents.
The problem with our Container[T] class is that it writes to T-typed values. However, if
we had a functional container class, we can use a covariance annotation to indicate that
T-typed values are never updated.

class Container [+T]( private val x: T) {

def get (): T = x

}

The +T annotation indicates Container[A] <:Container[B] when A <: B. For this to
be safe, Scala ensures that T-typed values are never updated by the class.2 (The class may
have other kind of state, but it can’t update Ts.)

As a rule of thumb, almost any immutable data structure can be made covariant, which
makes it more flexible. E.g., we can a Set[Cat] where a Set[Animal] is expected or a
List[Dog] where a List[Animal] is expected.

In fact, the list type in Scala is covariant:

2Coavariance is actually more subtle than this. The reading discusses it in more depth, but you don’t have to remember all
the details.
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sealed trait List[+A]

Cons is easy to define as follows:

case class ::[A](head: A, tail: List[A]) extends List[A]

However, the definition of Nil is trickier. If it were a case-class, we could write:

case class Nil[A]() extends List[A]

However, recall that Nil is a case-object. So, we may try to write this:

case object Nil[A] extends List[A]

However, objects can’t have type parameters (or any parameters for that matter).
As discussed earlier, Scala has a special type Nothing that has no values and is the subtype

of all other types: i.e., Nothing <:A. Therefore, by covariance of lists, List[Nil] <:List[A],
so we can write:

case object Nil extends List[Nothing]

Although there a no values of type Nothing, an empty list of of type List[A] doesn’t contain
any values of type A. Therefore, the Nil object can be given the type List[Nothing].
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