
Lecture 1

Course Description: Development of individual skills necessary for designing, implementing, testing and
modifying larger programs, including: use of integrated design environments, design strategies and patterns,
testing, working with large code bases and libraries, code refactoring, and use of debuggers and tools for
version control.

1 Introduction

CMPSCI220 Programming Methodology introduces you to all the concepts above in the context of a modern
programming language: Scala. You could use Scala to write exactly the same kind of object-oriented code
that you’ve seen in Java. In fact, Scala code and Java code can seamlessly co-exist and interoperate in the
same program; we’ll leverage this feature later in the course. In fact, many of the design patterns that you
will learn in this course will be applicable to Java and Scala.

However, a key reason we’re using Scala is to expose you to programming techniques and language
features that are beyond the scope of Java. Most modern software systems are written in a plethora of
languages. In fact, large systems tend to use several programming languages. Therefore, to succeed in your
computing career, you have to be familiar with several languages and be able to learn new languages on your
own. Programming languages are constantly invented and abandoned1 and it is impossible to predict the
next big language that everyone will use or the language you’ll need to learn for your first job.

Scala is a big language with many unique features and we are not going to learn to use them all. Instead,
we are going to focus on ideas that Scala shares with other modern programming languages. Here are some
of the key ideas that we will cover in this course that go beyond Java:

• First-class functions are the cornerstone of functional programming. They are pervasive in JavaScript,
Ruby, Python, Swift, and almost all modern languages.

In fact, even Java and C++ recently added support for first-class functions.

• Algebraic data types are available in Apple Swift, Mozilla Rust, Microsoft F#, and several other
programming languages. Programming with algebraic data types is very different from programming
in an object-oriented style. We’ll cover both styles of programming in this course and develop a deep
understanding of the tradeoffs.

• Type inference is available in modern typed programming languages, such as C# and Swift, and even
in a limited form in Java. As the name suggests, in a language with type inference, the compiler
can often “infer” or fill-in types that you omit. So, your programs become shorter, but retain all the
advantages of type checking.

The main themes of the course are not language-specific. We will emphasize the following broad ideas
that are applicable to all software development:

• Testing is critical for building reliable software. You will learn how to test complex functions and make
effective use of testing tools and frameworks. Every programming problem you solve in this course

1This poster is a very incomplete history of the birth and death of programming languages.

9

http://www.scala-lang.org/what-is-scala.html
http://docs.oracle.com/javase/tutorial/java/javaOO/lambdaexpressions.html
http://msdn.microsoft.com/en-us/library/dd293608.aspx
http://docs.oracle.com/javase/tutorial/java/generics/genTypeInference.html
http://www.oreillynet.com/pub/a/oreilly/news/languageposter_0504.html

will have to be tested. We expect you to write good tests yourself. The quality of your tests will be a
significant portion of your grade on every assignment.

• Design patterns are recipes for solving typical programming problems. This course will emphasize
object-oriented and functional design patterns. We will focus on design patterns that are applicable to
a variety of programming languages, and not Scala-specific design patterns.

• Refactoring is a key concept that we emphasize throughout the course. As we introduce new ideas, we
will systematically refactor our old code to exploit them.

• Debugging is a necessary skill because even small programs often have bugs.

• Command-line tools such as compilers and build tools lie under the hood of sophisticated IDEs such
as Eclipse. Learning to use the command-line will make you a better IDE user. Moreover, since many
new languages lack good IDEs, we will emphasize the use of command-line tools in this course.

• Version control software is critical for collaborative software development and used by all professional
programmers. Although you will be programming alone in the course, version control will still help
you organize your programming and save you a lot of time if you accidentally delete or break your
code.

• Using libraries is critical for writing software that gets real work done. Initially, you’ll use libraries that
were developed specifically for this course, but you will eventually learn to discover and use libraries
from the Web.

The overarching goal of this course is to make you a better programmer, and an important part of that
is to get familiar with programming terminology and culture. Unfortunately, there is a lot of misinformation
on the Web about programming, but we will try to point you to sources that are reliable. Here are two good
places to start:

• Paul Graham’s Essays. The earlier essays are particularly pertinent, E.g., Beating the Averages and
Being Popular.

• Joel Spolsky’s blog. E.g., Advice for Computer Science College Students and Getting Your Resume
Read.

Finally, XKCD comics often make obscure programming references and this course will help you decipher
some of them.

2 The Command-Line

The Linux command-line2 is a critical part of this course. If you’re using the course virtual-machine, you
should use the program LXTerminal to start the command-line.

Unless you’re already familiar with the Linux command-line, you must read Zed Shaw’s Command Line
Crash Course, up to and including the chapter “Removing a File (rm)”. Zed likes to swear at his own
readers, so we’d like to apologize in advance on his behalf. The rest of these lecture notes assume that you
are familiar with the command-line.

3 sbt and the Scala REPL

sbt is the Swiss Army Knife of Scala programming. It is a command-line tool that can be use to run Scala
programs, compile them, test them, package them deployment, publish them to the Web, and more. Like

2The command-line is also known as a terminal or shell.

10

http://paulgraham.com/articles.html
http://paulgraham.com/avg.html
http://paulgraham.com/popular.html
http://www.joelonsoftware.com
http://www.joelonsoftware.com/articles/CollegeAdvice.html
http://www.joelonsoftware.com/articles/ResumeRead.html
http://www.joelonsoftware.com/articles/ResumeRead.html
http://xkcd.com
http://learncodethehardway.org/cli/book/cli-crash-course.html
http://learncodethehardway.org/cli/book/cli-crash-course.html

many modern programming languages, sbt has a REPL (read-eval-print loop), which you can use to type
in and run one-line programs immediately, without the bother of creating files, etc.

To start the Scala REPL, open a terminal (LXTerminal on the course VM), type in sbt console and
press enter. Your screen will look like this:

student@vm:~$ sbt console

[info] Loading global plugins from /Users/arjun/.sbt /0.13/ plugins

[info] Set current project to del (in build file:/Users/arjun/scratch/del/)

[info] Updating {file:/Users/arjun /} arjun ...

[info] Resolving org.fusesource.jansi#jansi ;1.4 ...

[info] Done updating.

[info] Starting scala interpreter ...

[info]

Welcome to Scala version 2.11.7 (Java HotSpot(TM) 64-Bit Server VM, Java 1.8.0 _60).

Type in expressions to have them evaluated.

Type :help for more information.

scala >

The scala> prompt indicates that you can type in Scala expressions to evaluate.

4 Scala Basics

4.1 Simple Expressions and Names

Arithmetic in Scala is very similar to arithmetic in Java:

scala > 19 * 17

res0: Int = 323

Strings in Scala will also look familiar:

scala > "Hello , " + "world"

res1: String = Hello , world

Boolean expressions will be familiar too:

scala > true && false

res2: Boolean = false

Let’s examine the last interaction more closely. When you type true && false, Scala prints three things:

• An automatically-generated name (res2),

• The type of the expression (Boolean), and

• The value of the expression (false).

On the Scala REPL, you can use the generated name as a variable. But, you’re better off picking
meaningful names yourself using val:

scala > val mersenne = 524287

mersenne : Int = 524287

scala > val courseName = "Programming Methodology"

courseName : String = Programming Methodology

4.2 Type Inference

You’ll find that Scala programs are significantly shorter than their Java counterparts. A key feature of Scala
that lets you write less code is type inference. Notice in the variable definitions above, you did not have to
write any types. Instead, Scala inferred them for you. This feature is very helpful in larger programs, where
types can become complex.

11

object Lecture1 {

def fac(n: Int): Int = if (n == 0) 1 else (n * fac(n - 1))

}

Figure 1.1: A Scala module

Type inference is not magic; later in the course, you’ll learn more about how it works and when it doesn’t.
For now, here’s a rule of thumb: Scala can infer the type of variable named with val. But, Scala cannot
infer the type of function parameters.

4.3 Functions

Here is a very simple Scala function:

scala > def double(n: Int): Int = n + n

double: (n: Int)Int

This code defines a function called double, which takes an argument called n of type Int and returns a
value of type Int. We can apply the function as follows:

scala > double (10)

res3: Int = 20

The following function takes two arguments, x and y and calculates the distance from the point (x,y)

to the origin:

scala > def dist(x: Double , y: Double): Double = math.sqrt(x * x + y * y)

dist: (x: Double , y: Double)Double

scala > dist (3.0, 4.0)

res4: Double = 5.0

Notice that unlike variable definitions, we need type annotations on function parameters and result types.

If your function actually fits on a line (without scrolling off your window), you can define them very
tersely as shown above. But, many interesting functions span several lines and need local variables.

4.4 Blocks and Local Variables

You can define local variables within a block. A block is code delimited by curly-braces. For example:

scala > def dist2(x: Double , y: Double): Double = {

val xSq = x * x

val ySq = y * y

math.sqrt(xSq + ySq)

}

5 sbt Project Structure

In principle, you can write a full-fleged program line-by-line in the Scala console. But, it makes a lot more
sense to save large programs to files for a particular project. To do so, we will being by creating a new
directory for your project.

First, exit the Scala console by typing :quit and then exit sbt by typing exit. You should return to
the command-line:

12

scala > :quit

[success] Total time: 3 s, completed Jan 13, 2016 8:47:38 PM

sbt > exit

student@vm:~$

At the terminal, let’s create a directory for the project:

student@vm:~$ mkdir lecture1

Then, let’s enter the directory:

student@vm:~$ cd lecture1

student@vm:~/lecture1$

Notice that the name of the directory is displayed on the command-line.

Your Scala projects will have two kinds of files: test cases and your implementation. sbt requires you to
organize your files into the following directory structure:

/lecture1

src

main

scala...Implementation goes here
main

scala...Tests goes here
You can create these directories by running the following commands:

student@vm:~/lecture1$ mkdir src

student@vm:~/lecture1$ mkdir src/main

student@vm:~/lecture1$ mkdir src/main/scala

student@vm:~/lecture1$ mkdir src/test

student@vm:~/lecture1$ mkdir src/test/scala

We will now see how to save Scala code to files. Using a text editor (e.g., Sublime Text), create a file
called Lecture1.scala in the src/main/scala directory, with the contents shown in fig. 1.1. The code
creates an object with a single function to calculate factorials.

When you write functions in a Scala file, you have to place it in an object. You cannot just write
def fac ... without an enclosing object. This is a peculiarity of Scala that we will explain later in the
course. In this example, the name of the object is “Lecture1”, but it can be anything you like.

Now that we’ve saved this function to a file, we can use it from the console:

sbt > console

scala > import Lecture1._

scala > fac (10)

6 Testing

The sbt console is a convenient way to experiment with new code or write a “one off’ functionn. However,
you must write unit tests to test any actual code you write. Figure 1.2 shows an example of unit tests
that use the ScalaTest library. The code is quite self-explanatory: each test suite is a class that extends
org.scalatest.FunSuite. The body of the class has several test blocks, as shown in the figure.

7 Building and Pattern-Matching on Lists

In this section, we will show how to write simple list-processing functions. We will cover basic functional
programming and introduce pattern matching.

13

// src/main/scala/Lecture1Tests.scala

import Lecture1._

class Lecture1Tests extends org.scalatest.FunSuite {

test("fac -- base case") {

assert(fac (0) == 1)

}

test("fac -- inductive case") {

assert(fac (5) == 120)

}

}

Figure 1.2: Unit tests for the code in fig. 1.1

7.1 Constructing Lists

The simplest list is the empty list, which is written in Scala as

Nil

Given the empty list, we can construct larger lists using the :: operator (which is pronounced cons). Here
is a simple example that constructs a one-element list:

50 :: Nil

Given a one-element list, we can build a two-element list by using the :: operator again:

100 :: (50 :: Nil)

We can use :: again to build a three-element list:

200 :: (100 :: (50 :: Nil))

In an expression x :: y, x is known as the head of the list and y is known as the tail. Note that the tail of
a list is always a list itself, (though it may be the empty list Nil).

For example, consider the list below:

val letters = "a" :: ("b" :: :: Nil)

• The head of letters is "a".

• The tail of letters is "b" :: Nil.

• The head of the tail of letters is "b".

• The tail of the tail of letters is Nil.

• Nil does not have a head or a tail.

In our examples so far, we’ve used parenthesis to make the head and tail clear. However, you can simply
write "a" :: "b":: "c" :: Nil. Intuitively, everything to the right of a :: is the tail. If you get confused
up, write the parenthesis explicitly.

It is usually easier to write lists in the following way:

• List("a", "b", "c") is equivalent to "a" :: ("b":: ("c":: Nil)).

• List() is equivalent to Nil.

However, it is important to understand that this is just a convenient notation. Under the hood, Scala
transforms these expressions to use :: and Nil, as we described above.

14

def countDown(n: Int): List[Int] = {

if (n == 0) {

Nil

}

else {

n :: countDown(n - 1)

}

}

(a)

def fromTo(lo: Int , hi: Int): List[Int] = {

if (lo == hi) {

lo :: Nil

}

else {

lo :: fromTo(lo + 1, hi)

}

}

(b)

Figure 1.3: Functions that produce lists.

def product(lst: List[Int]): Int = lst match {

case Nil => 1

case n :: rest => n * product(rest)

}

(a) Calculate the product of a list of numbers.

def repeatTwice(lst: List[Int]): List[Int] = lst match {

case Nil => Nil

case n :: rest => n :: n :: repeatTwice(rest)

}

(b) Repeats every element of a list twice.

Figure 1.4: Two simple functions that consume lists.

Lists and Type Inference You should try to type out the expressions above into the sbt console. For
example:

scala > val lst = 1 :: 2 :: 3 :: Nil

lst: List[Int] = List(1, 2, 3)

As you can see, Scala prints lists using the shorthand notation, even if you explicitly use :: and Nil. More
significantly, Scala has inferred that the type of the list is List[Int]. There was no need to explicitly state
that is is the case.

Here is another example, where Scala infers that the type of a list is List[String]:

scala > val lst = List("a", "b", "c")

lst: List[String] = List("a", "b", "c")

Type inference is very convenient and spares you from having to explicitly specify the type of the element.
However, type inference is not magic and can behave in unexpected ways. For example, in the interaction
below, Scala infers that the type of the list is List[Any]:

scala > val lst = List("a", 10, "c")

lst: List[Any] = List("a", 10, "c")

Although this is technically true, if you write this code, it is more likely that you made a mistake and
intended to actually create a list of strings. If you’re ever unsure, you can write the type explicitly, which
would signal a type error in this case:

scala > val lst = List[String]("a", 10, "c")

<console >:10: error: type mismatch;

found : Int (10)

required: String

val lst = List[String]("a", 10, "c")

^

Functions that produce lists Now that we’ve seen how to construct lists explicitly, it is straightforward
to write functions that produce lists. Figure 1.3 shows some simple recursive functions that construct new
lists.

15

def countOnes(lst: List[Int]): Int = lst match {

case Nil => 0

case n :: rest => {

if (n == 1) {

1 + countOnes(rest)

}

else {

countOnes(rest)

}

}

}

(a) Counting ones using an if-expression.

def countOnes(lst: List[Int]): Int = lst match {

case Nil => 0

case 1 :: rest => 1 + countOnes(rest)

case n :: rest => countOnes(rest)

}

(b) Counting ones using a composite pattern.

Figure 1.5: Pattern matching can make complex conditionals clearer.

7.2 Pattern Matching

Now that we’ve seen how to write functions that produce lists, we’ll learn how to write functions that consume
lists as arguments. We’ll start by writing a simple function to calculate the sum of a list of numbers. Here
are some examples of of sum being used:

assert(sum (20 :: 30 :: Nil) == 50)

assert(sum(1 :: 2 :: 3 :: Nil) == 6)

Intuitively, to calculate sum(1 :: 2 :: 3 :: Nil), we can can recursively calculate the sum of the tail
and add that value to the head:

sum(1 :: 2 :: 3 :: Nil)

== 1 + sum(2 :: 3 :: Nil)

== 1 + (2 + sum(3 :: Nil))

== 1 + (2 + (3 + sum(Nil)))

The last line shows an important special case. Since the empty list doesn’t have a head or a tail, we need to
treat it differently. We’ll say that sum(Nil) is 0.

We can write sum by using a powerful feature of Scala called pattern matching.

def sum(lst: List[Int]): Int = {

lst match {

case Nil => 0

case h :: t => h + sum(t)

}

}

This code makes it clear that the function is inspecting lst and considering two cases. When lst is Nil, it
produces 0 and when lst is constructed with the :: operator, the function recurs on the tail and ands that
result to the head. In this code, Nil and h :: t are called patterns.

Figure 1.4 shows two more list-consuming functions that use pattern-matching. Notice that in :: cases,
these functions use different variable names for the head and the tail. A pattern can use any variable to
refer to the value of the head or the tail.

Complex Patterns Pattern-matching is extremely powerful and can be used to express complex condi-
tionals. For example, fig. 1.5a is a function that counts the number of 1s that occur in a list: it uses pattern
matching as introduced above and then an if-expression to check if the head of the list is 1.

Figure 1.5b is the same function, rewritten to use pattern matching. This version is shorter and makes
it clear that there are three cases. To do so, we exploit the fact that patterns can match almost any value,
including numbers, strings, lists, and user-defined data structures too (which we will see in a later class).

Exhaustivity and Reachability Checking Here is another function that uses pattern matching to count
the number of tens in a list:

16

def countTens(lst: List[Int]): Int = lst match {

case 10 :: rest => 1 + countTens(rest)

case n :: rest => countTens(rest)

}

However, this function had a bug. Do you see it? If you type this into a console, Scala prints the following:

<console >:10: warning: match may not be exhaustive.

It would fail on the following input: Nil

def countTens(lst: List[Int]): Int = lst match {

^

Scala has detected that we forgot to write a case for Nil. Scala ensures that your patterns are exhaustive.
Here is another buggy version of the function:

def countTens(lst: List[Int]): Int = lst match {

case n :: rest => 1 + countTens(rest)

case n :: rest => countTens(rest)

case Nil => 0

}

In this version, we wrote the patterns incorrectly, so the first and second patterns are identical. Scala reports
the following error:

<console >:13: warning: unreachable code

case n :: rest => countTens(rest)

Scala ensures that all cases are reachable.
This automatic exhaustivity and reachability checking makes programs that use pattern-matching much

more robust than programs that use complicated, nested if-statements. Pattern matching is a very powerful
tool that you can exploit to make your programs more robust. We will emphasize pattern-matching over
conditionals in this course.

17

18

