
COMPILING FROM A TYPED DIALECT OF SCHEME TO WEBASSEMBLY

An Honors Thesis Presented

By

CHRISTOPHER BRIAN RYBICKI

Approved as to style and content by:

** Arjun Guha 05/14/20 08:34 **__
Chair

** Marius R Minea 05/14/20 11:04 **__
Committee Member

** Philip Sebastian Thomas 05/15/20 14:13 **__
Honors Program Director

ABSTRACT

Compilers are an important kind of software engineering tool studied within the programming language
community, which serve to transform written code from one language into another. One particularly significant
compilation target is WebAssembly: a recently standardized assembly language that has been designed with
portability, efficiency, and modularity in mind. WebAssembly has been integrated within browsers in order to
offer developers the ability to run more computationally expensive processes and algorithms as an extension of
JavaScript, allowing for the increased speed and efficiency of web applications. Our goal in this work is to show
that we can design WebAssembly-targeted compilers for general languages in a way which, unlike most
production compilers, guarantees type safety through all compiler passes. By achieving this goal, we hope to
allow users to write type-safe programs which can be executed in a wide range of environments, while allowing
compiler developers to debug, maintain, and extend their compilers more easily through the guarantees
provided by type safety. To this end, we have successfully developed a prototype compiler from a typed
variation of Scheme to WebAssembly which utilizes a robust type checker to validate intermediate code
transformations for correctness. This required designing and implementing several compiler passes, such as
closure conversion, lambda lifting, and code generation, in a fashion which is type-safe and adaptable to the
limited data types and memory mechanisms available within the WebAssembly execution environment.

 1

1. Introduction

 Compilers are fundamental to modern software engineering. As an evolving field

that agglomerates algorithmic techniques and design patterns from the rest of computer

science, the study and implementation of compilers are important because of their

fundamental purpose. A compiler, itself a piece of software, transforms the code in

which software is written into the low-level bits and bytes that can be run on computer

hardware. Depending on the design, compilers can target different hardware platforms,

such as the Intel chips built into many Windows and macOS computers, or the custom

processors used in embedded electronics. LLVM is one of the most common low-level

intermediate languages for compilers to target, as it supports generating machine code

for over a dozen different instruction sets.

 This is beginning to change since the introduction of WebAssembly in 2017 [1].

WebAssembly is an open standard which defines a binary instruction format that

enables code to run on a wide range of devices and environments, with a particular focus

on web browsers. One of the primary uses of WebAssembly is to improve the speed of

web applications (such as online shopping, banking, or email) that must often be built

on JavaScript. However, since JavaScript was not designed primarily with speed in

mind, in many use cases the language’s design serves as a bottleneck for developers

interested in building high-performance applications. WebAssembly aims to solve this by

offering developers the ability to run more expensive computational processes and

algorithms on web pages within a stripped-down environment that gets executed

alongside JavaScript when the page is loaded [1].

So far, WebAssembly has only been widely available as a compilation target for

C, C++, and Rust through a tool named Emscripten which compiles languages with

LLVM-based backends to WebAssembly [2]. Our goal is to show that we can design

WebAssembly-targeted compilers for more general languages in a way which, unlike

most production compilers, guarantees type safety through all compiler passes. By

 2

achieving this goal, we hope to allow users to write type-safe programs which can be

executed in a wide range of environments, while allowing compiler developers to debug,

maintain, and extend their compilers more easily through the guarantees provided by

type safety. To this end, we have developed a prototype compiler from a typed variation

of Scheme to WebAssembly which utilizes a robust type checker to validate each

intermediate AST transformation for correctness.

In section 2, we discuss the significance of this project in the context of the

WebAssembly ecosystem and the evolution of type-safety in compilers. In section 3, we

provide a review of related literature. In section 4, we formally describe the syntax and

semantics of our compiler’s source language as well as its intermediate representation,

and discuss the compiler’s architecture in detail. In section 5 we show annotated

examples of several pieces of code compiled end-to-end, and provide justification of the

type safety of the compiler. In section 6, we finally conclude by reviewing the goals and

what we achieved, and discussing possible avenues for future work.

Our compiler is available to use and adapt as an open-source project at

https://github.com/Chriscbr/scheme-to-wasm.

2. Significance

As the amount of software code produced by developers and generated by tools

multiplies over time, ensuring the validity of such code becomes an increasingly

challenging task due to the expanding complexity of software requirements and

implementations. Since compilers are a key component of most software development

toolchains used by engineers, defects in a compiler can lead at best to inefficient or

faulty program behavior, and at worst to compiled programs being used as attack

vectors by malicious actors. Thus, it is important to be able to be able to validate the

correctness of code produced by compilers. A type system is one kind of tool which

allows us to formally prove certain properties about a program’s code and its respective

behavior [3]. While type systems are limited in the kinds of properties they can prove in

 3

order to keep them tractable, they are one of the most fundamental and frequently used

components of modern language design, and are the primary way in which we try to

show our compiler has been built safely.

WebAssembly, as our choice of target language, is still largely unexplored due to

its recency, and understanding the intricacies of compiling to such a platform will help

us understand which areas the language is most lacking in in terms of features and

safety. Growth in the area of WebAssembly development and research is likely to

increase following the World Wide Web Consortium’s (W3C) announcement on

December 5, 2019 that the WebAssembly specification is now an official web standard

[4]. Furthermore, several proposals have since been made to extend the language with

features such as reference types, tail call optimization, multiple return values, and even

garbage collection [5]. Since WebAssembly is designed to be used as a compiler target

for browsers as well as other environments, understanding the level of type safety that

can be embedded while compiling to WebAssembly is important for both type theorists

and language implementors.

As we explain in section 3, when WebAssembly code is run, a validation step is

performed to check if it satisfies several well-formedness conditions [6]. However, since

WebAssembly has a simple type system, it does not guarantee (without sufficient

correctness of the compiler transformations used to generate that code) that the

generated WebAssembly code will necessarily be correct. For example, while

WebAssembly’s validation prevents functions from being called with extra arguments,

specific type information about the contents of a tuple or struct are lost since

WebAssembly lacks recursive types. We discuss the consequences of this further in the

methodology and conclusion sections.

Broadly speaking, there are three overarching pillars of safety in our compiler.

First, through implementing our compiler in Rust, we are able to avoid a plethora of

memory safety errors via the language’s novel borrow checking system. Second, (the

 4

main thrust of our effort) by adding robust type checking to parsing and transformation

passes, we avoid multiple kinds of errors that can arise during compilation. Finally,

WebAssembly provides rudimentary semantic validation built into the language, in a

way that is unprecedented in current machine-level assembly languages and which

provides avenues for extending type safety future work.

3. Review of Literature

3.1. Rust

Rust is a systems programming language that is built with a static type system

that provides strong guarantees about isolation, concurrency, and memory safety [7].

Static typing ensures that programs written in Rust are checked during compilation

time for type safety (and consequently eliminating the need to perform such checks

during runtime)1. In particular, while ordinary type systems provide primitives for

ensuring that the composition and usage of types are semantically valid (such as for the

use of abstract data types (ADTs) and higher order functions), Rust’s type system goes

further by guaranteeing that code written will be temporally and spatially valid in

memory. That is, code compiled by Rust is guaranteed to be free of memory errors such

as dangling pointers or double frees, as well as data races.

To achieve this form of type soundness, Rust utilizes an ownership-based memory

system which specifies that all memory-allocated objects must have a unique owner on

the stack. References to owned objects can then be borrowed in a way that temporarily

allows the data to be used by other data structures or functions. Such references can

either be given mutably or immutably, depending on whether write access is needed. We

illustrate this with an code snippet adapted from Rust by Example [8]:

1 Rust does offer some language constructs such as Rc and RefCell that allow Rust's ownership type
checking to be deferred from compile time to runtime, however these are considered less idiomatic and
should be avoided, if possible.

 5

In line 1, we see a stack-allocated integer assigned to x, and in line 2, the value is

copied to y, requiring no resources to be moved. Both values can be used independently,

as demonstrated in line 3.

In line 5, we see Box is used to explicitly allocate an integer to the heap; the

pointer is stored in a. In line 8, since the integer value is on the heap, only the pointer

address of a gets copied to b. Thus in Rust’s type system, we say that the value of a

gets moved to b – meaning that b now has ownership of the integer. Thus, trying

accessing the data from a as suggested in line 9 would cause an error.

In line 11, we see a function (definition omitted) called that takes an immutable

reference to b. Ownership is retained by b, so the value can still be used later, as seen in

line 12. However, in line 14 a different function is called that takes ownership of b’s

value. Thus, attempting to access b’s data as suggested in line 15 would cause an error.

Within this ownership model, several invariants are maintained to maximize

programming flexibility while guaranteeing memory safety. For example, multiple

immutable references of an object can be created and used, while only a single mutable

reference of an object can be used at a time. This mirrors the notion of a readers-writer

lock in concurrent programming. Likewise, references cannot live past the lexical scope

1 let x = 5;
2 let y = x;
3 println!("x is {}, y is {}", x, y); // prints "x is 5, y is 5"
4
5 let a = Box::new(5);
6 println!("a contains: {}", a); // prints "a contains: 5"
7
8 let b = a;
9 // println!("a contains: {}", a);
10
11 temporarily_use_box(&b);
12 println!("b contains: {}", b); // prints "b contains: 5"
13
14 destroy_box(b);
15 // println!("b contains: {}", b);

 6

of the original object (as to prevent dangling pointers). This invariant is maintained

through lifetimes, a notion which associates lexical bounds with the types of individual

objects and references. Through the use of lifetimes as a way to track object permanence

during the type checking phase of Rust’s compiler, the language eliminates any need for

garbage collection. Instead, the compiler automatically determines which objects can be

destructed and deallocated based on when they go out of scope.

While Rust was designed with a goal of robust type safety, it was not built from

the ground-up with a formally proven specification [7]. However, several efforts have

since been made to fill in this gap. Oxide: The Essence of Rust is one recent paper that

discusses Rust’s type system in depth, as part of a dissection of Rust’s language through

a formal semantics (which includes a complete set of type judgement rules that simulate

a subset of modern Rust) [9]. In the context of the broader Rust ecosystem, this

validates that even though many language primitives such as vectors are internally

implemented in a type-unsafe way, the external APIs they provide allow for the basis of

a safe type system for the rest of Rust’s standard libraries to be built upon. The authors

demonstrate this by modeling Rust’s type system using a set of “places environments”

and “provenances” that variables and references refer to, through which Rust’s borrow

checker (the part of the compiler which validates ownership) can successfully ensure

that there are no use-after-free errors for references.

3.2. WebAssembly

WebAssembly, as defined in the WebAssembly Core Specification, is a low-level,

assembly-like language designed for executing code efficiently while also maintaining a

compact and portable representation [6]. The language is designed to be fast, safe, well-

defined, hardware-independent, language-independent, platform-independent, open,

modular, efficient, and easy to inspect and debug. It is also designed to be streamable

and parallelizable, in that decoding, validation, and compilation of WebAssembly

binaries can be split into parallel tasks and begin before all data has been seen (e.g.

 7

when a file is downloaded from a web server)2. It achieves these goals through a virtual

instruction set architecture which is based in a stack-machine-based computational

model.

Executing WebAssembly code in a runtime environment (such as a browser)

occurs in three stages: decoding, validation, and execution. During decoding,

WebAssembly modules that are imported in a binary format are converted into an

internal representation. Decoded modules are then validated to guarantee that they are

safe. Validation ensures that local and global variables only contain type-correct values,

instructions are only applied to operands of the expected types, and function invocations

always evaluate to results of the right types. It also ensures, in conjunction with the

language’s semantics, that no memory location will be accessed except for those

explicitly defined in the program, and that there is no undefined behavior (outside of

traps or divergence). Upon successful validation, the module gets executed in two

phases: instantiation, whereby a dynamic representation of the module is loaded into

memory (including all necessary imports), and invocation, whereby functions may be

invoked, and the results are returned to the host of the WebAssembly environment [6].

In order to support large data structures within its stack-machine-based

instruction model, WebAssembly uses linear memories. A linear memory is a contiguous

region of memory where values can be stored and access during execution. These linear

memories can serve like heaps, except that the amount of memory intended to be used

must be specified by the module ahead of time, removing the need for allocations and

deallocations during runtime3. Specific values can be loaded from memory through fine-

grained alignment and offset parameters in instructions.

2 There are also plans to support parallelism in the form of multi-threaded computation through an
upcoming proposal [10].
3 Only one linear memory can be defined or imported per module in the current specification of
WebAssembly, but this restriction may be lifted in future versions to allow for more granular memory
management [6].

 8

The most significant utility of WebAssembly today is that it serves as a tool to

defer performance-sensitive code off of JavaScript for Web applications. The execution

of JavaScript, broadly speaking, requires several more phases to execute than

WebAssembly, including rapid code optimization (and de-optimization), as well as

garbage collection, both of which restrict the optimal speed of execution in best-case

scenarios [11]. Beyond this, WebAssembly is also significantly more compact than

JavaScript since it has a binary format (alongside an interchangeable text format that

can be used for debugging purposes). For these reasons, WebAssembly is a highly

relevant compilation target for the design of a compiler.

We choose WebAssembly over other well-known compilation targets such as

LLVM for several reasons. While LLVM provides both intermediate representations

(IRs) and binary formats that could feasibly be used and extended, the IR is generally

not portable (as a single program will typically have different representations for

different machine architectures), which could make it more difficult to demonstrate that

a compiler is type safe from end-to-end in future work. Secondly, while LLVM’s

compiler toolchain provides a host of compiler optimizations that could easily be applied

for the sake of performance testing, this comes with the cost that the IR has large gaps

of undefined behavior that are not ideal for the purpose of designing a compiler that is

type-safe from end-to-end [12]. Finally, WebAssembly has a simpler instruction set

architecture which makes it ideal for the subject of a research project.

4. Methodology

Discussion of the exact compiler implementation is separated into eight sections.

Section 1 introduces the source language, and provides an introduction to existential

types. Section 2 provides an overview of the compiler’s multi-pass architecture. Section

3 introduces parsing and type checking. Section 4 explains the process of closure

conversion. Section 5 introduces lambda lifting and record elimination. Section 6

 9

examines code generation. Sections 7 and 8 briefly discuss our testing process and

libraries that were used during development.

4.1. Source Language

The source language of our compiler is a typed variation of Scheme that has been

customized for ease of readability and parsing, and whose S-expression syntax

emphasizes the functional aspects of the language that are shared with other LISP

dialects such as Racket and Closure. The syntax has been defined in Figure 1.

Our language features primitive datatypes such as integers, booleans, and strings,

as well as complex datatypes such as tuples, records, and homogenous lists. One key

difference from traditional LISP dialects we wish to highlight are the inclusion of

explicit type annotations for lambda expressions. For example, a function that doubles

its (integer) argument would be written as follows:

(lambda ((n : int)) : int (* x 2))

The consequence of type annotations is that all expressions in our language can

be statically type-checked, so no type inference is required.

 In order to support type checking during closure conversion, we extend our

language with additional constructs to support existential types. Annotating a value

with an existential type indicates that functions and variables outside of it cannot know

(i.e. depend on) the actual internal representation, so it can only be referred to opaquely

using a type variable.

 Existential typing in our language are modeled after the presentation given in

Types and Programming Languages [3]. We introduce a pack expression, which joins an

expression with its substitution type, along with the explicit existential type annotation.

Our type checker correctly validates that when the existential type is substituted with

the provided type substitution, it yields back the original type. Likewise, we also

introduce an unpack expression, which takes an existentially typed expression and

assigns it to a bound identifier for use in a body expression (similar to let). In this

 10

Syntax

Types t := int
 | bool
 | str
 | (list t1)
 | (tuple t1 … tn)
 | (record (field1 : t1) … (fieldn : tn))
 | (-> t1 … tn)
 | T0, … Tn

 | (∃ Tn t1)

Integer
Boolean
String
List (homogenous)
Tuple
Record
Function
Type variables*
Existential type*

Expressions e := num
 | bool
 | str
 | (+ e1 e2) | (- e1 e2) | (* e1 e2) | (/ e1 e2)
 | (and e1 e2) | (or e1 e2)
 | (< e1 e2) | (= e1 e2) | (> e1 e2)
 | (concat e1 e2)
 | (cons e1 e2)
 | (car e1)
 | (cdr e1)
 | (null t1)
 | (null? e1)
 | (make-tuple e1 … en)
 | (tuple-ref e1 num)
 | (make-record (field1 e1) … (fieldn en))
 | (record-ref e1 field)
 | (if e1 e2 e3)
 | (let ((id1 e1) … (idn en)) ebody)
 | (set! id1 e1)
 | (begin e1 … en)
 | (lambda ((p1 : t1) … (pn : tn)): tret ebody)
 | (pack tsub epackage as texist)
 | (unpack (Tn epackage as name) in ebody)

Integer
String
Boolean
Arithmetic ops
Boolean ops
Comparison ops
Concatenation
Construct list
Head of list
Tail of list
Empty list
Test for empty list
Construct tuple
Tuple accessor
Construct record
Record accessor
Conditional
Define local vars
Variable assignment
Sequential evaluation
Anonymous function
Construct package*
Unpack package*

Figure 1: The syntax of our typed Scheme. Types and expressions annotated with (*) are
not allowed in the source language, but can be generated during intermediate compiler
transformations for the purpose of typed closure conversion.

 11

case, our type checker validates that the body is well typed (and has no free type

variables) given the additional type variable provided by unpack.

 For example, suppose we have the following existentially-typed expression

assigned to the identifier p:

 From the outside, this should be interpreted based on the last line as “a record of

two fields, whose first field has type T0, and whose second field is a function that takes

type T0 and produces an integer.” The implementation uses int as the hidden type —

observe that substituting int into the existential type annotation produces the actual

type of the record defined in the first two lines. Since the inner type is hidden, functions

from the outer scope cannot apply the function inside the record to any arbitrary value,

since substituting a concrete type in place of T0 is invalid. However, since the record’s a

field has a value of type T0, it can be applied as shown (yielding the value 1):

 The key purpose of existential types in our compiler is to provide a means of

abstracting away the type information of certain program code. Specifically, in our

compiled code, environments that get passed into lambda expressions after closure

conversion are given existential types. This is necessary in order to hide details about

the environment’s internal type representation from program code at the lambda’s

calling sites. Through existential typing, we guarantee that the only environment that

can be passed into a lambda is the one that was constructed for it during closure

conversion (even though there may be other environments available within the lambda’s

lexical scope that share the same internal type).

(pack (make-record (a 0)
 (f (lambda ((x : int)) : int (+ 1 x))))
 int as
 (exists T0 (record (a : T0) (f : (-> T0 int)))))

(unpack (T1 p as q) in ((record-ref q f) (record-ref q a)))

 12

4.2. Compiler Architecture

 Our compiler is implemented in Rust using a set of multiple compiler passes.

Throughout compilation, the core data structure the passes operate on are abstract

syntax trees (ASTs). For ease of implementation and to avoid potential errors grounded

in mutation, we implement ASTs as immutable Rust enums. These ASTs come in two

flavors, typed and untyped. Typed ASTs assign each node in the AST a type

annotation, while untyped ASTs do not. We implement these as distinct data structures

(opposed to using an optional field, for example) in order to minimize the potential error

handling and to clearly distinguish when individual compiler passes rely on type

information or not. A rough sketch of this code is provided in Figure 2.

We highlight this in order to emphasize the fact that delineating AST nodes into

explicit cases based on the kind of expression allows us to develop tools for manipulating

struct Expr {
 kind: Box<ExprKind<Expr>>,
}

struct TypedExpr {
 typ: Type,
 kind: Box<ExprKind<TypedExpr>>,
}

enum ExprKind<E> { // where E is Expr or TypedExpr
 Num(i32),
 Bool(bool),
 Str(String),
 If(E, E, E),
 Let(Vector<(String, E)>, E),
 Lambda(Vector<(String, Type)>, Type, E),
 ...
}

Figure 2: The parameterized, mutually recursive data structures used by the compiler to
represent abstract syntax trees throughout all compiler passes.

 13

ASTs that result in more maintainable code. While the Rust language makes it more

challenging to manipulate S-expressions when compared to Lisp dialects such as Racket

(which provide tools like quoting and quasiquoting), in implementing our compiler we

have designed several AST meta-transformation functions that allow us to eliminate

redundant transformation code for expression kinds that are unchanged within an

individual compiler pass. This is akin to providing an interface which simply needs to be

overwritten for the specific expression kinds that a compiler pass needs to transform.

We outline the compiler passes used as illustrated:

4.3. Parsing and type checking

We begin by parsing the user’s input code, which is provided as a string. This

ensures that the code is well-formed syntactically. As a result of the internal

representation of our syntax trees, this will already reject code that violates rudimentary

properties, such as not including the correct number of arguments to built-in functions,

or including a type where an expression is to be expected.

Following this, we type check the user’s code in order to validate that the

program is well-typed. In our current implementation, closure conversion takes in an

untyped AST since the result needs to be completely re-annotated with types

 14

afterwards. Hence, the type annotations generated from the initial type checking phase

will get discarded. However, we still recommend performing this step in order to weed

out potential typing errors before the compiler begins performing AST transformations.

As a running example, we will consider compiling the following program:

In this program, we have defined a lambda expression which returns true if and

only if its input is less than five. This function then gets applied to the value 3. During

parsing, this program (in string format) is converted into an AST within Rust, and

during type checking, we check that the types applied are correct. The lambda

expression is assigned the type (-> int bool), and 3 is assigned the type int, so the

combined function application is valid and has type int.

4.4. Closure conversion

During closure conversion, our goal is to transform all lambda expressions in a

way such that there are no more free variables within the lambda’s body. By doing so,

we can extract out lambda expressions to the top-level so that they can behave like

global functions. (Observe that doing so while there are still free variables in the lambda

bodies could result in ill-defined behavior). We achieve this goal by a) adding a new

environment parameter to the beginning of each lambda’s parameter list, b)

transforming references to free variables with references into the environment parameter,

c) pairing each lambda expression with a satisfying environment, and d) adjusting

function applications of the lambda expressions to include the necessary environment as

the first argument.

We use the pack expression to wrap the lambda-and-environment tuple (known

as a closure) in an existential type, and we wrap the invocation sites with the unpack

expression to allow the contents of the existentially typed closure to be used. This

guarantees (through the application of our type checker) that at calling sites of the

((lambda ((x : int)) : bool (< x 5)) 3)

 15

lambda, only the specific environment argument constructed for it can be passed in its

environment parameter.

In our running example, the result of closure conversion is an AST of the

following program:

Observe that since the body of our lambda expression contains no free variables,

we end up with an empty environment being constructed as part of the closure.

4.5. Lambda lifting and record elimination

After the program has been closure converted, the program is lambda lifted. As

described before, this compiler pass lifts all of the lambdas from their locations within

the main program to top-level global definitions, substituting them with identifiers that

refer to newly named functions in the global scope. Following this, the program is re-

type checked to ensure that all references to function types (such as type annotations of

higher order functions) have been updated to appropriate existential types.

The last transformation we perform before the ultimate code generation is record

elimination. Recall that during closure conversion, all closure environments (which

represent mappings from free variable names to their values) are constructed as records.

Furthermore, the user may have constructed and used records within their own code.

However, to simplify the implementation of code generation (discussed in the next

paragraph), we choose to convert all record instances and types into corresponding tuple

instances and types. We achieve this by observing that for any given record, the fields

given are alphanumeric names, and hence can be sorted to define a unique and

consistent order for the record values. Thus, we can simply permute the values in order

(unpack (T3 (pack (make-tuple
 (lambda ((env1 : (record)) (x : int)) : bool (< x 5))
 (make-record))
 (record) as
 (exists T2 (tuple (-> T2 int bool) T2)))
 as temp0) in
 ((tuple-ref temp0 0) (tuple-ref temp0 1) 5))

 16

corresponding to the sorted fields and discard the field names in order to obtain a type-

safe equivalent representation as a tuple. Since information about field names is included

even at the type annotation level, we can perform this transformation even in cases

when there are no concrete instances of a record’s type in the user’s code.

In our running example, performing lambda lifting and record elimination yields

the following program, consisting of a lifted function and main body expression:

4.6. Code generation

Finally, we transform the typed program into WebAssembly code. At a high

level, code generation is performed in a similar manner as the AST-to-AST compiler

passes, in which we recursively traverse the AST and dispatch based on the expression

kind of each node. However, code generation poses several unique challenges, since we

must generate different WebAssembly structures depending on whether we encounter

primitive data types or control structures, complex data types, or functions.

Booleans, integers, conditionals, variable assignment, and operations such as

arithmetic, boolean, and logical operations can all be represented and executed directly

through corresponding stack-based instructions in WebAssembly. To minimize the

implementation complexity, we represent all datatypes in WebAssembly using 32-bit

integers, including pointers that are needed for more complex data types.

Complex data types such as tuples and lists are stored using WebAssembly’s

linear memory (see Section 3.2), and are represented on the stack using integer pointers.

We use bump allocation in order to keep track of freely available memory for allocating

data structures in our artificially constructed heap. A length n tuple gets translated by

funcs = { temp4: (lambda ((env1 : (tuple)) (x : int)) : bool (< x 5)) }

main = (unpack (T3 (pack (make-tuple temp4 (make-tuple))
 (tuple) as
 (exists T2 (tuple (-> T2 int bool) T2)))
 as temp0) in
 ((tuple-ref temp0 0) (tuple-ref temp0 1) 5))

 17

first constructing each of the tuple components in order (which themselves may require

memory allocations), and then storing the n produced stack values as a sequence of n

32-bit values in linear memory. Likewise, lists are stored through a head-and-tail

representation, where the first element of each pair is a value, and the second is either a

pointer to the next node/value, or a sentinel indicating the null value [13]. By choosing

these data structure representations, data access essentially falls out for free. Tuple

projection, as well as car-ing or cdr-ing into lists4, both correspond to indexing into

memory with appropriate offsets.

Let expressions also pose a need to store values that may need to be accessed out

of order. However, since newly bound variables need only to store the 32-bit data values

and not the entire data structures, we can instead make use of a special WebAssembly

feature known as local variables instead of maintaining local variables through the heap.

In the context of WebAssembly, local variables allow a function to specify additional

variable slots which can be accessed and reassigned to at any time within the function’s

body. By default, any lambda parameters are reserved to the prefix of an array named

locals (so the nth argument passed to the function would be stored in locals[n]),

and afterwards custom locals are assigned in order. The advantage of this design is that

as a compiler designer, we are no longer burdened with the need to optimize register

allocation, since this will be handled by WebAssembly.

The only challenges remaining are code generation of functions and existentially

typed expressions. Since existentially typed expressions (constructed using pack) always

encapsulate well-typed immutable closures during our compilation, we can simply access

their inner contents directly while ignoring their extra type information. Similarly,

unpack expressions can be handled like ordinary let expressions.

Lambda expression ASTs must be compiled into individual functions within the

WebAssembly module. Each lambda parameter is mapped to a corresponding 32-bit

4 LISP terminology for accessing the head or tail of a list.

 18

placeholder within the WebAssembly function’s parameters. To call the constructed

functions, we must maintain a table during compilation which maps function names to

indices, which allows us to perform function lookups whenever a function application

occurs. While we did not include code generation of recursive functions due to time

constraints, their definitions can be safely type-checked. The program’s main expression

is treated as its own zero-argument function, and we assign its function index to the

start value in the WebAssembly module so it gets executed by default.

Our running example, after code generation, translates into the following

WebAssembly module (shown in text format):

We can see that two functions are constructed – a two-argument function

(corresponding to the lambda expression) that takes two i32 arguments representing the

environment and integer respectively, as well as a zero-argument function

(corresponding to the main expression). The module also declares several other pieces of

module metadata, such as a list of the function types used in the module, a function

lookup table, a linear memory module, an export declaration for the main function, and

an entry for the function lookup table.

(module
 (type (;0;) (func (result i32)))
 (type (;2;) (func (param i32 i32)
 (result i32)))

 (func (;0;) (type 2) (param i32 i32)
 (result i32)
 (local i32 i32)
 local.get 1
 i32.const 5
 i32.lt_s)

 (func (;1;) (type 0) (result i32)
 (local i32)
 i32.const 0
 i32.const 0
 i32.const 0
 ...

 ...
 i32.const 0
 i32.store offset=4 align=1
 i32.store align=1
 i32.const 0
 local.set 0
 local.get 0
 i32.load offset=4 align=1
 i32.const 3
 local.get 0
 i32.load align=1
 call_indirect (type 2))

 (table (;0;) 32 funcref)
 (memory (;0;) 32)
 (export "$$MAIN$$" (func 1))
 (elem (;0;) (i32.const 0) func 0))

 19

4.7. Testing

We utilize unit testing to individually validate each of the components of the

compiler. In particular, we have over 100 unit tests that validate the type checker on a

variety of source and intermediate programs, both correctly and incorrectly typed, that

could arise at different stages of the compiler. We also have over 80 unit tests that

validate the outputs produced by other passes in the compiler, and over 40 tests that

validate compiled program output from end-to-end.

In particular, we highlight that we have tested end-to-end compilation of nested

data structures (such as tuples of tuples, lists of tuples, tuples of lists of tuples, etc.),

multi-argument functions, curried functions, functions that define local state (such as

make-adder5), list operations (such as prepend), and functions that accept function

inputs (such as non-polymorphic apply).

4.8. Libraries

 In order to implement this compiler in Rust, we make use of several different

libraries from crates.io, Rust’s library ecosystem, in an effort to ensure our code is both

maintainable and idiomatic.

 For parsing source code into abstract syntax trees (ASTs), we utilize the lexpr

crate, which provides utilities for parsing, printing, and manipulating S-expression data.

Concretely speaking, lexpr performs both lexical analysis and semantic parsing of the

input strings into a generic S-expression data structure, which we then convert using

pattern matching into our individualized (untyped) AST data structure.

For consistency in maintaining ASTs as completely immutable structures (that

require cloning in order to mutate), we use the immutable vectors provided by the im

crate wherever we need to define a vector of items in our trees.

5 make-adder is a higher-order function that takes an integer argument x, and returns a pure function
that adds x to its input.

 20

For generating the output WebAssembly code, we use the parity-wasm crate

which provides utilities for constructing WebAssembly functions and modules through a

collection of fluent interface based constructors. parity-wasm also handles the process

of converting said modules into exportable binaries. In this way, we are able to abstract

away from having to perform several bookkeeping tasks necessary for formatting code in

either the WebAssembly text or binary formats, but we still are able to maintain full

control over the instructions, type signatures, local variables, and so forth that are

required to define the functionality of a WebAssembly module.

Lastly, we also make use of wasmer-runtime, a crate that allows us to execute

WebAssembly code generated by parity-wasm for the purpose of unit testing during

the Rust runtime.

5. Results

Our main result is that by developing a compiler with type-safe transformations

and by creating a type-checker which is compatible with all intermediate code

representations, we are able to 1) derive several benefits during the process of building

and maintaining the compiler, and 2) argue there are further advantages when one tries

to extend the features of a language or optimize the code a compiler produces.

Firstly, we argue that our type-checker is robust. Through Rust’s pattern

matching features, we can guarantee at compile time that the type checker has handles

every expression kind defined in the source language. Since our language is mostly

functional in nature (with the exception of the set! construct), we are able to safely

analyze large classes of programs that omit mutation simply through static analysis6.

We utilize type environments that are passed through recursive type-checking calls to

6 Lists, tuples, and records in our language are all immutable. One caveat to the model of mutation we do
permit is that assignment of variables from outer scopes will not work after closure conversion is
performed, so we must restrict set! to only operate on variables local to the closest lambda expression.

 21

ensure that bound variables can be used only in the contexts in which they are defined

(e.g. a local variable cannot be used outside of the let expression it was defined in).

We also make use of appropriate code abstractions within the compiler to ensure

the type checking is uniform, e.g. all lists of values are type checked in the same way.

Over 100 unit tests are used to validate appropriate type checking behavior (both

passing and failing) for catching errors such as empty begin expressions, out-of-bounds

tuple referencing, incorrect argument arities, non-matching types for control flow

branches, and so on. Special attention is given to type checking edge cases for pack and

unpack expressions (based on the treatment given in Types and Programming

Languages [3]), despite the fact that many will not pop up since only certain forms of

these expressions are generated by closure conversion. Due to time constraints, we

omitted checking for identifier reuse in variable, parameter, or record field names, so our

compiler assumes that all source programs do not use variable shadowing or duplicate

field names within records.

When building individual compiler passes, the type checker can catch a wide

variety of bugs. For example, when implementing a transformation which changes one

type to another, there are often dozens of locations in the code where we must insert

function calls to perform the appropriate conversion method. However, there were

several occasions during the development of our compiler when a location was

accidentally not updated, leading to bugs. For example, in one case record elimination

was not taking place on a lambda’s parameter and return types7. This error was caught

by noticing that type checking failed on a compiled lambda expression with record

arguments. This failure led us to noticing the discrepancy between the types of the

actual record (which was converted into a tuple) and the record parameter (which was

not being updated as intended).

7 See https://github.com/Chriscbr/scheme-to-wasm/commit/bfa5e61a5013bed259f9a00d8aeeb944c39f9d5f.

 22

We also argue that similar benefits can occur when making modifications to the

compiler. For example, when adding a new built-in construct (such as incr) to our

language, we would notice two immediate benefits over trying to make such a change in

a compiler that is not type-safe and which is written in a less type-safe language such as

C or C++. Since our compiler is written in Rust, we benefit from use of its type-safe

pattern matching feature. This essentially implies that after adding a new kind of

expression, the Rust compiler will produces an error for each place in the code that

needs a new case to handle incr. But furthermore, we have a type-checker which runs

in between many of the compiler passes. Thus as long we correctly implement type

checking for incr, we can simply write end-to-end test cases using the new code

construct, and the compiler will automatically allow us to discover in which stage of the

compiler there are bugs in the implementation, if any. The key takeaways are that using

the type checker allows us to discover bugs easier, and without needing to run the code

through all compiler passes.

6. Future Work

We believe there are several avenues for future work. In terms of the base

compiler implementation, we have left out code generation of strings and string-based

operations. We also believe it would be useful to try extending the language with other

programming language constructs, such as recursive functions and polymorphic types, in

order to analyze the difficulties of a) designing type-safe compiler passes for these

constructs, and b) implementing code generation of these constructs targeting

WebAssembly. It is also important to research if this kind of compiler safety can be

maintained if we extend our language to use garbage collection.

There are also opportunities to extend this work by improving the type-checking

capabilities to code generation, the final compiler pass. One possible avenue for

attacking this is to extend the WebAssembly language with additional type annotations

that include more fine-grained parameter and return types of functions based on the

 23

types in our source language. Such a method could be used to extend WebAssembly

with existential type annotations imitating the type information used in Typed

Assembly Language, to guarantee that WebAssembly functions only get called with

environment arguments that belong to their respective closures [14].

7. Conclusion

We have developed a fully operational compiler which translates code from a

high-level functional language to a low level assembly language. Our compiler augments

the level of type safety beyond the level provided in traditional compilers by making

repeated use of a robust type-checker which can be used to validate the output of all

AST transformations. By doing so, we find evidence that we can debug, maintain, and

extend our compiler much easier through the guarantees that type-safety provide in

between compiler passes.

 24

8. References

[1] A. Haas, A. Rossberg, D. L. Schuff, B. L. Titzer, M. Holman, D. Gohman, L.

Wagner, A. Zakai, and J. Bastien, “Bringing the web up to speed with

WebAssembly,” in Proceedings of the 38th ACM SIGPLAN Conference on

Programming Language Design and Implementation - PLDI 2017, Barcelona,

Spain, 2017, pp. 185–200, doi: 10.1145/3062341.3062363.

[2] “About Emscripten — Emscripten 1.39.13 documentation.”

https://emscripten.org/docs/introducing_emscripten/about_emscripten.html

(accessed Apr. 21, 2020).

[3] B. C. Pierce, Types and programming languages. Cambridge, Mass: MIT Press,

2002.

[4] World Wide Web Consortium (W3C) brings a new language to the Web as

WebAssembly becomes a W3C Recommendation. 2019.

[5] C. Eberhardt, The future of WebAssembly - A look at upcoming features and

proposals. 2018.

[6] A. Rossberg, WebAssembly Specification — WebAssembly 1.0.

[7] N. D. Matsakis and F. S. Klock, “The rust language,” ACM SIGAda Ada Lett., vol.

34, no. 3, pp. 103–104, Nov. 2014, doi: 10.1145/2692956.2663188.

[8] “Ownership and moves - Rust By Example.” https://doc.rust-lang.org/rust-by-

example/scope/move.html (accessed Apr. 23, 2020).

[9] A. Weiss, D. Patterson, N. D. Matsakis, and A. Ahmed, “Oxide: The Essence of

Rust,” ArXiv190300982 Cs, Mar. 2019, Accessed: Apr. 20, 2020. Available:

http://arxiv.org/abs/1903.00982.

[10] WebAssembly/threads. WebAssembly, 2020.

[11] L. Clark, What makes WebAssembly fast? – Mozilla Hacks - the Web developer

blog. .

 25

[12] “FAQ - WebAssembly.” https://webassembly.org/docs/faq/ (accessed Apr. 22,

2020).

[13] H. Abelson, G. J. Sussman, and J. Sussman, Structure and interpretation of

computer programs, 2. ed. Cambridge, Mass.: MIT Press, 1996.

[14] G. Morrisett, D. Walker, K. Crary, and N. Glew, “From system F to typed

assembly language,” ACM Trans. Program. Lang. Syst. TOPLAS, vol. 21, no. 3,

pp. 527–568, May 1999, doi: 10.1145/319301.319345.

