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Clustered protocadherins, a large family of paralogous proteins
that play important roles in neuronal development, provide an
important case study of interaction specificity in a large eukaryotic
protein family. A mammalian genome has more than 50 clustered
protocadherin isoforms, which have remarkable homophilic spec-
ificity for interactions between cellular surfaces. A large antipar-
allel dimer interface formed by the first 4 extracellular cadherin
(EC) domains controls this interaction. To understand how specificity
is achieved between the numerous paralogs, we used a combination
of structural and computational approaches. Molecular dynamics
simulations revealed that individual EC interactions are weak and
undergo binding and unbinding events, but together they form a
stable complex through polyvalency. Strongly evolutionarily coupled
residue pairs interacted more frequently in our simulations, suggest-
ing that sequence coevolution can inform the frequency of interaction
and biochemical nature of a residue interaction. With these simulations
and sequence coevolution, we generated a statistical model of
interaction energy for the clustered protocadherin family that
measures the contributions of all amino acid pairs at the interface.
Our interaction energy model assesses specificity for all possible
pairs of isoforms, recapitulating known pairings and predicting
the effects of experimental changes in isoform specificity that are
consistent with literature results. Our results show that sequence
coevolution can be used to understand specificity determinants in
a protein family and prioritize interface amino acid substitutions
to reprogram specific protein–protein interactions.

clustered protocadherins | protein–protein interactions |
sequence covariation | molecular dynamics | polyvalency

Clustered protocadherins (Pcdhs) are a large protein family
that play roles in vertebrate nervous system development,

including neuronal survival, axon targeting, neuronal arborization,
and dendritic self-avoidance (1–9). Dendritic self-avoidance, wherein
dendritic arbors are pruned when 2 dendrites from the same
neuron come in contact, is mediated by formation of a clustered
Pcdh assembly between 2 dendrites (5, 10). This assembly con-
sists of specific homodimers formed in trans across 2 cellular
membranes, engaging the first 4 extracellular cadherin (EC) repeat
domains in an antiparallel arrangement (Fig. 1A). In addition to
these trans interfaces, ECs 5 and 6 interact between protocadherins
on the same neuron (cis), resulting in a zipper-like lattice (11). The
trans homodimers are highly specific such that no cross interactions
are observed in even the most similar isoforms (12–14). The trans
EC1-4 interaction is also found in nonclustered Pcdhs (15–17),
indicating the importance of this adhesive interface in cognitive
function. Given the many isoforms per vertebrate genome, in-
cluding 53 in the human genome, we sought to understand how
specificity is achieved in this large interface.
Structures of Pcdh trans dimers (11, 15, 18–20) have revealed

idiosyncratic characteristics of individual dimer structures, like
the lack of EC1/EC4 interaction in the PcdhγA1 and PcdhγA8

structures (20) and the small EC2/EC3 interface in PcdhγB3
(15). Based on the variety of interfaces found in the existing crystal
structures (15, 18–20), it is possible that every isoform achieves
specificity by adopting a different static interface conformation, or
that isoforms sample a distribution of conformations, with different
combinations of interface residues determining preference for
self-interaction. Understanding Pcdh interaction specificity re-
quires disentangling these scenarios by considering both interface
conformations and residue–residue interaction preferences.
Prior computational work has sought to understand the evo-

lution of specificity of the Pcdh trans interaction, finding positive
selection on the trans interface (21), and suggesting that the EC2/
EC3 interface plays a greater role in specificity between closely
related protocadherins (10, 15). However, this computational
framework could not analyze residue dependencies at the in-
terface, or be used to predict specificities for new mutations or
combinations of protocadherins. Recent computational methods
based on residue coevolution have proven useful for understanding
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the structure and function of protein complexes (22, 23). These
methods use undirected graphical models of protein sequences to
find statistical dependencies between pairs of residues (24–26),
successfully predicting correct protein–protein interaction pairings
for families with many paralogs (27, 28), informing specificity
reprogramming experiments (29, 30) and predicting the effect of
mutations on protein function (31). Therefore, these generative
models of residue dependencies may allow for characterization of
residues important to specificity in the clustered Pcdh family, and
prediction of interaction probability of all possible isoform pairs.
To better understand the structural and dynamical determi-

nants of Pcdh interaction specificity, we use molecular dynamics
(MD) simulations and crystal structures to show that isoforms
adopt a range of conformations and to identify interacting residue
pairs. We build a statistical model using evolutionary couplings
(24, 25) to analyze specificity of all possible trans isoform inter-
actions and infer which domains are important for interaction and
specificity. This work provides insight into the molecular origins of
specificity within the clustered Pcdh family and demonstrates that
models based on sequence coevolution and MD simulations can be
used to guide reprogramming of protein–protein interaction specificity.

Results
Structures and MD Show That Pcdh trans Interfaces Sample a
Distribution of Conformations. The trans interface of clustered
Pcdhs is specific for self-interaction (12, 13) (Fig. 1A). Clustered
Pcdh paralogs share only 40% residue identity at their interfaces
(Fig. 1C). Crystal structures of many Pcdh isoform dimers (15,
18–20) revealed idiosyncratic features of individual isoforms,
raising the possibility that different isoforms adopt different
conformations in vivo, resulting in molecular specificity. For
example, PcdhγA1 (in 1 of 2 dimers) and PcdhγA8 (20) lack
EC1/EC4 contacts, and PcdhγB3 EC2-3 has a surprisingly small
interface (15). Pairs of different isoform static structures share a
mean of 32% of their interface residue contacts, with only 14
contact pairs shared between all 4 analyzed isoforms (Fig. 1D). We
thus used MD simulations to test whether distinct features of in-
dividual isoforms result from static conformational differences, or
from a dynamic interface crystallized in different conformations.
We performed 120-ns all-atom MD equilibrium simulations of

4 different EC1-4 homodimers from different Pcdh subfamilies
to distinguish the above hypotheses: PcdhγB3, PcdhγB7, Pcdhβ6,
and Pcdhα7 (SI Appendix, Table S1). Overall, the complexes did
not dissociate over the course of simulation (SI Appendix, Fig.
S1A and Fig. 1B). While root-mean-squared deviation (RMSD)
is not an appropriate metric to determine convergence for the
full Pcdh complex due to its large size and the flexibility of the
hinge regions between EC repeats (32), overall RMSD remained
stable and below ∼8 Å for all structures. Moreover, the RMSD
of individual ECs ranged from 2 to 3 Å, showing local equilib-
rium (SI Appendix, Fig. S2). Also, the overall buried surface area
(BSA) of each isoform was stable: The average BSA was 4,400 ±
400 Å2 for PcdhγB3, 4,500± 300 Å2 for PcdhγB7, 4,200± 300 Å2 for
Pcdhβ6, and 3,500 ± 200 Å2 for Pcdhα7.
At an individual EC interaction level, fluctuations in BSA

suggest these interactions are weak. Between individual EC domain
dimers, which average 700 to 1,300 Å2 in BSA, fluctuations in
BSA can be more than 400 Å2 over the course of a few nanosec-
onds (Fig. 1B and SI Appendix, Table S2). For example, 1 EC1/EC4
dimer of Pcdhα7 fluctuates in BSA from 1,000 Å2 at the start of the
simulation to ∼200 Å2 at 6 ns then to 1,200 Å2 around 35 ns (Fig.
1B). In another example, our previously published PcdhγB3 struc-
ture has a particularly small BSA for the EC2/EC3 interface (15).
In our simulations, each EC2/EC3 interface increases in BSA from
∼600 to ∼1,200 Å2 in the first 6 ns. The presence of HEPES at this
interface did not cause the small interface, as structures with less or
no HEPES were identical (overall RMSD over 3,210 atoms: 0.890
and 0.785 Å, respectively) (SI Appendix, Fig. S3), suggesting this

structure is a conformation sampled by PcdhγB3 in solution. The
larger BSA of the equilibrated PcdhγB3 structure is similar to that
of other simulated clustered Pcdhs (SI Appendix, Fig. S1B). In fact,
this was generally true of all simulations: the proportion of shared
interface sites across the simulations is higher than that across the
crystal structures alone (Fig. 1D), indicating that simulations can
define interface residues representative of a protein family.
Although the MD simulations are not necessarily equilibrated,

the fluctuations suggest that if these individual EC interactions
were found in isolation they would be low affinity, consistent with
the observation that EC1-3 constructs do not dimerize in solution
(14, 18). These fluctuations in BSA agree with other simulations
that find sharp decreases in BSA as prerequisites to protein com-
plex dissociation (33). Overall, our simulations indicate that each
isoform can sample a range of interface conformations, and that the
available crystal structures represent only a snapshot of these con-
formational possibilities. Furthermore, simulations can improve
consistency when defining interface residues in a protein family.

Highly Coevolving Residue Pairs Are in Frequent Contact in Simulations.
Computational methods based on residue coevolution have
been useful in understanding the structure of Pcdhs, predicting
the EC1/EC4 interaction and that the trans dimer architecture
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Fig. 1. Clustered Pcdhs have diverse and dynamic interfaces. (A) The clus-
tered Pcdh dimer is an antiparallel complex where EC1 of the first protomer
interacts with EC4 of the other protomer (orange and yellow) and EC2 in-
teracts with EC3 (blue and green). Each simulation thus provides 2 examples
of each type of interaction. (B) The BSA of the EC1/EC4 and EC2/EC3 inter-
actions varies throughout the simulations for each simulated isoform
(PcdhγB3 EC1-4, PcdhγB7 EC1-4, Pcdhβ6 EC1-4, and Pcdhα7 EC1-5). Instances of
rapid interface BSA changes (>400 Å2 in under 5 ns) are indicated with an
asterisk in the corresponding color. (C) Percent identity of EC1-4 of the 4
clustered Pcdhs studied here. (D) Percentage of interface residue contacts
shared between structures (Pcdhα7, 5dzv; Pcdhβ6, 5dzx; PcdhγB3, 5k8r;
PcdhγB7, 5szp) and between structures and MD simulations. Each structure
shares a mean of 32% of its contacts with other structures, and a mean of
47% of its contacts with other isoforms in simulation.
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exists in nonclustered Pcdhs, both findings later confirmed ex-
perimentally (15, 16, 18, 34). Coevolving residue pairs identify
interprotein contacts (22, 23) but can correspond to positions only
in contact in certain conformations (35–37). Given the dynamic
nature of the Pcdh interface and the above observation that crystal
structures represent only a snapshot of possible conformations, we
analyzed how often highly coevolving interface residues in the
Pcdhs (15, 18) are in contact across simulations and over time.
In our sequence coevolution analysis, the set of top 200

coevolving pairs includes mostly intramolecular contacts and 15
intermolecular pairs (SI Appendix, Fig. S4). We calculated the
residue–residue distance of these 15 coevolving intermolecular
pairs (Fig. 2A) over the course of the MD simulations. Of note,
each simulation provides 2 (semi)independent observations for
each residue pair due to the 2-fold symmetry of the dimer. In
general, pairs with higher coevolution scores are more frequently
in contact across more simulations than weaker pairs (Fig. 2B),
consistent with the observation that lower-scoring pairs are less
predictive of physically interacting residues (22, 23).
A closer examination of the top 15 intermolecular pairs reveals

diverse trajectories during simulations (Fig. 2C). For the most
highly coevolving pairs, the residues are in close contact most of
the time in most simulations. For example, the 84 to 338 and 123
to 300 pairs (based on PcdhγΒ3 numbering in SI Appendix, Fig.
S5) remain at ∼4 Å throughout all but 1 simulation (SI Appendix,
Fig. S6). For some lower-scoring pairs, the residues are in close
proximity in some simulations but further in others, e.g., the 159 to
302 pair residue–residue distances fluctuate between 6 and 18 Å in
most simulations but stay consistently close in the Pcdhα7 interface.
Other lower scoring pairs fluctuate widely in all simulations and
rarely if ever come into contact, such as the 39 to 338 pair.

Model Parameters Reveal Biochemical Interactions Underlying Interface
Specificity. Coevolving pairs are calculated using an undirected
graphical model, which has parameters for single-site biases and
pairwise residue preferences for all sites (24–26). The pairwise
residue preferences can capture biochemical relationships be-
tween amino acids (38). We asked whether the pairwise residue
preferences, termed Jij matrices, can shed light on the bio-
chemical nature of interactions in the interface and inform which
residues stay in contact during simulations.
We observe a weak correlation between the pairwise residue

preference (Jij value) of a particular residue pair in a particular
isoform, and the fraction of the simulation that this pair spends
in contact (Pearson’s r = 0.30, P < 0.05, n = 56; Fig. 3B) The top-
scoring pairs, 84–338, 77–371, and 41–342, are a hydrophobic
interaction, a charged-aromatic interaction, and a salt bridge,
respectively (Fig. 3A). These interactions are conserved in their
biochemical nature even though the particular residues have
undergone substitution. Further down the list of top-scoring in-
termolecular coevolving pairs, the biochemical nature of the
interaction becomes less apparent. For instance, the 124 to 302
pair appears to be an interaction between the hydrophobic po-
sition 124 and the charged or polar position 302. These could be
due to noise in parameter inference or could indicate positions
that are rapidly diversifying and inhabiting repulsive states to
achieve specificity. Consistent with this latter hypothesis, these
lower-scoring pairs are found predominantly on EC2/EC3, which
has been identified as a region of rapid diversifying selection (21).
Extreme Jij value residue pairs for EC1/EC4 are concentrated in
biochemically similar regions (e.g., 84 to 338 and 77 to 371), while
significant residue pair Jij values for EC2/EC3 pairs are broadly
distributed in biochemically diverse pairs (SI Appendix, Fig. S7).
The dynamics and structural heterogeneity of residue pair

interactions in EC2/EC3 may explain why coevolving pairs on
this interface have lower scores. Four of the top 15 coevolving
pairs cluster in the β4–β5 loop of EC2, which interacts with EC3.
During simulations of the PcdhγB3 EC1-4 interface, conformational

changes in this loop leads to an increased interface BSA during
the first 6 ns of simulation (SI Appendix, Fig. S1B), including the
formation of hydrogen bonds between Y161 and K302, and N155
and T286, and a van derWaals interaction between L156 andM216
(numbering based on SI Appendix, Fig. S5 and Fig. 4A). The cor-
responding interresidue distances vary in a coordinated fashion as
the loop fluctuates between the disengaged state seen in the
structure and an engaged state where the loop interacts directly
with EC3 (SI Appendix, Fig. S8). The heterogeneity of the EC2 β4–
β5 loop is echoed in its diverse conformations in other clustered
Pcdh structures (SI Appendix, Fig. S9). Pcdhα7 and PcdhγB7
(unlike Pcdhβ6) also use the EC2 β4–β5 loop to interact with
EC3 but use a distinct set of amino acid interactions (Fig. 4B).
These interactions are biochemically diverse, including hydrogen
bonds and electrostatic and van der Waals interactions (Fig. 4C).
For all 3 isoforms, the interactions are dynamic and go through
binding and unbinding events (SI Appendix, Fig. S8). Isoform
differences in how the EC2 β4–β5 loop interacts with EC3 may
explain the biochemical diversity of the coevolving residue pairs
at this interface and the relative low strength of these couplings.

SEI Describes Pcdh Specificity Distributions. We used evolutionary
couplings and simulation data to build a model of clustered Pcdh
interaction specificity (Methods and SI Appendix). We assess the
propensity for any 2 Pcdhs to interact by summing the pairwise
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residue preferences for all interface residue pairs, producing a score
that we call the statistical energy of interaction (SEI) (Methods and
Fig. 5A). A higher SEI indicates a higher propensity for interaction.
Our statistical model allows us to compare covariation-based

determinants of specificity between all isoforms to discern the
relative likelihood of interaction. For the α, β, and γ Pcdh subfamilies
in mouse, the SEI of a sequence with itself (a self pairing) is higher
than the SEI of a sequence with a different isoform (a nonself
pairing; Fig. 5B). This is generally consistent with previous cell
aggregation experiments in which clustered Pcdhs only form
homodimers (12, 13). While these studies observed no nonself
interaction in their experiments, our model finds that in some
cases the SEI for nonself pairs is as high as for a self pairing, e.g.,
between β4 and β6. This could be due to particulars of the cell
aggregation assay or suggest that some in vivo determinants of
specificity are not fully captured by our model.
We compared the contribution of each domain–domain inter-

face to the overall SEI. The nonself Pcdh pairs of the mouse α, γB,
and γA subfamilies have a lower SEI in the EC2/EC3 interface
than in the EC1/EC4 interface, indicating that the EC2/EC3 in-
terface contributes more to specificity of these isoforms (Fig. 5C
and SI Appendix, Fig. S10). The α subfamily has nearly identical
SEI between EC1/EC4 self and nonself interfaces, suggesting this
interaction has little discriminatory power in the α subfamily. This
finding extends our previous analysis (14) that found that the EC2/
EC3 interface tends to contribute more to specificity than the
EC1/EC4 interface. The difference in SEI between EC2/EC3 and
EC1/EC4 nonself pairs may be due to having mutations between
self and nonself EC2/EC3 pairs compared to EC1/EC4 pairs, which
negatively correlates with the SEI (SI Appendix, Fig. S11).
The SEI model allows us to predict how particular mutations

may alter interaction specificity by recalculating SEI using individ-
ual coupling terms from the mutant sequence. Previous work has
tested chimeric constructs in cell aggregation assays to un-
derstand how specificity is encoded in the clustered Pcdh family
(14), and our model correctly predicts the phenotype of the
majority of these mutants (SI Appendix, Fig. S12). On closer
inspection of the Pcdhα7/Pcdhα8 pair, the SEI of Pcdhα8 EC1/
EC4 nonself pairs are lower than the nonself EC1/EC4 pairs in
other α isoforms (SI Appendix, Fig. S10). Coincidentally, the
Pcdhα7/Pcdhα8 EC2/EC3 SEI is nearly identical to the self SEI
scores, suggesting that, within this pair, EC1/EC4 provides more
discrimination than EC2/EC3. This agrees with literature results
(14) but remains an exception to the trend that EC2/EC3 provide
more discriminatory power in the α, γB, and γA subfamilies.
Our model parameters are inferred only from natural se-

quences, and therefore self pairings, which may bias the model
against nonself pairings. To avoid this possible bias, we imple-
mented an iterative pairing algorithm that allows the isoforms to

find favorable nonself pairings, if such pairings exist (23, 24) (SI
Appendix, Fig. S13). The algorithm reproduces self pairings for
74% of all sequences in the alignment, averaged across 5 replicates,
after iteration to convergence. This is on par with accuracy of
partner detection for other proteins pairs performed by related
algorithms (23, 34) and supports the use of our model built from
natural sequences. When the EC1/EC4 and EC2/EC3 interactions
were paired in isolation, we found that the accuracy of matching
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was less than when the whole interface was used, indicating that both
interfaces act in combination to achieve full specificity of the interface.
Our model allows us to compute a SEI score for all pairs of

clustered Pcdhs that generally agrees with experimental findings
about specificity of Pcdh isoforms. Importantly, it also allowed us
to dissect contributions of various interface components at an overall
and subfamily level. We observed lower mean SEI at EC2/EC3
nonself interfaces than at EC1/EC4 nonself interfaces, indicating
that the EC2/EC3 interface tends to be more involved in specificity.

Discussion
The highly specific antiparallel Pcdh interface that forms between
neurons is required for many roles in neuronal development. Our
results address the determinants of specificity in this interaction by
simulating the dynamics of the Pcdh interface and modeling the
contributions of each residue pair to interaction specificity.
Our MD simulations of clustered Pcdh dimers reveal that in-

dividual EC interactions sample a range of conformations in every
isoform. The variations in BSA for individual EC interactions
suggest that the individual interactions are weak, and the overall
stability of a Pcdh dimer is established by the polyvalent nature of
these individual EC interactions. This type of cooperative binding
is widespread in biology and plays roles in multisubunit protein
machine assembly, signaling at the membrane, and signaling between
cells (39–41). The dynamic nature of clustered Pcdh complexes
and the cooperativity of individual EC interactions likely play a
role in interaction specificity, motivating us to incorporate these
simulations in our statistical model of specificity.
The MD simulations allowed us to observe how coevolving

residue pairs across a protein interface vary over time. Overall,
we found that higher scoring pairs are closer together throughout
the simulations and across multiple homologs, demonstrating a

relationship between the strength of an interaction and the coupling
score of a residue pair. This result extends previous empirical
results showing that coevolving pairs are more likely to be close
in 3D (22, 23), and that evolutionary couplings can correspond to
multiple incompatible conformations (35–37). We also find that
residue–residue distances vary between isoforms, suggesting that
coevolving pairs may be important for the stability of only a subset
of proteins. Thus, our MD results illustrate that coevolving pairs
can represent residue interactions that are present in the ensemble
of conformations sampled by the collection of homologous proteins
that are present in the coevolutionary model. This knowledge could
inform further developments to benchmark structure prediction
using coevolution data.
By analyzing the correlation between evolutionary couplings

and the behavior of residue pairs in simulations, we have shed light
on the role of coevolving residue pairs in the specificity of clustered
Pcdh interactions. Generally, the most strongly coevolving pairs are
found between EC1 and EC4, and these pairs are frequently in
contact. The biochemical nature of these interactions is consistent
between isoforms, indicating that they serve a conservative role in
the Pcdh interactions. Coevolving pairs between EC2/EC3 are less
frequently in contact and their biochemical character changes be-
tween isoforms, suggesting these interactions are rapidly diversifying
and metastable so that they can flexibly occupy new specificity space.
We constructed a model of interaction specificity from sequence

data, using residue pairs found to interact in our simulations. We
used this model to evaluate pairs of individual EC interfaces,
allowing us to determine the relative likelihood of an interaction.
We found that the difference in statistical energy of interaction
(ΔSEI) supports literature results that the Pcdh interface is specific
for self-interaction. Nonself pairings of the EC2/EC3 interface have
lower SEI than nonself EC1/EC4 pairings for the α, γΑ, and γB
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subfamilies, indicating that the EC2/EC3 interface has a greater
contribution to specificity. There are some differences between sub-
families as noted previously (15, 20), with the β and γA subfamilies
having nearly equal contributions to specificity from both interfaces.
The extent to which protein–protein interactions avoid cross

talk with paralogs is dependent on the evolutionary consequences
of having promiscuous interactions. To avoid spurious signaling,
bacterial 2-component systems have strict specificity encoded in a
small number of residues (42, 43). Promiscuous intermediates have
been derived experimentally for bacterial toxin–antitoxin and PDZ
domains (44, 45), although these sequences likely have not been
visited evolutionarily. The work presented here suggests a strategy
used by clustered Pcdhs to ensure specificity and yet allow new
specificities to easily arise through evolution. Small changes in in-
dividual EC affinity caused by a small number of mutations can
alter the affinity of the whole dimer through the cooperativity of the
individual EC interactions. This strategy may explain the pervasiveness
of this interface for cell–cell adhesion in nervous system development.

Methods
Detailed procedures for all methods are provided in SI Appendix.

Statistical Interaction Energy Model of Clustered Pcdh Specificity. We used
evolutionary couplings to build a model of clustered Pcdh interactions.
Previous studies used the statistical energy of an evolutionary couplings
model to identify interacting histidine kinase-response regulator pairs (27,
28) and to predict the effects of mutations on protein function (31). For our
model, only the interface residue pairs determined by our MD approach

were used. The interaction energy between 2 sequences (σA, σB) is the sum of
the individual coupling terms (Jij) between the interface residues of the 2
sequences:

SEI
�
σA, σB

�
=  

X

interface  ði, jÞ
contacts

Jij
�
σAi , σ

B
j

�
.

The Jij term is the matrix of pairwise residue preferences for all possible
amino acids in positions i and j (31). The change in SEI(σ) is used to predict
whether the interaction will become more or less favorable. See SI Appendix
for further explanation. See Datasets S1–S3 for interface residues, residue
pairs, and an alignment of mouse isoforms.
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