
Lecture 13

1 The n-Queens Problem

The n-queens problem is to place n queens on an n × n chessboard such that no queens
threaten each other. If you aren’t familiar with the rules of Chess: a queen is a chess piece
that move horizontally, vertically, or diagonally across a chessboard, which is typically an
8× 8 matrix. A queen can “kill” any piece that it can move to, so it is unsafe to be on the
same horziontal, vertical, or diagonal line as a queen. The n-queens problem is to arrange
n-queens on a generalized n× n chessboard, such that no pair of queens can kill each other.

The n-queens problem is a canonical example of a constraint-satisfaction problem that can
be solved by backtracking search. In this lecture, we’ll begin with a naive implementation
of backtracking search, and then refine it to use constraint-propagation, which will make it
a lot faster.

2 A trait for chessboards

Since we are going to go through a few different representations of chessboards, it will help to
factor out generic code that prints the representation of chessboards. The ChessBoardLike

trait in fig. 24.1 defines a toString method that prints a chessboard of queens, where each
queen is printed as Q and each blank space appears as .. This printing method requires the
implementing class to have a field that specifies that dimensions of the chessboard and set

trait ChessBoardLike {

val dim: Int

val solution: Set[(Int , Int)]

override def toString (): String = {

val builder = new StringBuilder ((dim + 1) * dim)

for (y <- 0.to(dim - 1)) {

for (x <- 0.to(dim - 1)) {

if (solution.contains ((x, y))) { builder += ’Q’ }

else { builder += ’.’ }

}

builder ++= "\n"

}

builder.toString

}

}

Figure 24.1: A trait for chessboards.

127

class NaiveQueens(val dim: Int , val solution: Set[(Int ,Int)]) extends ChessBoardLike {

def canPlace(x: Int , y: Int): Boolean = solution.forall {

case (x1, y1) => x != x1 && y != y1 && x + y != x1 + y1 && x - y != x1 - y1

}

def solveRec(coords: List[(Int , Int)]): Option[NaiveQueens] = coords match {

case (x, y) :: rest if (canPlace(x, y)) => {

val optSol = (new NaiveQueens(dim , solution + ((x, y)))). solve ()

optSol.orElse(solveRec(rest))

}

case _ :: rest => solveRec(rest)

case Nil => None

}

def solve (): Option[NaiveQueens] = (solution.size == dim) match {

case true => Some(this)

case false => solveRec (0. until(dim). flatMap(x => 0.until(dim).map(y => (x, y))). toList)

}

}

Figure 24.2: A naive solution to the n-queens problem.

of coordinates that describe where the queens are placed.

3 Backtracking Search

The core idea of any solution to the n-queens problem is to write a recursive function
(called solve) that places 1 new queen on the current board in a position where it does not
threaten any existing queen and then recursively calls solve to place the remaining queens.
The function terminates sucessfully when n queens have been placed on the board. The
function terminates with an error if there are no positions where the next queen can be
safely placed. In any application of solve, there may be several positions where a queen can
be safely placed. The key to backtracking is to try a new position if the recursive application
produces an error.

Figure 24.2 shows a simple implementation of this idea. The key function is the canPlace
predicate which determines if a new queen maybe placed at coordinates (x, y) by checking
if there are any existing queens in the set solution on the same row, column, diagonal, or
antidiagonal.

We can run the solver as follows:

(new NaiveQueens(n, Set ())). solve()

With n = 11, the solver produces a solution in less than a second on my laptop, with n = 12,
it takes 55 seconds, and n = 13 would take much longer.

4 Constraint Propagation

Figure 24.3 shows a variant of the naive solver that is substantially faster. The key idea to
store a set of locations where a queen can be placed without violating any constraints and
then prune the set whenever a new queen is placed.

128

class OptQueens(val dim: Int , val solution: Set[(Int , Int)],

available: List[(Int , Int)]) extends ChessBoardLike {

def place(x: Int , y: Int): OptQueens = {

new OptQueens(dim ,

solution + ((x, y)),

available.filter(p => {

val (x1, y1) = p

!(x == x1 || y == y1 || x + y == x1 + y1 || x - y == x1 - y1)

}))

}

def solveRec(coords: List[(Int , Int)]): Option[OptQueens] = coords match {

case (x, y) :: rest => this.place(x, y).solve.orElse(solveRec(rest))

case _ :: rest => solveRec(rest)

case Nil => None

}

def solve (): Option[OptQueens] = (solution.size == dim) match {

case true => Some(this)

case false => solveRec(available.toList)

}

}

object OptQueens {

def empty(dim: Int) = {

val available = 0. until(dim). flatMap(x => 0. until(dim).map(y => (x, y))). toList

new OptQueens(dim , Set(), util.Random.shuffle(available))

}

}

Figure 24.3: A constraint-propagating solution to the n-queens problem.

129

130

