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ABSTRACT Transcriptional responses in bacteria following antibiotic exposure offer 
insights into antibiotic mechanism of action, bacterial responses, and characterization of 
antimicrobial resistance. We aimed to define the transcriptional antibiotic response (TAR) 
in Mycobacterium tuberculosis (Mtb) isolates for clinically relevant drugs by pooling and 
analyzing Mtb microarray and RNA-seq data sets. We generated 99 antibiotic transcrip­
tion profiles across 17 antibiotics, with 76% of profiles generated using 3–24 hours 
of antibiotic exposure and 49% within one doubling of the WHO antibiotic critical 
concentration. TAR genes were time-dependent, and largely specific to the antibiotic 
mechanism of action. TAR signatures performed well at predicting antibiotic exposure, 
with the area under the receiver operating curve (AUC) ranging from 0.84-1.00 (TAR 
<6 hours of antibiotic exposure) and 0.76–1.00 (>6 hours of antibiotic exposure) for 
upregulated genes and 0.57–0.90 and 0.87–1.00, respectfully, for downregulated genes. 
This work desmonstrates that transcriptomics allows for the assessment of antibiotic 
activity in Mtb within 6 hours of exposure.

KEYWORDS Mycobacterium tuberculosis, antibiotic response, transcriptomics, novel 
diagnostics

T he early diagnosis of tuberculosis (TB) and universal drug-susceptibility testing 
are essential components of the WHO’s END-TB strategy (1). Molecular diagnostics 

that rely on detecting targeted antibiotic resistance mutations in the Mycobacterium 
tuberculosis (Mtb) genome have been rapidly integrated into national TB programs 
and are currently standard-of-care (2–5). However, commercially available molecular 
assays test a limited number of drugs and have yet to replace the traditional slow and 
costly process of growth-based phenotypic drug susceptibility testing (pDST). Pathogen 
whole-genome sequencing (WGS) is a promising replacement for pDST and is currently 
performed on culture-positive samples in several high-resource clinical laboratories (6). 
The diagnostic accuracy of WGS is excellent for drugs like isoniazid (INH) and rifampicin 
but still lags behind phenotypic methods for other key drugs like pyrazinamide and the 
novel/repurposed TB drugs (7–9).

Like all cells, bacteria, including Mtb, demonstrate transcriptional changes in response 
to environmental stressors such as hypoxia or pH changes and chemical pressure like 
antibiotic exposure (10–15). Compared with Escherichia coli, Mycobacteria are notable for 
an RNA-polymerase that forms unstable open promoter complexes that appear more 
easily prone to regulation by repressors or stimulating factors (16). At the same time, 
Mtb demonstrates a longer mRNA half-life on average (9.5 min) compared with E. coli 
(3–8 min) (17). Whereas this may delay the observation of transcriptional changes after 
they occur, especially for abundant transcripts, the delay will be in the order of minutes 
rather than hours. Hence, despite Mtb’s substantially slower growth in vitro (doubling 
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time ~16–22 hours) than E. coli (doubling time ~20 min), its transcriptional response 
offers a much more rapid window than growth inhibition to predict antibiotic response.

A major use of transcriptomics in bacteria has been to characterize the mechanism of 
action of drugs, study the impact of resistance mutations, and predict the response 
of individual and antibiotic combinations (14, 18–25). The transcriptomic antibiotic 
response (TAR) may result from the direct antibiotic effect on a specific set of genes 
or pathways or reflect complex or global stress response (13, 15). The TAR of antibi­
otic-sensitive bacteria differs from the TAR seen in antibiotic-resistant bacteria and can 
distinguish between clinical strains of antibiotic-sensitive and antibiotic-resistant E. coli, 
Klebsiella pneumoniae, Acinetobacter baumanii, Pseudomonas aeruginosa, and Mtb and is 
independent of the specific DNA mutation encoding resistance to a given drug (15, 26, 
27). Barczak et al. demonstrated that the TAR observed in susceptible Mtb isolates differs 
significantly from that in isolates resistant to ciprofloxacin, streptomycin, and isoniazid 
(26). For Mtb, the isoniazid TAR was able to differentiate between low-level isoniazid 
resistance due to mutations in the inhA promoter vs high-level isoniazid resistance 
mutations in the katG mutant (26).

Developing transcription-based antimicrobial susceptibility testing for patient care 
will  require the identification of TAR profiles for a wider range of antibiotics, and 
the evaluation of the effect of antibiotic concentration, and duration of antibiotic 
exposure (27). In this work, we aimed to define antibiotic response signatures for 17 
clinically important tuberculosis drugs by pooling publicly available M. tuberculosis 
transcriptomic data. We also aimed to study the extent of shared transcriptional 
responses following antibiotic exposure between and across drugs and determine 
the performance of the TAR signatures for differentiating antibiotic exposed from 
unexposed M. tuberculosis.

MATERIALS AND METHODS

Search strategy

We searched NCBI’s Gene Expression Omnibus (https://www.ncbi.nlm.nih.gov/geo/) and 
the European Nucleotide Archive (ENA) using the term “Mtb” and identified microarray 
and RNA sequencing (RNA-seq) studies’ data sets available until 30 June 2022 for further 
review. We included studies that used strains grown in liquid mycobacterial culture 
media (Middlebrook 7H9 media) and used both antibiotic-exposed and antibiotic-unex­
posed conditions. We included all antibiotic concentrations and durations of culture. We 
excluded studies done using strains grown on solid culture media (Lowenstein-Jensen 
or Middlebrook agar), in vivo studies with cell lines or mouse studies, experiments that 
used knockout strains or stress conditions (such as hypoxia, low pH, or UV light), and 
those that used experimental drugs or drugs not in current clinical use for TB treatment. 
We were made aware of unpublished data meeting our inclusion criteria shared before 
publication by collaborators that we included in this analysis. These data have now been 
uploaded to NCBI under PRJNA932181.

Metadata curation

We identified the Gene Expression omnibus Series (GSE) accession ID of studies of 
interest and downloaded the metadata for each study (Table S1). We extracted sample 
details including accession ID, Mtb strain, antibiotic, the concentration of antibiotic, 
duration of culture, and two-channel vs one-channel microarray or single-end or 
pair-end RNA-seq data. Where necessary, we converted the antibiotic concentration from 
moles to micrograms per milliliter (µg/mL). For each sample, we calculated the ratio 
of the antibiotic concentration used for that isolate to the WHO critical concentration. 
We used this metadata to create antibiotic or control conditions, with each condition a 
unique permutation of strain, antibiotic (or control), antibiotic concentration, and culture 
duration. These terms have been defined in the glossary (please see supplementary text).
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Annotation

We used the H37Rv reference sequence NC_000962.3 for annotation. For CDC1551 
strains, we used the H37Rv CDC1551 correspondence table in the metadata of 
GSE1642 to convert CDC1551 locus tags to H37Rv locus tags. For those CDC1551 locus 
tags that mapped to multiple H37Rv locus tags or vice versa, we retained the CDC1551 
locus tags. Transcriptomic data from clinical strains were aligned against H37Rv. We 
excluded 384 genes coding for PE/PPE genes, repetitive regions, insertion sequences, 
and phage-related sequences (28).

Bioinformatics pipelines and generation of transcription profiles

All analyses were performed using R (v4.1.0) (29) and RStudio (v1.4.1717) (30) with 
tidyverse (v1.3.1) (31). Transcriptomic data are generated from biological replicates of a 
specific experimental condition or state (32). Downstream analysis requires aggregation 
of data from biological replicates, and differentially expressed genes are identified by 
comparing transcriptomic data from all biological replicates of two different conditions 
(32). We analyzed each study independently, using separate bioinformatics pipelines for 
microarray and RNA-seq data to generate antibiotic and control transcription profiles 
(TPs) as detailed in the supplement. As data from individual samples cannot be used 
for downstream analysis or model building, the TP was used for all further analyses. 
We defined the antibiotic TP as all differentially expressed genes (at a false-discovery 
rate cutoff of 0.1) obtained from the comparison of all biological replicates of a specific 
strain of Mtb exposed to a particular antibiotic concentration for a defined duration 
with transcriptomic data obtained from multiple biological replicates of same strain 
incubated in culture without antibiotic exposure for identical duration. We generated 
two types of control TPs to contrast with antibiotic TPs. The first was differential 
expression from baseline (time zero) comparison of a strain of Mtb exposed to antibiotic 
vs those not exposed to antibiotic that we expect reflects noise in inoculum size. The 
second control TP was generated by identifying differential expression in antibiotic 
unexposed strains from two different time points that we expect reflect the temporal 
effect of growth in culture.

Microarray analysis

For microarray analysis, we used R packages GEOquery (v2.6.0) (33) and Limma (v3.48.3) 
(34). Processed microarray data from one-channel and two-channel array experiments 
were downloaded with GEOQuery. Probe intensities were converted to log2fold, and the 
mean intensity for genes with multiple probes was used to create a single value for each 
gene. After removing the genes outlined above, Limma was used to perform quantile 
normalization across all arrays, followed by differential expression analysis to generate 
antibiotic and control transcription profiles.

RNA-seq analysis

GSE and SRA accession IDs of identified studies were used to download metadata from 
SRA explorer (https://sra-explorer.info/); FASTQ files were downloaded from the ENA, and 
md5sums were checked. FASTQC (v0.11.5) (35) and multiQC (v1.5) (36) were used for 
quality control. Reads were aligned to H37Rv with BWA (v0.7.15) (37); Samtools (v1.9) 
(38) was used to create sorted BAM files and calculate the percent of the genome 
covered. Sorted BAM files were analyzed using featureCounts from Subread (v2.0.3) (39) 
to count reads with separate flags for single-end and paired-end reads. Experiments 
with <80% of genome coverage were excluded. Antibiotic and control transcription 
profiles were generated using DESeq2 (v1.32.0) (40), with quality control and analysis 
workflow adapted from the bulk-RNA-seq analysis by the Harvard Chan Bioinformatic 
Core (41).
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Transcription profile analysis and generation of transcriptional antibiotic 
response

TPs generated using single samples without replicates or those where the ratio of 
the antibiotic concentration to the WHO critical concentration (antibiotic concentration 
ratio) was under 0.5 were excluded. As the duration of antibiotic exposure was signif­
icantly associated with the number of differentially expressed genes in response to 
antibiotic exposure and because of the heterogeneity in the duration of culture across 
different studies, we categorized the duration of culture into <3 hours, 3–6 hours, 6–24 
hours, and >24 hours. This would allow us to explore the impact of the duration of 
antibiotic exposure on gene expression. However, there were not enough TPs within 
each of these time categories (Table 1) to assess the ability to discriminate between 
antibiotic from control TPs using a logistic regression model. The <6 and >6 hours 
categories allowed us to develop such models. The antibiotic concentration ratio was 
categorized into 0.5–1, 1–2, 2–4, and >4 times the WHO critical concentration.

To control for the heterogeneity in log2fold values across transcriptomic technology 
and studies from different laboratories, we ranked genes within each transcription profile 
by the magnitude of log2fold expression, assigning the lowest rank to the gene with 
the highest log2fold value. The transcription profiles for an antibiotic within each time 
category were used to calculate the median rank for each gene across those profiles, 
and the genes with the top 10 median ranks were selected to create the transcriptional 
antibiotic response (TAR). This was done separately for upregulated and downregulated 
genes. We chose 10 genes to develop the TAR based on previous studies that have used 
transcriptomics-based susceptibility testing methods (26, 27).

On TARs across antibiotics and time categories, we noted certain genes to be 
common to antibiotics with similar mechanisms of action across multiple time catego­
ries or common to multiple antibiotics with different mechanisms of action within the 
same time category. To explore this further, we calculated the median rank for specific 
combinations of antibiotics and genes across multiple time categories to determine 
temporal changes related to the mechanism of action for these antibiotic combinations. 
Heatmaps were created using R package pheatmap (v1.012) for all antibiotics within 
each time category. After assigning the value 0 to genes that were not differentially 
expressed, the median log2fold value for each gene for each antibiotic within a time 
category was calculated. The median log2fold value was obtained for upregulated 
and downregulated TARs for each antibiotic within a time category; genes that were 
significantly expressed in other antibiotics (but not within the TAR or not differentially 
expressed for that antibiotic) were also included.

Statistical analysis

We compared the number of genes differentially expressed between microarray and 
RNA-seq data for antibiotic and control TPs using t tests. We used linear regression 
to determine the relationship between the number of genes differentially expressed 
as a function of the duration of antibiotic exposure, adjusting for the transcriptomic 
technology used (microarray or RNA-seq), study (batch effects), antibiotic, and antibiotic 
concentration. We repeated the analysis for control TPs.

For antibiotics with four or more TPs within a time category, we determined the 
classification accuracy of the TAR signature for that time category to distinguish between 
antibiotic TPs within that category and all control TPs. We filtered the antibiotic and 
control TPs to include only log2fold values of the 10 selected TAR genes for simplicity 
and due to the differences in the number of TPs, the proportion of genes differentially 
expressed, as well as the magnitude of log2fold values between studies. We performed 
a random 75%–25% split, used 75% of the data to train a logistic regression model, and 
tested the model classification accuracy on the remaining hold-out 25% of the data. The 
area under the receiver operating curve (AUC) as well as the sensitivity and specificity at 
the optimum decision threshold (Youden’s J-statistic) was calculated using the R package 
pROC (42). We repeated this cross-validation procedure 10 times and calculated the 
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mean and the 95% CI (using the t-distribution) for the AUC, sensitivity, and specificity. We 
determined classification accuracy separately for upregulated and downregulated TARs, 
as well as for a model that combined upregulated and downregulated TARs.

RESULTS

Data curation and quality control

We identified 30 studies that met our inclusion criteria (Fig. 1; Table S1). We fur­
ther excluded individual experiments that did not meet our criteria for experimental 
replicates or quality control criteria for microarray and RNA-seq data (Fig. 1, Supplemen­
tary text, Table S1). This left data from 562 experiments across 216 conditions (Fig. 1), 
of which 94% of experiments used laboratory reference strain H37Rv. Data from these 
experiments were used to generate 192 TPs. We excluded 18 TPs where the antibiotic 
concentration used was <0.5 times the WHO critical concentration for that antibiotic, 5 
TPs for antibiotics not recommended for treatment of TB, and 13 TPs that were suppor­
ted by only one experiment per condition (Fig. 1 and Supplementary text) (43, 44). After 
all exclusions, 99 antibiotic TPs and 57 control TPs from 24 studies were retained.

Transcription profiles

Of the 99 antibiotic TPs across 17 antibiotics, 33 profiles were from first-line antibiotics, 
while 46 were from WHO Grades A or B drugs for treatment of multidrug-resistant 
tuberculosis (MDR-TB) (including eight pretomanid TPs) (Table 1) (45). The duration of 
exposure ranged from 30 min to 96 hours. Most TPs were generated from antibiotic 
exposure ranging from 3 to 6 hours (41%) or 6 to 24 hours (35%) (Table 1; Table S2 and 
S6; Fig. 2A and B). The experimental drug concentration (expressed as a ratio to the WHO 
critical concentration) ranged from 0.5 to 50 (Fig. 2A and C). Forty-nine profiles (49%) 
reflected antibiotic exposure within one doubling of the WHO critical concentration 
(drug concentration ratio 0.5–2, Table 1; Fig. 2C and D). We generated 57 control TPs: 
seven from time zero for either antibiotic exposure or unexposed inoculum and 50 from 
longitudinal experiments of antibiotic unexposed strains at two different time points 
ranging from 1 to 96 hours (Table S4). Tables S3 and S5 contain the antibiotic and control 
TPs, respectively.

The mean number of genes differentially expressed was lower for microarray than 
for RNA-seq for both antibiotic (1,227 vs 2,646, respectively; P < 0.0001) and control TPs 
(589 vs 1,888, respectively; P < 0.0001). Regression demonstrated that after controlling 
for the transcriptomic technology used, study/batch, antibiotic, and antibiotic concen­
tration, a longer duration of exposure was associated with a larger number of differen-
tially expressed genes (P < 0.001). Conditioning on the duration of exposure and the 
aforementioned experimental variables, we measured no significant effect of antibiotic 

FIG 1 Study flow diagram.
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concentration on the number of differentially expressed genes within the range of 
evaluated concentrations (P = 0.52). After controlling for the study or batch and type of 
transcription technology used, the number of genes differentially expressed in control 
TPs was significantly associated with the time interval between the control conditions 
used to generate the TP (P < 0.001). The range of median log2fold values differed for 
microarray and RNA-seq in antibiotic (3.88 to −3.08 vs 6.06 to −4.43, respectively) but not 
control TPs (3.40 to –4.4 to vs 3.63 to −4.68).

Transcriptional antibiotic response

We examined the top 10 most upregulated and the top 10 most downregulated genes 
based on the pooled median rank of the log2fold values within a time category for each 
antibiotic and considered this subset the TAR genes (Table S7). In Fig. 3, we report the 
timing of expression observed for some of the top transcripts and their known links 
to drug or drug resistance mechanisms. For brevity, we focus on genes differentially 
expressed in response to two or more anti-TB drug classes. A detailed description of 
genes shared across time categories for individual drugs is provided in the supplemen­
tary text, Table S7; Fig. S1 and S2. Table S6; Fig. S2 explore temporal changes in median 
ranks for various combinations of antibiotics and genes

Upregulated genes shared across drug classes or mechanisms

The TAR gene upregulated in response to the largest number of drugs was the 
heat shock protein hsp, upregulated after 3–6 hours of exposure to pyrazinamide, 
bedaquiline, streptomycin, ethambutol, and amikacin and after 6–24 hours for 

FIG 2 Antibiotic TPs panel 2A: scatterplot of the duration of antibiotic exposure for TPs of each antibiotic, with different colors for microarray (orange) and 

RNA-seq (blue), and shape of the point representing different strains. Panel 2B: stacked bar chart of the count of TPs in each time category by antibiotic. Panel 

2C: scatterplot of the ratio of antibiotic concentration to the WHO critical concentration for TPs of each antibiotic, with different colors for microarray (orange) 

and RNA-seq (blue), and shape of the point representing different strains. Panel 2D: stacked bar chart of the count of TPs within each category of the antibiotic 

concentration to the WHO critical concentration.
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bedaquiline, ethambutol, and kanamycin, consistent with its response to multiple types 
of stress (46). We identified transcripts associated with the lexA DNA damage response 
to fluoroquinolones and nitroimidazoles (moxifloxacin and levofloxacin, delamanid and 

FIG 3 Time category-specific heatmaps constructed using median log2fold values of the upregulated and downregulated TARs for each antibiotic within a time 

category; median log2fold values for genes that were significantly expressed in other antibiotics (but not within the TAR or not differentially expressed for that 

antibiotic) were also used. The median log2fold values were calculated for each gene across all TPs for each antibiotic after assigning a value of 0 for genes that 

were not differentially expressed and scaled for each antibiotic within a time category. The heatmaps were constructed for TPs in the (A) less than 3 hours, (B) 3–6 

hours, (C) 6–24 hours, and (D) >24 hours time categories.
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pretomanid, respectively) (47, 48). whiB7, a known transcriptional regulator of eis that 
is known to inactivate kanamycin, was noted in the TARs for the aminoglycosides, 
capreomycin, and linezolid, along with Rv1258c, erm (37), eis, and Rv0263c, all genes 
that are known to be regulated by whiB7 (49, 50). Transcripts coding for efflux pumps 
were noted for isoniazid and ethionamide (efpA), pretomanid (mmpL5), bedaquiline 
and clofazimine (mmpL5 and mmpS5), and linezolid (Rv1258c), suggesting the role of 
antibiotic efflux as a bacterial response to antibiotic exposure.

One or more transcripts from the iniBAC operon (iniA, iniB, and iniC; of which iniA is 
linked to isoniazid and ethambutol resistance putatively by facilitating the activity of an 
efflux pump as well as by maintaining plasma membrane structure) were among the 
top 10 most upregulated genes in one or more time category for the cell wall inhibitors 
isoniazid, ethambutol, ethionamide, and pretomanid (51, 52). In line with their role in 
inhibiting mycolic acid biosynthesis, isoniazid and ethionamide both upregulated FAS-II 
complex genes (kasA, kasB, and acpM) and iniBAC (iniB and iniA) operons at 3–6 hours of 
exposure.

One or more TARs for bedaquiline and clofazimine included members of the mbt-1 
locus consisting of genes mbtA-mbtJ responsible for the synthesis of the siderophore 
mycobactin, a molecule necessary for the intracellular transport of extracellular iron and 
for intracellular survival of Mtb in host cells (53, 54). The 6–24 hours TAR for bedaquiline 
and 3–6 TAR for clofazimine also included Rv0678, and the transcriptional repressor of 
the Mmps5-Mmpl5 efflux pump involved in the export of mycobactins; mutations in 
Rv0678 confer resistance to azoles, bedaquiline, and clofazimine through drug export by 
the MmpS5-MmpL5 efflux pump (55–58). The primary activity of MmpS5-MmpL5 system 
is the export of the siderophores synthesized by the mbt-1 and mbt-2 loci; interruption of 
its activity leads to toxicity from the intracellular accumulation of iron (59).

Downregulated genes shared across drug classes or mechanisms

The genes identified in downregulated TARs were consistent with a global response to 
antibiotic effect rather than an association with a specific pathway or mechanism of 
resistance for that antibiotic. Genes from the ESX gene family, the mce1 operon, and he 
chaperone genes groES and groEL2 were seen in antibiotic TARs across multiple time 
categories. The ESX family is involved in virulence, and six genes from this family (esxR, 
esxH, esxQ, esxG, esxS, esxM) were downregulated in response to levofloxacin, amika­
cin, streptomycin, capreomycin, rifampicin, rifapentine, pyrazinamide, and linezolid (60). 
mce1 operon genes also code for proteins involved in virulence and were noted in TARs 
for pyrazinamide, linezolid, pretomanid, clofazimine, streptomycin, ethionamide, and 

FIG 4 The AUC used to determine the classification accuracy of a logistic regression model in distinguishing antibiotic from control TPs for antibiotics with at 

least four TPs in the (A) less than 6 hours and (B) greater than 6 hours time category, with the color of the bars corresponding to model constructed using genes 

from the upregulated (green), downregulated (red), or combined (purple) TAR.
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ethambutol (61). Stress response chaperone protein encoding genes groES and groEL2 
were present in TARs for pretomanid, delamanid, rifapentine, linezolid, ethambutol, and 
capreomycin. We identified the presence of genes coding for the 30S and 50S ribosomal 
subunit proteins and ribonuclease P protein (rplL, rplW, rplB, rplV, rplP, rplE, rplR, rpsN1, 
rpsH, rpsC, rpsS, rpsE, rpsQ, rpmD, rpmC, and rnpA) in the signatures for pretomanid, 
delamanid, bedaquiline, and linezolid (62).

We also noted the downregulation of genes involved in respiration in all-time 
categories. Three NADH dehydrogenases (Ndh, NdhA, and Nuo) responsible for NADH 
oxidation as part of the mycobacterial respiratory chain have been identified as potential 
drug targets. We identified the presence of genes from the nuo family (nuoM, nuoL, 
nuoI, nuoH, nuoB, nuoC, nuoD, nuoF, and nuoE) for isoniazid, ethionamide, linezolid, 
bedaquiline, moxifloxacin, capreomycin, kanamycin, streptomycin, amikacin, rifampicin, 
and genes involved in ATP synthase (atpB, atpC, atpD, and atpF) for pyrazinamide, 
capreomycin, amikacin, and levofloxacin. The >24 hours signature was striking for the 
presence of one or more genes involved in hypoxic stress response and dormancy genes 
(hspX, tgs1, Rv3131, Rv1738, Rv2030c, hrp1, and fdxA) for six of the seven antibiotics 
(bedaquiline, isoniazid, moxifloxacin, pretomanid, linezolid, and clofazimine) (63–67). The 
delamanid TARs from earlier time periods (3–6 hours and 6–24 hours) also had multiple 
genes associated with the hypoxic response.

Transcripts from the desA1 and desA2 genes involved in mycolic acid desaturation 
were noted for isoniazid and ethionamide (68–70). Resuscitation-promoting factors 
(rpfA-E) are virulence factors required for Mtb to recover from a dormant state (71). 
rpfB, rfpC, or rpfE are downregulated in response to the cell wall inhibitors, isoniazid, 
ethionamide, pretomanid, and delamanid, and also noted in a single bedaquiline TAR.

Antibiotic TAR performance

Given the strong temporality of the transcriptional signal and the lesser effect of drug 
concentration, we generated two antibiotic TAR signatures by pooling across drug 
concentrations for the ≤6 hours and >6 hours categories, respectively (Table 1; Fig. 4). We 
focused on the drugs with at least four TPs for either time interval: isoniazid, bedaquiline, 
pyrazinamide, clofazimine, moxifloxacin, pretomanid, and linezolid. There was a median 
of seven TPs per drug for these agents for the ≤6 hours interval and a median of five TPs 
per drug for the >6 hours time interval. We built a logistic regression model that used 
the log2fold expression values of the top 10 upregulated and downregulated genes for 
a particular time interval and drug to distinguish drug exposure from all pooled controls 
(i.e., both longitudinal and time zero controls), as a more extreme test of classification 
specificity. We used 10-fold 75%–25% splits of the data for training and cross-validation 
(Materials and methods). The upregulated TAR signatures performed well with AUC for 
discriminating exposure vs. no exposure ranging from a minimum of 0.84–1.00 across 
antibiotics for the ≤6 hours time category and 0.76–1.00 for the >6 hours time category 
(Fig. 4A). The downregulated TAR had comparable AUC for most drugs in both time 
points (Fig. 4B). Combining upregulated and downregulated TAR signatures did not 
improve AUC over the upregulated or downregulated TAR signatures alone across drugs 
and time categories. Using TARs of either 5 or 15 genes did not significantly change 
performance (Table S9; Fig. S3).

For the antibiotics delamanid, streptomycin, and rifampicin, there were fewer than 
five TPs in total per drug, so we built a model for resistance classification by pooling 
TPs across the <6 hours or >6 hours time categories. The AUC for predicting antibi­
otic exposure was 0.99–1, 0.82–0.85, and 0.68–0.71 for streptomycin, delamanid, and 
rifampicin, respectively (Table S9).

DISCUSSION

We analyzed microarray and RNA-seq data from 562 experiments across 17 anti­
biotics to identify Mtb gene expression signatures useful for determining in vitro 

Full-Length Text Antimicrobial Agents and Chemotherapy

May 2024  Volume 68  Issue 5 10.1128/aac.01185-2311

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//j

ou
rn

al
s.

as
m

.o
rg

/jo
ur

na
l/a

ac
 o

n 
21

 M
ay

 2
02

4 
by

 1
28

.1
19

.2
42

.2
35

.

https://doi.org/10.1128/aac.01185-23


antibiotic susceptibility. We demonstrated that transcriptionally responsive genes vary 
by antibiotic and over time. Time appears to affect the number of differentially expressed 
genes to a larger extent than drug concentration in the available data. Though we 
found genes common to TAR signatures across and between antibiotic classes, most 
TAR signatures were drug-specific. TAR signatures performed well at discriminating 
between gene expression due to antibiotic effect and gene expression seen in antibiotic 
unexposed Mtb. Our results contribute significantly to the literature on this topic as we 
pool all publicly available data to-date. We focused on drugs currently approved for the 
treatment of TB, including several newer and repurposed drugs for which the molecular 
mechanisms of resistance are not yet well-delineated. The culture media, time, and 
antibiotic concentration categories studied reflect the expected workflow of a clinical 
microbiology laboratory.

The upregulated TARs largely included genes related to the mechanism of action 
rather than genes associated with resistance mutations for antibiotics isoniazid (katG and 
inhA promoter), ethionamide (inhA promoter), and fluoroquionolones (gyrA and gyrB) 
(72). Genes known to be associated with resistance were seen in the TARs for bedaquiline 
and clofazimine (Rv0678), kanamycin (whiB7), and capreomycin (eis and whiB7); however, 
these genes were also seen in pretomanid and pyrazinamide (Rv0678), delamanid (eis), 
and linezolid (eis and whiB7), which are not known to be associated with Mtb resistance 
to these antibiotics (72). Similarly, whiB6, associated with Mtb resistance to amikacin, 
streptomycin, and capreomycin, was not present in the TAR for these drugs but was 
noted in the TARs for isoniazid, pretomanid, and linezolid (72). Mutations in the efflux 
pump coded by Rv1258c are associated with resistance to isoniazid, streptomycin, and 
pyrazinamide (72); however, we only identified it in the TARs for linezolid along with 
other genes (eis and Rv0263c) induced by whiB7. Thus, the TAR likely reflects drug-spe­
cific mechanisms of action that result in characteristic perturbations in cellular processes. 
These data confirm that transcriptomic responses enable a better understanding of the 
drug’s mechanism of action. Although isolates with drug resistance mutations are not 
studied here, the overlap of TAR genes with known drug resistance encoding genes 
suggests that the transcriptomic response to antibiotics will enable the characterization 
of phenotypic and genotypic resistance in M. tuberculosis.

The transcriptional response to antibiotic exposure had notable overlap across drug 
classes. We observed both upregulation and downregulation of certain stress response 
genes, including heat shock (hsp), DNA repair (lexA-regulated), stress response chaper­
one proteins (groES and groEL2), and hypoxic response and dormancy genes across 
multiple antibiotics. We noted downregulation of virulence genes aerobic respiration 
(nuo and atp) and ribosomal protein subunits across drug classes. Efflux pumps were 
noted in the upregulated TARs, but the specific efflux genes differed by drug class. These 
may reflect global responses in bacterial physiology due to antibiotic effect (12, 15). 
While the data available for our analysis did not allow us to explore this hypothesis in 
detail, it may be possible to use a single TAR to demonstrate antibiotic activity among 
agents of the same class or multiple classes.

Our study was not without limitations. As this is a meta-analysis, transcriptional 
changes were measured across a heterogeneous set of antibiotic concentrations and 
duration of time, and some antibiotics were not well represented in the available 
data. There was not enough data to identify class-specific TARs for aminoglycosides 
and fluoroquinolones. Our selection of 10 genes is arbitrary albeit based on previous 
work with gram-negative pathogens; the optimal number of genes may defer (27). 
Most experiments were performed using the reference strain H37Rv, so we could not 
evaluate the impact of background genetic variation seen in clinical isolates or the 
role of lineage in antibiotic response. Assessment of the performance of transcriptional 
response for predicting antibiotic effect is preliminary as it used cross-validation without 
the ability to validate an independent hold-out test data set due to the data set size 
available. Transcriptional data on antibiotic-exposed resistant isolates were unavailable 
on NCBI/ENA when we conducted this study. Assessment of performance also assumes 

Full-Length Text Antimicrobial Agents and Chemotherapy

May 2024  Volume 68  Issue 5 10.1128/aac.01185-2312

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//j

ou
rn

al
s.

as
m

.o
rg

/jo
ur

na
l/a

ac
 o

n 
21

 M
ay

 2
02

4 
by

 1
28

.1
19

.2
42

.2
35

.

https://doi.org/10.1128/aac.01185-23


that the transcriptional profile of resistant isolates exposed to a drug is like that of a 
susceptible isolate unexposed to the same drug. Although one prior study confirmed 
that this assumption holds for three drugs and mechanisms of resistance, it may not 
hold true for all drugs (26). Future studies will need to validate TAR signatures using 
antibiotic-resistant isolates to determine if transcriptomic responses can be used as a 
rapid drug-susceptibility method.

In conclusion, our study demonstrates the rapid and drug-specific responses of Mtb 
to antibiotic exposure. The overall patterns of differential expression are consistent 
with the published literature for the effect of specific antibiotics, including studies 
from which data were not available publicly for inclusion in this meta-analysis and in 
the sputum of patients treated for drug-susceptible tuberculosis (19, 66, 73–75). This 
approach allows for the characterization of mechanisms of action of new compounds 
that affect a range of cellular processes. Because transcriptomic methods can detect 
both coding mutations and transcript abundance, they have the potential to combine 
phenotypic and genotypic methods into a single test. Compared with DNA-based 
diagnostics this approach lessens the dependence on a comprehensive catalogue of 
resistance mutations (26, 27). Further work is needed to confirm the accuracy of this 
approach, including the study of more genetically diverse clinical strains, the standardi­
zation of growth conditions and antibiotic concentrations, and refining and validating 
the signature using resistant strains of Mtb.
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